Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (316)

Search Parameters:
Keywords = phase change media

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3327 KiB  
Article
Numerical Analysis of Heat Transfer and Flow Characteristics in Porous Media During Phase-Change Process of Transpiration Cooling for Aerospace Thermal Management
by Junhyeon Bae, Jukyoung Shin and Tae Young Kim
Energies 2025, 18(15), 4070; https://doi.org/10.3390/en18154070 - 31 Jul 2025
Viewed by 230
Abstract
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature [...] Read more.
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature inversion, which critically influence system reliability. This study conducts numerical analyses of coupled processes of heat transfer, flow, and phase change in transpiration cooling using a Two-Phase Mixture Model. The simulation incorporates a Local Thermal Non-Equilibrium approach to capture the distinct temperature fields of the solid and fluid phases, enabling accurate prediction of the thermal response within two-phase and single-phase regions. The results reveal that under low heat flux, dominant capillary action suppresses dry-out and expands the two-phase region. Conversely, high heat flux causes vaporization to overwhelm the capillary supply, forming a superheated vapor layer and constricting the two-phase zone. The analysis also explains a paradoxical pressure drop, where an initial increase in flow rate reduces pressure loss by suppressing the high-viscosity vapor phase. Furthermore, a local temperature inversion, where the fluid becomes hotter than the solid matrix, is identified and attributed to vapor counterflow and its subsequent condensation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

26 pages, 4687 KiB  
Article
Geant4-Based Logging-While-Drilling Gamma Gas Detection for Quantitative Inversion of Downhole Gas Content
by Xingming Wang, Xiangyu Wang, Qiaozhu Wang, Yuanyuan Yang, Xiong Han, Zhipeng Xu and Luqing Li
Processes 2025, 13(8), 2392; https://doi.org/10.3390/pr13082392 - 28 Jul 2025
Viewed by 355
Abstract
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for [...] Read more.
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for early warning. This study proposes a real-time monitoring technique for gas content in drilling fluid based on the attenuation principle of Ba-133 γ-rays. By integrating laboratory static/dynamic experiments and Geant4-11.2 Monte Carlo simulations, the influence mechanism of gas–liquid two-phase media on γ-ray transmission characteristics is systematically elucidated. Firstly, through a comparative analysis of radioactive source parameters such as Am-241 and Cs-137, Ba-133 (main peak at 356 keV, half-life of 10.6 years) is identified as the optimal downhole nuclear measurement source based on a comparative analysis of penetration capability, detection efficiency, and regulatory compliance. Compared to alternative sources, Ba-133 provides an optimal energy range for detecting drilling fluid density variations, while also meeting exemption activity limits (1 × 106 Bq) for field deployment. Subsequently, an experimental setup with drilling fluids of varying densities (1.2–1.8 g/cm3) is constructed to quantify the inverse square attenuation relationship between source-to-detector distance and counting rate, and to acquire counting data over the full gas content range (0–100%). The Monte Carlo simulation results exhibit a mean relative error of 5.01% compared to the experimental data, validating the physical correctness of the model. On this basis, a nonlinear inversion model coupling a first-order density term with a cubic gas content term is proposed, achieving a mean absolute percentage error of 2.3% across the full range and R2 = 0.999. Geant4-based simulation validation demonstrates that this technique can achieve a measurement accuracy of ±2.5% for gas content within the range of 0–100% (at a 95% confidence interval). The anticipated field accuracy of ±5% is estimated by accounting for additional uncertainties due to temperature effects, vibration, and mud composition variations under downhole conditions, significantly outperforming current surface monitoring methods. This enables the high-frequency, high-precision early detection of kick events during the shut-in period. The present study provides both theoretical and technical support for the engineering application of nuclear measurement techniques in well control safety. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 1355 KiB  
Article
Natural Product-Induced Modulation of Androstenone Metabolism in Porcine Hepatocytes
by Christine Bone and E. James Squires
Animals 2025, 15(15), 2199; https://doi.org/10.3390/ani15152199 - 25 Jul 2025
Viewed by 202
Abstract
The nuclear receptors pregnane X receptor (PXR), constitutive androstane receptor (CAR), and farnesoid X receptor (FXR) regulate the hepatic metabolism of androstenone, a testicular steroid that accumulates in the fat of intact male pigs and causes boar taint. This study evaluated natural product-derived [...] Read more.
The nuclear receptors pregnane X receptor (PXR), constitutive androstane receptor (CAR), and farnesoid X receptor (FXR) regulate the hepatic metabolism of androstenone, a testicular steroid that accumulates in the fat of intact male pigs and causes boar taint. This study evaluated natural product-derived compounds and conventional agonists targeting these nuclear receptors for their effects on androstenone metabolism in primary hepatocytes from slaughter-weight boars, to assess their potential as treatments for boar taint. Cells were incubated with natural products, conventional agonists, or dimethyl sulfoxide (DMSO; control), then being treated with androstenone. Culture media and cells were analyzed to assess changes in androstenone metabolism and gene expression. UGT1A6 was upregulated by treatments targeting both PXR and CAR and downregulated by FXR agonists. Additionally, PGC1α and NR2F1 were downregulated by compounds targeting PXR/CAR, while FXR and NR0B2 were upregulated and HNF4α downregulated by treatments acting on FXR. The natural products diallyl sulfide (DAS) and (Z)-guggulsterone (GUG) increased overall androstenone metabolism (DAS, GUG) and the production of Phase I androstenol metabolites (DAS), but only in hepatocyte culture replicates that responded positively to these treatments. Although gene expression was similar between positive-response and negative/non-responsive replicates following treatments, negative/non-responsive replicates for several treatments had higher basal expression of UGT2B31, UGT2A1, and SIRT1 and lower basal expression of FXR, PXR, and NR0B1 compared to positive-response replicates. These findings suggest that DAS and GUG may be promising treatments for boar taint, specifically in animals with lower basal rates of androstenone metabolism and higher expression of key nuclear receptors. Full article
(This article belongs to the Special Issue Impact of Genetics and Feeding on Growth Performance of Pigs)
Show Figures

