Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = peste-des-petits-ruminants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1135 KiB  
Article
Field-Based Characterization of Peste des Petits Ruminants in Sheep in Romania: Clinical, Pathological, and Diagnostic Perspectives
by Romică Iacobescu-Marițescu, Adriana Morar, Viorel Herman, Emil Tîrziu, János Dégi and Kálmán Imre
Vet. Sci. 2025, 12(7), 679; https://doi.org/10.3390/vetsci12070679 - 18 Jul 2025
Viewed by 330
Abstract
Peste des petits ruminants is a highly contagious transboundary viral disease that poses a serious threat to small ruminant populations worldwide. In 2024, seven outbreaks of PPR were recorded in sheep flocks from Timiș County, marking the second confirmed incursions of peste des [...] Read more.
Peste des petits ruminants is a highly contagious transboundary viral disease that poses a serious threat to small ruminant populations worldwide. In 2024, seven outbreaks of PPR were recorded in sheep flocks from Timiș County, marking the second confirmed incursions of peste des petits ruminants virus (PPRV) in Romania. This study aimed to document the clinical presentation, pathological findings, and diagnostic confirmation with these field outbreaks. Comprehensive field investigations were carried out between July and September 2024, including clinical examinations, post mortem analysis, serological screening, and molecular detection using reverse transcription polymerase chain reaction (RT-PCR). A total of 13,203 sheep were evaluated, with an overall mortality rate of 12.77%. Characteristic clinical signs included mucopurulent nasal discharge, oral erosions, respiratory distress, and diarrhea. Gross lesions observed during necropsy included hemorrhagic bronchopneumonia, bile-stained liver, catarrhal enteritis, and mucosal hemorrhages. Serological testing revealed flock-level seroprevalence rates ranging from 46.7% to 80.0%, with higher rates observed in older animals. RT-PCR confirmed PPRV infection in all affected flocks. Our findings provide strong evidence of virulent PPRV circulation in an area where the virus had not been reported before. The results highlight an urgent need to strengthen surveillance systems, enhance diagnostic capacity, and foster cross-border collaboration. These field-based insights can contribute to both national and international efforts aimed at controlling and ultimately eradicating the disease. Full article
(This article belongs to the Special Issue Viral Infections in Wild and Domestic Animals)
Show Figures

Figure 1

22 pages, 3860 KiB  
Article
Spatiotemporal Dynamics of Emerging Foot-and-Mouth Disease, Bluetongue, and Peste Des Petits Ruminants in Algeria
by Ilhem Zouyed, Sabrina Boussena, Nacira Ramdani, Houssem Eddine Damerdji, Julio A. Benavides and Hacène Medkour
Viruses 2025, 17(7), 1008; https://doi.org/10.3390/v17071008 - 17 Jul 2025
Viewed by 532
Abstract
Foot-and-mouth disease (FMD), bluetongue (BT), and Peste des Petits Ruminants (PPR) are major emerging and re-emerging viral infections affecting ruminants. These diseases can threaten livestock health, food security, and economic stability in low- and middle-income countries, including Algeria. However, their dynamics remain mostly [...] Read more.
Foot-and-mouth disease (FMD), bluetongue (BT), and Peste des Petits Ruminants (PPR) are major emerging and re-emerging viral infections affecting ruminants. These diseases can threaten livestock health, food security, and economic stability in low- and middle-income countries, including Algeria. However, their dynamics remain mostly unknown, limiting the implementation of effective preventive and control measures. We analyzed outbreak data reported by Algerian veterinary authorities and the WAHIS database from 2014 to 2022 for FMD; from 2006 to 2020 for BT; and from 2011 to 2022 for PPR to investigate their spatiotemporal patterns and environmental drivers. Over these periods, Algeria reported 1142 FMD outbreaks (10,409 cases; 0.16/1000 incidence), 167 BT outbreaks (602 cases; 0.018/1000), and 222 PPR outbreaks (3597 cases; 0.096/1000). Small ruminants were the most affected across all diseases, although cattle bore the highest burden of FMD. BT primarily impacted sheep, and PPR showed a higher incidence in goats. Disease peaks occurred in 2014 for FMD, 2008 for BT, and 2019 for PPR. Spatial analyses revealed distinct ecological hotspots: sub-humid and semi-arid zones for FMD and BT, and semi-arid/Saharan regions for PPR. These patterns may be influenced by species susceptibility, animal movement, trade, and climatic factors such as temperature and rainfall. The absence of consistent temporal trends and the persistence of outbreaks suggest multiple drivers, including insufficient vaccination coverage, under-reporting, viral evolution, and environmental persistence. Our findings underscore the importance of targeted species- and region-specific control strategies, including improved surveillance, cross-border coordination, and climate-informed risk mapping. Strengthening One Health frameworks will be essential to mitigate the re-emergence and spread of these diseases. Full article
(This article belongs to the Special Issue Emerging Microbes, Infections and Spillovers, 2nd Edition)
Show Figures

