An Evaluation of the Thermotolerance of Various Formulations of Freeze-Dried and Reconstituted Peste des Petits Ruminant Vaccines
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of PPR Vaccine Batches
2.3. Preparation of Diluent
2.4. Vaccine Storage, Reconstitution, and Incubation
2.5. Preparation of Cells
2.6. PPR Vaccine Titration
2.7. Data Analysis
3. Results
3.1. Residual Moisture Results
3.2. The Stability of the Vaccine Batches
3.2.1. Stability of Freeze-Dried PPR Vaccine Formulations at 40 °C and 45 °C
3.2.2. Stability of Reconstituted PPR Vaccine Formulations at 4 °C and 40 °C
- The PPR vaccines reconstituted with a diluent and incubated at 4 °C for 2, 4, and 6 h are classified into three groups based on the titration results, as follows:
- -
- Reconstituted PPR vaccines maintaining a titre above 102.5 TCID50/dose and showing a titre drop of less than 100.5 TCID50 after storage at 4 °C for 6 h: these batches were freeze dried using stabilizers including lactalbumin hydrolysate–sucrose (PPR vaccines 1 and 2), sucrose–peptone (PPR vaccine 3), trehalose (PPR vaccine 5), Lactose and N-Z Amine (PPR vaccine 6), and lactalbumin hydrolysate–sucrose–L glutamine (PPR vaccine 7).
- -
- Reconstituted PPR vaccines maintaining a titre above 102.5 TCID50/dose up to 4 h as maximum after incubation at 4 °C: this group included vaccine batches freeze dried using stabilizers including Weybridge medium (PPR vaccine 4), skimmed milk (PPR vaccine 8), and Lactose and N-Z Amine (PPR vaccine 9).
- -
- One reconstituted PPR vaccine freeze dried using lactalbumin hydrolysate, maltose and gelatine (PPR vaccine 10) stabilizer maintained the titre above 102.5 TCID50/dose up to 2 h of incubation at 4 °C but failed at 4 h.
- PPR vaccines reconstituted with a diluent and incubated at 40 °C for 2, 4, and 6 h are classified into three groups based on the titration results, as follows:
- -
- Reconstituted PPR vaccines maintaining a titre above 102.5 TCID50/dose for up to 6 h of incubation at 40 °C: these vaccines showed excellent thermotolerance, with a titre loss below 101.0 TCID50/dose and used stabilisers such as lactalbumin hydrolysate–sucrose (PPR vaccine 1, PPR vaccine 2) and sucrose–peptone (PPR vaccine 3).
- -
- Reconstituted PPR vaccines maintaining a titre above 102.5 TCID50/dose up to 4 h as maximum: these vaccines showed relative thermotolerance and use stabilizers such as Weybridge medium (PPR vaccine 4) and Lactose and N-Z Amine (PPR vaccine 6).
- -
- The reconstituted PPR vaccine 5 using the trehalose stabilizer managed to maintain its titre above 102.5 TCID50/dose up to 2 h but failed for 4 and 6 h of incubation.
- -
- However, reconstituted PPR vaccine batches stabilized with lactalbumin hydrolysate–sucrose–L glutamine (PPR vaccine 7), skimmed milk (PPR vaccine 8), Lactose Monohydrate and N-Z Amine (batches PPR vaccine 9), and lactalbumin hydrolysate–maltose–gelatine (PPR vaccine 10) failed to maintain a titre above 102.5 TCID50/dose, even at 2 h of incubation.