Figure 1

22 pages, 6442 KiB  
Article
Study on Heat Transfer of Fluid in a Porous Media by VOF Method with Fractal Reconstruction
by Shuai Liu, Qingyong Zhu and Wenjun Xu
Energies 2025, 18(15), 3935; https://doi.org/10.3390/en18153935 - 23 Jul 2025
Viewed by 219
Abstract
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a [...] Read more.
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a lack of effective methods to accurately track fractal evaporation surfaces, which are ubiquitous in natural and engineering porous media (e.g., geological formations, industrial heat exchangers). This research is significant because understanding heat transfer in these complex porous media is essential for optimizing energy systems, enhancing thermal management in industrial processes, and improving the efficiency of phase-change-based technologies. For this scientific issue, a general model is designed. There is a significant temperature difference on the left and right sides of the model, which drives the internal fluid movement through the temperature difference. The upper end of the model is designed as a complex evaporation surface, and there is flowing steam above it, thus forming a coupled flow field. The VOF fractal reconstruction method is adopted to approximate the shape of the complex evaporation surface, which is a major highlight of this study. Different from previous research, this method can more accurately reflect the flow and phase change on the upper surface of the porous medium. Through numerical simulation, the influence of the evaporation coefficient on the flow and heat transfer rate can be determined. Key findings from numerical simulations reveal the following: (1) Heat transfer rates decrease with increasing fractal dimension (surface complexity) and evaporation coefficient; (2) As the thermal Rayleigh number increases, the influence of the Marangoni number on heat transfer diminishes; (3) The coupling of buoyancy and Marangoni effects in porous media with complex evaporation surfaces significantly alters flow and heat transfer patterns compared to smooth-surfaced porous media. This study provides a robust numerical framework for analyzing non-Newtonian fluid convection in complex porous media, offering insights into optimizing thermal systems involving phase changes and irregular surfaces. The findings contribute to advancing heat transfer theory and have practical implications for industries such as energy storage, chemical engineering, and environmental remediation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