Figure 1

13 pages, 1422 KiB  
Brief Report
Detection of Lineage IV Peste Des Petits Ruminants Virus by RT-qPCR Assay via Targeting the Hemagglutinin Gene
by Jiao Xu, Qinghua Wang, Jiarong Yu, Yingli Wang, Huicong Li, Lin Li, Jingyue Bao and Zhiliang Wang
Viruses 2025, 17(7), 976; https://doi.org/10.3390/v17070976 - 12 Jul 2025
Viewed by 365
Abstract
Peste des petits ruminants virus (PPRV) has been classified into four lineages based on the nucleocapsid and fusion genes, with lineage IV strains being the most widely distributed. In Africa, recent epidemiological data revealed that PPRV lineage IV is increasingly displacing other lineages [...] Read more.
Peste des petits ruminants virus (PPRV) has been classified into four lineages based on the nucleocapsid and fusion genes, with lineage IV strains being the most widely distributed. In Africa, recent epidemiological data revealed that PPRV lineage IV is increasingly displacing other lineages in prevalence, suggesting a competitive advantage in viral transmission and adaptability. Moreover, a lineage IV strain was the only confirmed strain in Europe and Asia. In this study, a one-step Taqman quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) assay for lineage IV PPRV was established by targeting the hemagglutinin (H) gene. The results indicated that this method could detect approximately six copies of PPRV RNA, indicating high sensitivity. No cross-reactions with related viruses or other lineages of PPRV were observed. The results of a repeatability test indicated that the coefficient of variation values were low in both the inter-assay and intra-assay experimental groups. Detection of field samples indicated that all positive samples could be detected successfully using the developed method. This RT-qPCR assay provides a valuable tool to facilitate targeted surveillance and rapid differential diagnosis in regions with active circulation of PPRV lineage IV, enabling timely epidemiological investigations and strain-specific identification. Full article
Show Figures

Figure 1

29 pages, 4948 KiB  
Systematic Review
A Scoping Review on Progression Towards Freedom from Peste des Petits Ruminants (PPR) and the Role of the PPR Monitoring and Assessment Tool (PMAT)
by Dinara Imanbayeva, Maria Sol Pérez Aguirreburualde, Whitney Knauer, Azimkhan Tegzhanov, Valeriia Yustyniuk, Jonathan Arzt, Andres Perez, Felix Njeumi and Satya Parida
Viruses 2025, 17(4), 563; https://doi.org/10.3390/v17040563 - 14 Apr 2025
Viewed by 744
Abstract
Peste des Petits Ruminants (PPR) is a highly contagious viral disease of small ruminants that severely threatens rural livelihoods and global food security. Under the Global Framework for the Progressive Control of Transboundary Animal Diseases (GF-TADs), the international animal health community has set [...] Read more.
Peste des Petits Ruminants (PPR) is a highly contagious viral disease of small ruminants that severely threatens rural livelihoods and global food security. Under the Global Framework for the Progressive Control of Transboundary Animal Diseases (GF-TADs), the international animal health community has set the ambitious goal of eradicating PPR by 2030. However, significant disparities persist in the progression of PPR control across regions. This scoping review assesses the setbacks, deviations, and progress of 42 countries in Eastern, Western, and Northern Africa, as well as West Eurasia, toward achieving official freedom-from-PPR status. Progress was evaluated across key areas using the stepwise PPR Global Control and Eradication Strategy (GCES) approach and the PPR Monitoring and Assessment Tool (PMAT). The eligibility criteria included PubMed peer-reviewed studies, FAO/WOAH reports, presentations, guidelines, and country/region-specific PPR control plans from 2014 through 2024. The data are generated using qualitative and quantitative analyses, including spatial mapping and GCES stepwise progress evaluation. The findings reveal that many (31%) countries in the assessed regions remain in Stage 1 of the Progressive Stepwise Approach, whereas 59.5% have reached Stages 2 and 3, and only 4.8% are in Stage 4. Countries in Western Eurasia have achieved significant progress towards PPR control, with countries achieving PPR-free status, whereas, compared to Eastern and Northern Africa, the Western African region remains in the early control stages due to infrastructure gaps and resource constraints. Additionally, the recent suspension of PPR-free status in Romania, Greece and Hungary following disease emergence underscored vulnerabilities in historically free countries. The analysis results reiterate the critical role of regional collaboration, surveillance tools, and the integration of wildlife monitoring in advancing PPR control. These insights provide actionable pathways to addressing persistent barriers, highlighting the importance of adaptable, evidence-based approaches in achieving the global goal of PPR eradication by 2030. Full article
Show Figures

Figure 1

32 pages, 383 KiB  
Review
Important Diseases of Small Ruminants in Sub-Saharan Africa: A Review with a Focus on Current Strategies for Treatment and Control in Smallholder Systems
by Peter Kimeli, Kennedy Mwacalimba, Raymond Tiernan, Erik Mijten, Tetiana Miroshnychenko and Barbara Poulsen Nautrup
Animals 2025, 15(5), 706; https://doi.org/10.3390/ani15050706 - 28 Feb 2025
Cited by 1 | Viewed by 1271
Abstract
Sheep and goats are an important source of livelihood for smallholder farmers in sub-Saharan Africa (SSA). These livestock are almost entirely managed by resource-poor, smallholder farmers and pastoralists. Despite the large number of sheep and goats in SSA, their productivity is low, mainly [...] Read more.
Sheep and goats are an important source of livelihood for smallholder farmers in sub-Saharan Africa (SSA). These livestock are almost entirely managed by resource-poor, smallholder farmers and pastoralists. Despite the large number of sheep and goats in SSA, their productivity is low, mainly due to diseases, poor feed, and inferior breeds. This review aims to summarize the most important diseases in small ruminants in SSA, with a focus on current treatment and control strategies. The following diseases were identified as the most significant constraints for small ruminant farmers: helminthoses, including gastrointestinal nematode infestation, lungworm infestation, fasciolosis, and cerebral coenurosis; viral diseases, such as peste des petits ruminants (PPR), sheep and goat pox, and contagious ecthyma (orf); bacterial diseases, including contagious caprine pleuropneumonia (CCPP), pneumonic pasteurellosis, and anthrax; as well as ectoparasite infestations. The diseases have significant economic implications due to mortality and production losses. Depending on the disease, they may also impact trade and export and hinder the introduction of new, more productive breeds. The ability to control diseases more efficiently is often limited due to financial constraints. In the case of infection with internal parasites, a lack of knowledge about the epidemiology of the disease, as well as the availability of appropriate anthelmintics and the development of resistance against commonly used anthelmintics, are often barriers. The control of viral diseases depends on the accessibility, quality, and handling of vaccines, whereas in bacterial diseases, increasing antibiotic resistance and inappropriate antimicrobial treatments pose challenges, as well as the availability of appropriate vaccines and their use. In the case of ectoparasitic infections, a strategic, regular, and appropriate antiparasitic treatment approach is often not achieved. Full article
(This article belongs to the Section Small Ruminants)
17 pages, 1959 KiB  
Article
Assessment of Vaccination Impact in PPR-Control Program Implemented in Southern States of India: A System Dynamics Model Approach
by Govindaraj Gurrappanaidu, Naveen Kumar Gajalavarahalli Subbanna, Francis Wanyoike, Sirak Bahta, Yeswanth Raghuram Reddy, Dwaipayan Bardhan, Balamurugan Vinayagamurthy, Kennady Vijayalakshmy and Rahman Habibur
Viruses 2025, 17(1), 23; https://doi.org/10.3390/v17010023 - 27 Dec 2024
Viewed by 1279
Abstract
Mass vaccination against peste des petits ruminants (PPR) in two southern states of India, namely Andhra Pradesh and Karnataka, has reduced disease outbreaks significantly. The sporadic outbreaks reported now can be attributed in part to the recurring movement of sheep and goats between [...] Read more.
Mass vaccination against peste des petits ruminants (PPR) in two southern states of India, namely Andhra Pradesh and Karnataka, has reduced disease outbreaks significantly. The sporadic outbreaks reported now can be attributed in part to the recurring movement of sheep and goats between these contiguous states. This study assessed the present level of economic burden and impact of vaccination on the local system (one state), considering the exposure from the external system (neighboring state) using a system dynamic (SD) model. The SD model relies on interdependence, interaction, information feedback, and circular causality and captures potential feedback between disease control interventions and their impact on various epidemiological and economic outcomes. The data for parameterization of the model were collected through surveys, expert elicitation, and literature review. The sporadic outbreaks reported in recent years (<10 outbreaks/year during 2022) were due to continuous “mass vaccination” for more than a decade. During 2021–2022, the PPR incidence was less in both the states, with an estimated loss of USD 26.30 and USD 22.86 million in Andhra Pradesh and Karnataka, respectively. The SD model results showed a systemic increase in flock size and offtakes and a decline in the number of infected and death cases under high vaccination coverage (75% and 100% coverage) compared to the low-coverage scenario. Hence, the coordinated inter-state vaccination efforts offer better prospects, as efforts in one state have positive externalities in terms of fewer outbreaks in a neighboring state. Full article
Show Figures