20 pages, 3764 KiB  
Article
Neural Progenitor Cell- and Developing Neuron-Derived Extracellular Vesicles Differentially Modulate Microglial Activation
by Tsung-Lang Chiu, Hsin-Yi Huang, Hock-Kean Liew, Hui-Fen Chang, Hsin-Rong Wu and Mei-Jen Wang
Int. J. Mol. Sci. 2025, 26(15), 7099; https://doi.org/10.3390/ijms26157099 - 23 Jul 2025
Viewed by 186
Abstract
The developmental processes of microglia follow a general pattern, from immature amoeboid (activated) cells to fully ramified (inactivated) surveilling microglia. However, little is known about the mechanisms controlling the transition of microglia from an activated to an inactivated state during brain development. Due [...] Read more.
The developmental processes of microglia follow a general pattern, from immature amoeboid (activated) cells to fully ramified (inactivated) surveilling microglia. However, little is known about the mechanisms controlling the transition of microglia from an activated to an inactivated state during brain development. Due to the complexity of microenvironmentally dynamic changes during neuronal differentiation, interactions between developing nerve cells and microglia might be involved in this process. Extracellular vesicles (EVs) are cell-released particles that serve as mediators of cellular crosstalk and regulation. Using neural progenitor cells (NPCs) and a long-term neuron culture system, we found that EVs derived from NPCs or developing neurons possessed differential capacity on the induction of microglial activation. The exposure of microglia to NPC- or immature neuron (DIV7)-derived EVs resulted in the higher expression of protein and mRNA of multiple inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6), when compared with mature neuron-derived EVs. Exploration of the intracellular signaling pathways revealed that MAPK signaling, IκBα phosphorylation/degradation, and NF-κB p65 nuclear translocation were strongly induced in microglia treated with NPC- or immature neuron-derived EVs. Using a pharmacological approach, we further demonstrate that Toll-like receptor (TLR) 7-mediated activation of NF-κB and MAPK signaling cascades contribute to EV-elicited microglial activation. Additionally, the application of conditioned media derived from microglia treated with NPC- or immature neuron-derived EVs is found to promote the survival of late-developing dopaminergic neurons. Thus, our results highlight a novel mechanism used by NPCs and developing neurons to modulate the developmental phases and functions of microglia through EV secretion. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 4206 KiB  
Article
Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media
by Yuhao Ai, Zhifeng Wan, Han Xu, Yan Li, Yijia Sun, Jingya Xi, Hongfan Hou and Yihang Yang
Water 2025, 17(14), 2115; https://doi.org/10.3390/w17142115 - 16 Jul 2025
Viewed by 281
Abstract
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by [...] Read more.
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by soil matrix particle size distribution. Changes in the DNE across porous media with discrete particle size fractions are investigated via stepwise drying experiments. Through quantification of saturation–capillary pressure hysteresis and DNE metrics, three critical signatures are identified: (1) the temporal lag between peak capillary pressure and minimum water saturation; (2) the pressure gap between transient and equilibrium states; and (3) residual water saturation. In the four experimental sets, with the finest material (Test 1), the peak capillary pressure consistently precedes the minimum water saturation by up to 60 s. Conversely, with the coarsest material (Test 4), peak capillary pressure does not consistently precede minimum saturation, with a maximum lag of only 30 s. The pressure gap between transient and equilibrium states reached 14.04 cm H2O in the finest sand, compared to only 2.65 cm H2O in the coarsest sand. Simultaneously, residual water saturation was significantly higher in the finest sand (0.364) than in the coarsest sand (0.086). The results further reveal that the intensity of the DNE scales inversely with particle size and linearly with wetting phase saturation (Sw), exhibiting systematic decay as Sw decreases. Coarse media exhibit negligible hysteresis due to suppressed capillary retention; this is in stark contrast with fine sands, in which the DNE is observed to persist in advanced drying stages. These results establish pore geometry and capillary dominance as fundamental factors controlling non-equilibrium fluid dynamics, providing a mechanistic framework for the refinement of multi-phase flow models in heterogeneous porous systems. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