Figure 1

14 pages, 5706 KiB  
Article
First Incidence of Peste des Petits Ruminants Virus in Cervidae Family from State Zoo of Assam, India
by Nagendra Nath Barman, Arpita Bharali, Durlav Prasad Bora, Biswajit Dutta, Mousumi Bora, Sophia M. Gogoi, Panchami Sharma, Sankar Sarma, Parikshit Kakati, Tejas Mariswamy, Ankita Choudhury and Lukumoni Buragohain
Viruses 2024, 16(12), 1829; https://doi.org/10.3390/v16121829 - 25 Nov 2024
Cited by 1 | Viewed by 1117
Abstract
The present study aimed to investigate the episodes of per-acute mortality due to peste des petits ruminants (PPR) that resulted in the death of 30 animals of different species of cervids, namely, barking deer, four-horned antelope, hog deer, thamin, and mouse deer in [...] Read more.
The present study aimed to investigate the episodes of per-acute mortality due to peste des petits ruminants (PPR) that resulted in the death of 30 animals of different species of cervids, namely, barking deer, four-horned antelope, hog deer, thamin, and mouse deer in the State Zoo of Assam, a northeastern state of India. The affected animals showed no to limited clinical signs. However, the necropsy and histopathological findings were highly suggestive of PPR virus (PPRV) infection observed in domestic small ruminants. Representative tissue samples were screened for the presence of PPRV along with blue tongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) using RT-PCR or RT-qPCR and were found to be positive for PPRV. Considering the sudden outbreak of PPR in captive cervids, we sought to determine the role of domestic goats as the potential spillover host. To verify that, archived tissue samples of domestic goats collected during PPRV outbreaks in nearby localities and slaughtered goats used as meat for Carnivorous animals in the State Zoo were also screened and found to be positive for PPRV in RT-PCR. Phylogenetic analysis based on the Nucleocapsid (N) protein gene of PPRV from infected cervids, domestic goats, and goat meat revealed the virus to be of Lineage IV origin. Our findings provide evidence of probable spillover of PPRV from domestic goats to captive endangered cervids and circulation of Lineage IV PPRV strains among the small-ruminant population of this region. Full article
Show Figures

Figure 1

11 pages, 537 KiB  
Article
An Evaluation of the Thermotolerance of Various Formulations of Freeze-Dried and Reconstituted Peste des Petits Ruminant Vaccines
by Amadou Diallo, Moipone Christina Motsoane, Hassen Belay Gelaw, Jean-De-Dieu Baziki, Cisse R. Moustapha Boukary, Gelagay Ayelet Melesse, Ethel Chitsungo, Meseret Gebresillassie, Yebechaye Degefa Tessema, Babasola O. Olugasa, Olayinka Ishola, Nick Nwankpa and Charles S. Bodjo
Vet. Sci. 2024, 11(11), 525; https://doi.org/10.3390/vetsci11110525 - 29 Oct 2024
Viewed by 2235
Abstract
Peste des Petits Ruminants (PPR) disease is widely distributed in Africa. Live attenuated PPR vaccines are produced using approved Nigeria 75/1 and Sungri/96 strains by the World Organisation of Animal Health (WOAH) to control the disease. These PPR vaccines are very efficacious; however, [...] Read more.
Peste des Petits Ruminants (PPR) disease is widely distributed in Africa. Live attenuated PPR vaccines are produced using approved Nigeria 75/1 and Sungri/96 strains by the World Organisation of Animal Health (WOAH) to control the disease. These PPR vaccines are very efficacious; however, the main challenge is the maintaining of the cold chain during vaccine distribution and delivery. This study evaluated the thermotolerance of freeze-dried and reconstituted PPR Nigeria 75/1 vaccines from vaccine manufacturers using eight stabilizer formulations (lactalbumin hydrolysate and sucrose, sucrose and peptone, Weybridge medium, trehalose, Lactose and N-Z Amine, lactalbumin hydrolysate, sucrose and L glutamine, skimmed milk, and lactalbumin hydrolysate, maltose and gelatine). Aliquots of the reconstituted PPR vaccine batches were titrated after 2, 4, and 6 h of storage at 4 °C and 40 °C. The PPR vaccines were also titrated after storage at 40 °C and 45 °C for 3 and 5 days. The results showed that reconstituted PPR vaccine stabilized with lactalbumin hydrolysate–sucrose promoted tolerance at 40 °C for 6 h. It was also noted that all reconstituted PPR vaccine formulations except the formulation stabilized with lactalbumin hydrolysate–maltose–gelatine maintained the titre above a 102.5 TCID50/dose after 4 h of storage at 4 °C. Furthermore, the results showed that the PPR vaccine formulation containing lactalbumin hydrolysate sucrose was as the only one that maintained the titres above 102.5 TCID50/dose after storage at 45 °C for 5 days, with a titre loss of 100.95 TCID50/dose. Therefore, vaccine manufacturers producing PPR vaccines for use in tropical field regions could preferably use lactalbumin hydrolysate–sucrose stabilizer in vaccine formulation. Full article
Show Figures