16 pages, 4823 KiB  
Article
Magnetic Behavior of Co2+-Doped NiFe2O4 Nanoparticles with Single-Phase Spinel Structure
by Fatemeh Vahedrouz, Mehdi Alizadeh, Abbas Bahrami and Farnaz Heidari Laybidi
Crystals 2025, 15(7), 624; https://doi.org/10.3390/cryst15070624 - 4 Jul 2025
Viewed by 351
Abstract
This study reports the synthesis and characterization of CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanoparticles using a co-precipitation method. In this approach, metal ions are precipitated in the presence of a stabilizing agent, [...] Read more.
This study reports the synthesis and characterization of CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanoparticles using a co-precipitation method. In this approach, metal ions are precipitated in the presence of a stabilizing agent, which is a common and effective method for nanoparticle preparation. The microstructure and magnetic properties were studied after calcination at 600 °C and heat treatment at 1000 °C. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the formation of a single-phase spinel structure. The average crystallite size, calculated using the (311) diffraction peak and the Scherrer equation, ranged from 13 to 19 nm. Scanning electron microscopy (SEM) showed that the nanoparticles had a spherical morphology. Thermogravimetric and differential thermal analysis (TG-DTA) revealed a three-step weight loss process. Magnetic measurements, including remanent magnetization, saturation magnetization, and coercivity, were performed using a vibrating sample magnetometer (VSM) at room temperature. The replacement of Ni2+ with Co2+ enhanced the magnetic properties, resulting in increased magnetic moment and anisotropy. These effects are attributed to changes in cation distribution, exchange interactions, surface effects, and magnetocrystalline anisotropy. Overall, Co2+ doping improved the magnetic behavior of nickel ferrite, indicating its potential for application in memory devices and magnetic recording media. Full article
Show Figures