Figure 1

17 pages, 2679 KiB  
Article
Enhanced Recovery and Detection of Highly Infectious Animal Disease Viruses by Virus Capture Using Nanotrap® Microbiome A Particles
by Amaresh Das, Joseph Gutkoska, Yadata Tadassa and Wei Jia
Viruses 2024, 16(11), 1657; https://doi.org/10.3390/v16111657 - 23 Oct 2024
Cited by 1 | Viewed by 1541
Abstract
This study reports the use of Nanotrap® Microbiome A Particles (NMAPs) to capture and concentrate viruses from diluted suspensions to improve their recovery and sensitivity to detection by real-time PCR/RT-PCR (qPCR/RT-qPCR). Five highly infectious animal disease viruses including goatpox virus (GTPV), sheeppox [...] Read more.
This study reports the use of Nanotrap® Microbiome A Particles (NMAPs) to capture and concentrate viruses from diluted suspensions to improve their recovery and sensitivity to detection by real-time PCR/RT-PCR (qPCR/RT-qPCR). Five highly infectious animal disease viruses including goatpox virus (GTPV), sheeppox virus (SPPV), lumpy skin disease virus (LSDV), peste des petits ruminants virus (PPRV), and African swine fever virus (ASFV) were used in this study. After capture, the viruses remained viable and recoverable by virus isolation (VI) using susceptible cell lines. To assess efficacy of recovery, the viruses were serially diluted in phosphate-buffered saline (PBS) or Eagle’s Minimum Essential Medium (EMEM) and then subjected to virus capture using NMAPs. The NMAPs and the captured viruses were clarified on a magnetic stand, reconstituted in PBS or EMEM, and analyzed separately by VI and virus-specific qPCR/RT-qPCR. The PCR results showed up to a 100-fold increase in the sensitivity of detection of the viruses following virus capture compared to the untreated viruses from the same dilutions. Experimental and clinical samples were subjected to virus capture using NMAPs and analyzed by PCR to determine diagnostic sensitivity (DSe) that was comparable (100%) to that determined using untreated (-NMAPs) samples. NMAPs were also used to capture spiked viruses from EDTA whole blood (EWB). Virus capture from EWB was partially blocked, most likely by hemoglobin (HMB), which also binds NMAPs and outcompetes the viruses. The effect of HMB could be removed by either dilution (in PBS) or using HemogloBind™ (Biotech Support Group; Monmouth Junction, NJ, USA), which specifically binds and precipitates HMB. Enhanced recovery and detection of viruses using NMAPs can be applicable to other highly pathogenic animal viruses of agricultural importance. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 3085 KiB  
Article
Partial Sequence Analysis of Commercial Peste des Petits Ruminants Vaccines Produced in Africa
by Boubacar Barry, Yebechaye Tessema, Hassen Gelaw, Cisse Rahamatou Moustapha Boukary, Baziki Jean de Dieu, Melesse Ayelet Gelagay, Ethel Chitsungo, Richard Rayson Sanga, Gbolahanmi Akinola Oladosu, Nick Nwankpa and S. Charles Bodjo
Vet. Sci. 2024, 11(10), 500; https://doi.org/10.3390/vetsci11100500 - 13 Oct 2024
Viewed by 2551
Abstract
Peste des petits ruminants virus (PPRV), which is the only member of the Morbillivirus caprinae species and belongs to the genus Morbillivirus within the Paramyxoviridae family, causes the highly contagious viral sickness “Peste des petits ruminants (PPR).” PPR is of serious economic significance [...] Read more.
Peste des petits ruminants virus (PPRV), which is the only member of the Morbillivirus caprinae species and belongs to the genus Morbillivirus within the Paramyxoviridae family, causes the highly contagious viral sickness “Peste des petits ruminants (PPR).” PPR is of serious economic significance for small ruminant production, particularly in Africa. Control of this critical disease depends highly on successful vaccination against the PPRV. An in-depth understanding of the genetic evolution of the live-attenuated PPR vaccine Nigeria 75/1 strain used in Africa is essential for the successful eradication of this disease by 2030. Therefore, this study investigated the possible genetic evolution of the PPR vaccine produced by various African laboratories compared with the master seed available at AU-PANVAC. RT-PCR was performed to amplify a segment of the hypervariable C-terminal part of the nucleoprotein (N) from commercial batches of PPR vaccine Nigeria 75/1 strain. The sequences were analyzed, and 100% nucleotide sequence identity was observed between the master seed and vaccines produced. The results of this study indicate the genetic stability of the PPR vaccine from the Nigeria 75/1 strain over decades and that the vaccine production process used by different manufacturers did not contribute to the emergence of mutations in the vaccine strain. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

9 pages, 18610 KiB  
Brief Report
Wildlife Infection of Peste des Petits Ruminants Detected in China, 2024
by Jiao Xu, Zebin Qu, Yingli Wang, Weijie Ren, Shan Liu, Yanli Zou, Na Su, Jingyue Bao and Zhiliang Wang
Vet. Sci. 2024, 11(10), 489; https://doi.org/10.3390/vetsci11100489 - 9 Oct 2024
Cited by 1 | Viewed by 2057
Abstract
In 2013, the second outbreak of peste des petits ruminants occurred in China, leading to a spillover in more than 20 provinces and municipalities over the next few months. Thereafter, the epidemic situation was stable owing to strict prevention and control measures. In [...] Read more.
In 2013, the second outbreak of peste des petits ruminants occurred in China, leading to a spillover in more than 20 provinces and municipalities over the next few months. Thereafter, the epidemic situation was stable owing to strict prevention and control measures. In February 2024, several bharals and argali with suspected symptoms of PPR were discovered in Rutog country, Tibet Autonomous Region. Samples collected from these animals were delivered to our laboratory for diagnosis; the results of fluorescence quantitative reverse-transcription (RT) PCR indicated that all samples were positive for PPR viral RNA. The N and F gene fragments were amplified successfully via RT-PCR, and these results confirmed that these animals were infected with PPRV. A PPRV strain (subsequently named ChinaTibet2024) was sequenced, and its genome length was 15,954 nucleotides. A phylogenetic tree analysis using N and F genes and viral genomes showed that the ChinaTibet2024 genome was classified into lineage IV of the PRRV genotypes. The genome of the ChinaTibet2024 strain was found to be closely related to PPRVs isolated in China between 2013 and 2014. A base insertion and a base deletion were detected in the M gene 5′ untranslated region. Results indicated that the prevalent PPRV strains in China did not show significant changes and that special attention should be paid to the surveillance of wild animals as an important part of PPR prevention and control. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

12 pages, 1773 KiB  
Article
The Development of a Multivalent Capripoxvirus-Vectored Vaccine Candidate to Protect against Sheeppox, Goatpox, Peste des Petits Ruminants, and Rift Valley Fever
by Hani Boshra, Graham A. D. Blyth, Thang Truong, Andrea Kroeker, Pravesh Kara, Arshad Mather, David Wallace and Shawn Babiuk
Vaccines 2024, 12(7), 805; https://doi.org/10.3390/vaccines12070805 - 20 Jul 2024
Viewed by 3942
Abstract
Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy [...] Read more.
Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy skin disease virus (LSDV) field isolate from Warmbaths (WB) South Africa, ORF 005 (IL-10) gene-deleted virus (LSDV WB005KO), was able to protect sheep and goats against sheeppox and goatpox. Subsequently, genes encoding the protective antigens for peste des petits ruminants (PPR) and Rift Valley fever (RVF) viruses have been inserted in the LSDV WB005KO construct in three different antigen forms (native, secreted, and fusion). These three multivalent vaccine candidates were evaluated for protection against PPR using a single immunization of 104 TCID50 in sheep. The vaccine candidates with the native and secreted antigens protected sheep against PPR clinical disease and decreased viral shedding, as detected using real-time RT-PCR in oral and nasal swabs. An anamnestic antibody response, measured using PPR virus-neutralizing antibody response production, was observed in sheep following infection. The vaccine candidates with the antigens expressed in their native form were evaluated for protection against RVF using a single immunization with doses of 104 or 105 TCID50 in sheep and goats. Following RVF virus infection, sheep and goats were protected against clinical disease and no viremia was detected in serum compared to control animals, where viremia was detected one day following infection. Sheep and goats developed RVFV-neutralizing antibodies prior to infection, and the antibody responses increased following infection. These results demonstrate that an LSD virus-vectored vaccine candidate can be used in sheep and goats to protect against multiple viral infections. Full article
(This article belongs to the Special Issue Animal Virus Infection, Immunity and Vaccines)
Show Figures

Figure 1

8 pages, 1845 KiB  
Brief Report
Unveiling of the Co-Infection of Peste des Petits Ruminants Virus and Caprine Enterovirus in Goat Herds with Severe Diarrhea in China
by Qun Zhang, Xuebo Zheng, Fan Zhang, Xuyuan Cui, Naitian Yan, Junying Hu, Yidi Guo and Xinping Wang
Viruses 2024, 16(6), 986; https://doi.org/10.3390/v16060986 - 19 Jun 2024
Cited by 13 | Viewed by 1501
Abstract
Here, we report the discovery of two viruses associated with a disease characterized by severe diarrhea on a large-scale goat farm in Jilin province. Electron Microscopy observations revealed two kinds of virus particles with the sizes of 150–210 nm and 20–30 nm, respectively. [...] Read more.
Here, we report the discovery of two viruses associated with a disease characterized by severe diarrhea on a large-scale goat farm in Jilin province. Electron Microscopy observations revealed two kinds of virus particles with the sizes of 150–210 nm and 20–30 nm, respectively. Detection of 276 fecal specimens from the diseased herds showed the extensive infection of peste des petits ruminants virus (63.77%, 176/276) and caprine enterovirus (76.81%, 212/276), with a co-infection rate of 57.97% (160/276). These results were partially validated with RT-PCR, where all five PPRV-positive and CEV-positive specimens yielded the expected size of fragments, respectively, while no fragments were amplified from PPRV-negative and CEV-negative specimens. Moreover, corresponding PPRV and CEV fragments were amplified in PPRV and CEV double-positive specimens. Histopathological examinations revealed severe microscopic lesions such as degeneration, necrosis, and detachment of epithelial cells in the bronchioles and intestine. An immunohistochemistry assay detected PPRV antigens in bronchioles, cartilage tissue, intestine, and lymph nodes. Simultaneously, caprine enterovirus antigens were detected in lung, kidney, and intestinal tissues from the goats infected by the peste des petits ruminants virus. These results demonstrated the co-infection of peste des petits ruminants virus with caprine enterovirus in goats, revealing the tissue tropism for these two viruses, thus laying a basis for the future diagnosis, prevention, and epidemiological survey for these two virus infections. Full article
(This article belongs to the Special Issue An Update on Enterovirus Research)
Show Figures