Figure 1

20 pages, 4487 KiB  
Article
Investigation on Corrosion-Induced Wall-Thinning Mechanisms in High-Pressure Steam Pipelines Based on Gas–Liquid Two-Phase Flow Characteristics
by Guangyin Li, Wei He, Pengyu Zhang, Hu Wang and Zhengxin Wei
Processes 2025, 13(7), 2096; https://doi.org/10.3390/pr13072096 - 2 Jul 2025
Viewed by 316
Abstract
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with [...] Read more.
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with particular emphasis on the mechanisms of void fraction and inner wall surface roughness. Research reveals that an increased void fraction significantly enhances flow turbulence and centrifugal effects, resulting in elevated pressure and Discrete Phase Model (DPM) concentration at the bend, thereby intensifying erosion phenomena. Simultaneously, the turbulence generated by bubble collapse at the bend promotes the accumulation and detachment of corrosion products, maintaining a cyclic process of erosion and corrosion that accelerates wall thinning. Furthermore, the increased surface roughness of the inner bend wall exacerbates the corrosion process. The rough surface alters local flow characteristics, leading to changes in pressure distribution and DPM concentration accumulation points, subsequently accelerating corrosion progression. Energy-Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) analyses reveal changes in the chemical composition and microstructural characteristics of corrosion products. The results indicate that the porous structure of oxide films fails to effectively protect against corrosive media, while bubble impact forces damage the oxide films, exposing fresh metal surfaces and further accelerating the corrosion process. Comprehensive analysis demonstrates that the interaction between void fraction and surface roughness significantly intensifies wall thinning, particularly under conditions of high void fraction and high roughness, where pressure and DPM concentration at the bend may reach extreme values, further increasing corrosion risk. Therefore, optimization of void fraction and surface roughness, along with the application of corrosion-resistant materials and surface treatment technologies, should be considered in pipeline design and operation to mitigate corrosion risks. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 2977 KiB  
Article
Tolerance and Metabolization of High-Concentration Heavy Crude Oil High-Concentration Heavy Crude Oil by Bacillus subtilis
by César Antonio Sáez-Navarrete and Jessica Zerimar Cáceres-Zambrano
Microorganisms 2025, 13(7), 1520; https://doi.org/10.3390/microorganisms13071520 - 29 Jun 2025
Viewed by 431
Abstract
In this comprehensive study, we investigated the degradation capacity and tolerance of the bacterial strain Bacillus subtilis in culture media with high concentrations of heavy crude oil (HCO) as the sole carbon source. Using a meticulously designed experimental approach conducted at room temperature [...] Read more.
In this comprehensive study, we investigated the degradation capacity and tolerance of the bacterial strain Bacillus subtilis in culture media with high concentrations of heavy crude oil (HCO) as the sole carbon source. Using a meticulously designed experimental approach conducted at room temperature (25 °C), we systematically examined various culture media with HCO concentrations of 20%, 35%, and 50% v/v over a 10-week period. The results revealed the microorganism’s remarkable resistance to these HCO concentrations. Biotransformation capacity was confirmed by quantifying CO2 production via gas chromatography, showing substantial bioconversion with a 42% increase in CO2 production. Additionally, changes in surface tension were monitored using the Du Noüy ring method, showing a reduction in the aqueous phase tension from 72.3 to 47.43 mN/m. At the end of the bioconversion period, all treated samples exhibited visible emulsification, indicative of biosurfactant production. This phenomenon was consistent with the observed decrease in surface tension, providing further evidence of biosurfactant-mediated mechanisms. These findings highlight the immense biotechnological potential of B. subtilis to address HCO-related challenges, offering promising prospects for crude oil bioremediation and bioupgrading. Full article
Show Figures

Figure 1

16 pages, 1122 KiB  
Article
Effect of r-Human Insulin (Humulin®) and Sugars on Escherichia coli K-12 Biofilm Formation
by Balbina J. Plotkin, Ira Sigar and Monika Konaklieva
Appl. Microbiol. 2025, 5(3), 58; https://doi.org/10.3390/applmicrobiol5030058 - 27 Jun 2025
Viewed by 231
Abstract
E. coli attaches to, and forms biofilms on various surfaces, including latex and polystyrene, contributing to nosocomial spread. E. coli responds to both exogenous and endogenous insulin, which induces behavioral changes. Human insulin, a quorum signal surrogate for microbial insulin, may affect the [...] Read more.
E. coli attaches to, and forms biofilms on various surfaces, including latex and polystyrene, contributing to nosocomial spread. E. coli responds to both exogenous and endogenous insulin, which induces behavioral changes. Human insulin, a quorum signal surrogate for microbial insulin, may affect the ability of E. coli to interact with latex and polystyrene in the presence of various sugars. E. coli ATCC 25923 was grown in peptone (1%) yeast nitrogen base broth to either the logarithmic or stationary growth phase. Adherence to latex was determined using 6 × 6 mm latex squares placed in a suspension of washed cells (103 CFU/mL; 30 min; 37 °C) in buffer containing insulin at 2, 20, and 200 µU/mL (Humulin® R; Lilly) with and without mannose, galactose, fructose, sorbose, arabinose, xylose, lactose, maltose, melibiose, glucose-6-phosphate, glucose-1-phosphate, and glucosamine at concentrations reported to affect behavioral response. Attachment levels to latex were determined by the press plate method. Biofilm levels were measured in a similar fashion but with overnight cultures in flat bottom uncoated polystyrene plates. Controls were media, insulin, sugar, or buffer alone. Glucose served as the positive control. Overall, the stationary phase cells’ adherence to latex was greater, regardless of the test condition, than was measured for the logarithmic phase cells. The effect of insulin on adherence to latex was insulin and sugar concentration dependent. The addition of insulin (200 µU/mL) resulted in a significantly (p < 0.05) increased adherence to latex and biofilm formation on polystyrene compared with sugar alone for 12 of the 13 sugars tested with stationary phase bacteria and 10 of the 13 sugars tested with logarithmic phase bacteria. Adherence in response to sorbose was the only sugar tested that was unaffected by insulin. These findings show that insulin enhances E. coli’s association with materials in common usage in medical environments in a nutrition-dependent manner. Full article
Show Figures