Figure 1

18 pages, 14084 KiB  
Review
Recapitulation of Peste des Petits Ruminants (PPR) Prevalence in Small Ruminant Populations of Pakistan from 2004 to 2023: A Systematic Review and Meta-Analysis
by Saad Zafar, Muhammad Shehroz Sarfraz, Sultan Ali, Laiba Saeed, Muhammad Shahid Mahmood, Aman Ullah Khan and Muhammad Naveed Anwar
Vet. Sci. 2024, 11(6), 280; https://doi.org/10.3390/vetsci11060280 - 19 Jun 2024
Cited by 2 | Viewed by 3890
Abstract
Peste des petits ruminants (PPR) is an extremely transmissible viral disease caused by the PPR virus that impacts domestic small ruminants, namely sheep and goats. This study aimed to employ a methodical approach to evaluate the regional occurrence of PPR in small ruminants [...] Read more.
Peste des petits ruminants (PPR) is an extremely transmissible viral disease caused by the PPR virus that impacts domestic small ruminants, namely sheep and goats. This study aimed to employ a methodical approach to evaluate the regional occurrence of PPR in small ruminants in Pakistan and the contributing factors that influence its prevalence. A thorough search was performed in various databases to identify published research articles between January 2004 and August 2023 on PPR in small ruminants in Pakistan. Articles were chosen based on specific inclusion and exclusion criteria. A total of 25 articles were selected from 1275 studies gathered from different databases. The overall pooled prevalence in Pakistan was calculated to be 51% (95% CI: 42–60), with heterogeneity I2 = 100%, τ2 = 0.0495, and p = 0. The data were summarized based on the division into five regions: Punjab, Baluchistan, KPK, Sindh, and GB and AJK. Among these, the pooled prevalence of PPR in Sindh was 61% (95% CI: 46–75), I2 = 100%, τ2 = 0.0485, and p = 0, while in KPK, it was 44% (95% CI: 26–63), I2 = 99%, τ2 = 0.0506, and p < 0.01. However, the prevalence of PPR in Baluchistan and Punjab was almost the same. Raising awareness, proper surveillance, and application of appropriate quarantine measures interprovincially and across borders must be maintained to contain the disease. Full article
(This article belongs to the Special Issue Advances in Veterinary Clinical Microbiology)
Show Figures

Figure 1

16 pages, 1912 KiB  
Review
Developments in Negative-Strand RNA Virus Reverse Genetics
by Mengyi Wang, Jinyan Wu, Xiaoan Cao, Long Xu, Junhuang Wu, Haiyan Ding and Youjun Shang
Microorganisms 2024, 12(3), 559; https://doi.org/10.3390/microorganisms12030559 - 11 Mar 2024
Cited by 9 | Viewed by 5853
Abstract
Many epidemics are caused by negative-stranded RNA viruses, leading to serious disease outbreaks that threaten human life and health. These viruses also have a significant impact on animal husbandry, resulting in substantial economic losses and jeopardizing global food security and the sustainable livelihoods [...] Read more.
Many epidemics are caused by negative-stranded RNA viruses, leading to serious disease outbreaks that threaten human life and health. These viruses also have a significant impact on animal husbandry, resulting in substantial economic losses and jeopardizing global food security and the sustainable livelihoods of farmers. However, the pathogenic and infection mechanism of most negative-stranded RNA viruses remain unclear. Reverse genetics systems are the most powerful tools for studying viral protein function, viral gene expression regulation, viral pathogenesis, and the generation of engineered vaccines. The reverse genetics of some negative-strand viruses have been successfully constructed, while others have not. In this review, we focus on representative viruses from the Orthomyxoviridae family (IAV), the Filoviridae family (EBOV), and the Paramyxoviridae family (PPRV) to compile and summarize the existing knowledge on reverse genetics techniques for negative-strand viruses. This will provide a theoretical foundation for developing reverse genetics techniques for some negative-strand viruses. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

Back to TopTop