Figure 1

21 pages, 4374 KiB  
Article
Fast Alkaline Hydrothermal Synthesis of Pyrophosphate BaCr2(P2O7)2 Nanoparticles and Their NIR Spectral Reflectance
by Diego Emiliano Carrillo-Ramírez, Juan Carlos Rendón-Angeles, Zully Matamoros-Veloza, Jorge López-Cuevas, Isaías Juárez-Ramírez and Tadaharu Ueda
Nanomaterials 2025, 15(13), 982; https://doi.org/10.3390/nano15130982 - 25 Jun 2025
Viewed by 353
Abstract
Recently, the development of nanoparticle pigments has attracted interest in chemical preparation due to their potential functional properties, such as phosphate-based pigments. The present research focuses on the feasibility of synthesising the BaCr2(P2O7)2 pigment under hydrothermal [...] Read more.
Recently, the development of nanoparticle pigments has attracted interest in chemical preparation due to their potential functional properties, such as phosphate-based pigments. The present research focuses on the feasibility of synthesising the BaCr2(P2O7)2 pigment under hydrothermal conditions. The effect of the microstructural features of ceramic pigments (the crystalline structure, morphology, and particle size) on their optical properties (colour and reflectance) was also studied. The BaCr2(P2O7)2 compound was prepared in different fluid media, including water and NaOH solutions (0.5–1.0 M), at several reaction temperatures (170–240 °C) and intervals (6–48 h). The single-phase BaCr2(P2O7)2 did not crystallise without by-products (BaCr2O10, BaCr2(PO7)2) in water and the alkaline solutions, even at 240 °C for 48 h; in these fluids, the ionic Cr3+ species oxidised to Cr6+. In contrast, the BaCr2(P2O7)2 single-phase crystallisation was favoured by adding urea as a reductant agent (25.0–300.0 mmol). Monodispersed BaCr2(P2O7)2 fine particles with a mean size of 44.0 nm were synthesised at a low temperature of 170 °C for 6 h with 0.5 M NaOH solution in the presence of 50.0 mmol urea. The phosphate pigment particle grew to approximately 62.0 nm by increasing the treatment temperature to 240 °C. A secondary dissolution–recrystallisation achieved after 24 h triggered a change in the particle morphology coupled with the incrementation of the concentration of NaOH in the solution. The pyrophosphate BaCr2(P2O7)2 pigments prepared in this study belong to the green colour spectral space according to the CIELab coordinates measurement, and exhibit 67.5% high near-infrared (NIR) solar reflectance. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

16 pages, 733 KiB  
Perspective
MediaWatchers4Climate: Assessing the Accuracy of Climate Change Narratives in Greek Media Through Machine Learning
by Thomai Baltzi, Stella Nikitaki, Fani Galatsopoulou, Ioanna Kostarella, Andreas Veglis, Vasilis Vasilopoulos, Dimitris Papaevagelou and Antonis Skamnakis
Mach. Learn. Knowl. Extr. 2025, 7(2), 53; https://doi.org/10.3390/make7020053 - 13 Jun 2025
Viewed by 1825
Abstract
This study introduces MediaWatchers4Climate, a methodological framework that leverages machine learning to evaluate the accuracy and rhetorical framing of climate change narratives in Greek online media. The model is designed to analyze large-scale textual data from over 1500 certified digital outlets registered in [...] Read more.
This study introduces MediaWatchers4Climate, a methodological framework that leverages machine learning to evaluate the accuracy and rhetorical framing of climate change narratives in Greek online media. The model is designed to analyze large-scale textual data from over 1500 certified digital outlets registered in the Greek Online Media Registry. Through keyword-based filtering, thematic clustering, and content comparison techniques, the framework aims to detect discursive shifts, trace the replication of news stories, and identify misinformation patterns. While the current phase focuses on model development and data structuring, preliminary observations suggest significant content repetition across sources and a lack of original reporting on climate issues. The project ultimately seeks to promote evidence-based reasoning and enhance public resilience to misinformation related to the climate crisis. Full article
Show Figures

Figure 1

24 pages, 6224 KiB  
Article
Mapping Habitat Suitability of Migratory Birds During Extreme Drought of Large Lake Wetlands: Insights from Crowdsourced Geographic Data
by Xinggen Liu, Lyu Yuan, Zhiwen Li, Yuanyuan Huang and Yulan Li
Land 2025, 14(6), 1236; https://doi.org/10.3390/land14061236 - 9 Jun 2025
Viewed by 468
Abstract
Comprehending the alterations in wintering grounds of migratory birds amid global change and anthropogenic influences is pivotal for advancing wetland sustainability and ensuring avian conservation. Frequent extreme droughts in the middle and lower Yangtze River region of China have posed severe ecological and [...] Read more.
Comprehending the alterations in wintering grounds of migratory birds amid global change and anthropogenic influences is pivotal for advancing wetland sustainability and ensuring avian conservation. Frequent extreme droughts in the middle and lower Yangtze River region of China have posed severe ecological and socio-economic dilemmas. The integration of internet-derived, crowdsourced geographic data with remote-sensing imagery now facilitates assessments of these avian habitats. Poyang Lake, China’s largest freshwater body, suffered an unprecedented drought in 2022, offering a unique case study on avian habitat responses to climate extremes. By harnessing social and online platforms’ media reports, we analyzed the types, attributes and proportions of migratory bird habitats. This crowdsourced geographic information, corroborated by Sentinel-2 optical remote-sensing imagery, elucidated the suitability and transformations of these habitats under drought stress. Our findings revealed marked variations in habitat preferences among bird species, largely attributable to divergent feeding ecologies and behavioral patterns. Dominantly, shallow waters emerged as the most favored habitat, succeeded by mudflats and grasslands. Remote-sensing analyses disclosed a stark 60% reduction in optimal habitat area during the drought phase, paralleled by a 1.5-fold increase in unsuitable habitat areas compared to baseline periods. These prime habitats were chiefly localized in Poyang Lake’s western sub-lakes. The extreme drought precipitated a drastic contraction in suitable habitat extent and heightened fragmentation. Our study underscores the value of crowdsourced geographic information in assessing habitat suitability for migratory birds. Retaining sub-lake water surfaces within large river or lake floodplains during extreme droughts emerges as a key strategy to buffer the impacts of hydrological extremes on avian habitats. This research contributes to refining conservation strategies and promoting adaptive management practices of wetlands in the face of climate change. Full article
Show Figures

Figure 1

14 pages, 2105 KiB  
Article
Dynamic Simulations of Phase-Change Emulsions in Cooling Systems
by Yuting Wang, Jingjing Shao, Jo Darkwa and Georgios Kokogiannakis
Buildings 2025, 15(11), 1873; https://doi.org/10.3390/buildings15111873 - 29 May 2025
Viewed by 356
Abstract
The application of phase change material emulsions (PCMEs) in heating, ventilation, and air conditioning (HVAC) systems is considered to be a potential way of saving energy due to their relatively higher energy storage capacity compared with water. They are now widely used as [...] Read more.
The application of phase change material emulsions (PCMEs) in heating, ventilation, and air conditioning (HVAC) systems is considered to be a potential way of saving energy due to their relatively higher energy storage capacity compared with water. They are now widely used as a heat transfer media, so they are able to reduce the flow rate whilst delivering the same amount of cooling energy. In order to evaluate the energy-saving potential of the integrated PCME air conditioning system, whole-building energy simulation was carried out with the building simulation code TRNSYS. Before simulating the whole system, a mathematical model for a PCME-integrated fan coil unit was first developed and validated. A phase change material emulsion called PCE-10 was used, and the TRNSYS simulation showed that the required volumetric flow rate of phase change material emulsions was 50% less than that of water when providing the same cooling effect, which could contribute to a 7% reduction in total energy consumption. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 1024 KiB  
Article
The MDA-MB-231 Breast Cancer Cell Secretomes Modify Metabolomes of Pseudomonas aeruginosa Breast Microbiome
by Majdoleen AlDawsari, Mysoon M. Al-Ansari, Reem H. AlMalki, Anas M. Abdel Rahman and Monther Al-Alwan
Int. J. Mol. Sci. 2025, 26(11), 5003; https://doi.org/10.3390/ijms26115003 - 22 May 2025
Viewed by 604
Abstract
Breast cancer (BC) is globally becoming a great challenge, being both the most diagnosed cancer and the leading cause of death in women. In addition to cancer cells, many bacteria co-inhabit BC, which differ in type and number from the resident microbiota found [...] Read more.
Breast cancer (BC) is globally becoming a great challenge, being both the most diagnosed cancer and the leading cause of death in women. In addition to cancer cells, many bacteria co-inhabit BC, which differ in type and number from the resident microbiota found in healthy breast tissue. While many reports have demonstrated the ability of different bacteria to dysregulate BC’s metabolites, the reciprocal effect of these metabolites on the bacterial microbiota has not yet been investigated. Herein, we assess the effect of conditioned media (CM) from a triple-negative BC cell line (MDA-MB-231) on the metabolic profile of Pseudomonas aeruginosa (P. aeruginosa), an important breast resident Gram-negative bacteria that influence oncogenesis. Optical density and scanning electron microscopes were used to assess the impact of MDA-MB-231-CM (BC-CM) on P. aeruginosa growth and morphological changes, respectively. In addition, liquid chromatography–high-resolution mass spectrometry was used to identify metabolic changes in P. aeruginosa and their secretomes in response to the BC-CM. The BC-CM significantly suppressed the growth of P. aeruginosa in the log phase and induced concentration-dependent cytopathological changes in their cell walls. The metabolites of P. aeruginosa were dysregulated considerably depending on the time of exposure to the BC-CM. When treated with the BC-CM, P. aeruginosa induced the purine alkaloid spliceostatin (FR901464), a prominent antitumor metabolite. The BC-CM also promoted other P. aeruginosa metabolites such as amino acids, phosphoribosyl-AMP, 2-aminoacetophenone, pyochelin I, guanosine monophosphate, riboflavin, and terpenoids, which are capable of interfering with oncogenesis. Nine of the significantly identified metabolites from the 0–3 h comparison and four of those identified from the 0–6 h comparison have potential roles in influencing cancer cell behavior. Our findings demonstrate the ability of triple-negative BC-CM not only to alter the growth and morphology of P. aeruginosa but also to modulate their metabolic profile. A better understanding of the influence of BC on certain resident breast microbiomes, such as P. aeruginosa, may open a new therapeutic intervention opportunity for the treatment of cancer. Full article
(This article belongs to the Topic Microbes and Their Products for Sustainable Human Life)
Show Figures

Figure 1

Back to TopTop