3.3. Accuracy of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hailat, N.; Brown, C.; Houari, H.; Al-Khlouf, S.; Abdelrahman, A.; Abu-Aziz, B.; Masoud, G. Assessment of Peste des Petits Ruminants (PPR) in the Middle East and North Africa Region. Pak. Vet. J. 2018, 38, 113–115. [Google Scholar] [CrossRef]
- Mantip, S.E.; Shamaki, D.; Farougou, S. Peste des petits ruminants in africa: Meta-analysis of the virus isolation in molecular epidemiology studies. Onderstepoort J. Vet. Res. 2019, 86, 1677. [Google Scholar] [CrossRef] [PubMed]
- Bodjo, S.C.; Baziki, J.D.; Nwankpa, N.; Chitsungo, E.; Koffi, Y.M.; Couacy-Hymann, E.; Diop, M.; Gizaw, D.; Tajelser, I.B.A.; Lelenta, M.; et al. Development and validation of an epitope-blocking ELISA using an anti-haemagglutinin monoclonal antibody for specific detection of antibodies in sheep and goat sera directed against peste des petits ruminants virus. Arch. Virol. 2018, 163, 1745–1756. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Maherchandani, S.; Kashyap, S.K.; Singh, S.V.; Sharma, S.; Chaubey, K.K.; Ly, H. Peste des petits ruminants virus infection of small ruminants: A comprehensive review. Viruses 2014, 6, 2287–2327. [Google Scholar] [CrossRef] [PubMed]
- Saeed, I.K.; Haj, M.A.; Alhassan, S.M.; Mutwakil, S.M.; Mohammed, B.A.; Taha, K.M.; Libeau, G.; Diallo, A.; Ali, Y.H.; Khalafalla, A.I. A study on transmission of Peste des petits ruminants virus between dromedary camels and small ruminants. J. Infect. Dev. Ctries. 2022, 16, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Njue, S.; Saeed, K.; Maloo, S.; Muchai, J. Sero-prevalence study to determine the effectiveness of Peste de Petits Ruminants vaccination in Somalia. Pastoralism 2018, 8, 17. [Google Scholar] [CrossRef]
- Idoga, E.S.; Armson, B.; Alafiatayo, R.; Ogwuche, A.; Mijten, E.; Ekiri, A.B.; Varga, G.; Cook, A.J.C. A Review of the Current Status of Peste des Petits Ruminants Epidemiology in Small Ruminants in Tanzania. Front. Vet. Sci. 2020, 25, 592662. [Google Scholar] [CrossRef] [PubMed]
- Roeder, P.; Mariner, J.; Kock, R. Rinderpest: The veterinary perspective on eradication. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20120139. [Google Scholar] [CrossRef] [PubMed]
- Dumpa, N.; Goel, K.; Guo, Y.; McFall, H.; Pillai, A.R.; Shukla, A.; Repka, M.A.; Murthy, S.N. Stability of Vaccines. AAPS PharmSciTech 2019, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Food Agriculture Organisation of United Nations (FAO); World Organization for Animal Health-OIE. International Conference for the Control and Eradication of PPR, Abidjan Cote d’Ivoire. The Global Strategy for the Control and Eradication of PPR. 2015. Available online: https://www.woah.org/app/uploads/2021/03/ppr-global-strategy-avecannexes-2015-03-28.pdf (accessed on 11 December 2023).
- Sen, A.; Saravanan, P.; Balamurugan, V.; Rajak, K.K.; Sudhakar, S.B.; Bhanuprakash, V.; Parida, S.; Singh, R.K. Vaccines against peste des petits ruminants virus. Expert Rev. Vaccines 2010, 9, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; De, U.K.; Pandey, K.D. Virological and antigenic characterization of two Peste des Petits Ruminants (PPR) vaccine viruses of Indian origin. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 343–353. [Google Scholar] [CrossRef] [PubMed]
- El-Yuguda, A.D.; Baba, S.S.; Ambali, A.G.; Egwu, G.O. Field Trial of a Thermostable Peste des petits ruminants (PPR) Vaccine in a Semi-Arid Zone of Nigeria. World J. Vaccines 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Naik, S.P.; Zade, J.K.; Sabale, R.N.; Pisal, S.S.; Menon, R.; Bankar, S.G.; Gairola, S.; Dhere, R.M. Stability of heat stable, live attenuated Rotavirus vaccine (ROTASIIL®). Vaccine 2017, 35, 2962–2969. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Barua, S.; Riyesh, T.; Tripathi, B.N. Advances in peste des petits ruminants vaccines. Vet. Microbiol. 2017, 206, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.; Singh, R.P. Peste des Petits Ruminants. In Veterinary Vaccines: Principles and Applications; Metwally, S., El Idrissi, A., Viljoen, G., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 283–294. [Google Scholar] [CrossRef]
- Sarkar, J.; Sreenivasa, B.P.; Singh, R.P.; Dhar, P.; Bandyopadhyay, S.K. Comparative efficacy of various chemical stabilizers on the thermostability of a live-attenuated peste des petits ruminants (PPR) vaccine. Vaccine 2003, 21, 4728–4735. [Google Scholar] [CrossRef] [PubMed]
- CIRAD. WOAH Reference Laboratory Net Work for PPR. 2021. Available online: https://www.ppr-labs-oie-network.org/vaccines/ppr-vaccines (accessed on 21 October 2023).
- WOAH Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 3.8.8. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.08.08_PPR.pdf (accessed on 18 May 2023).
- Lei, C.; Yang, J.; Hu, J.; Sun, X. On the Calculation of TCID50 for Quantitation of Virus Infectivity. Virol. Sin. 2021, 36, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, M.; Bhanuprakash, V.; Venkatesan, G.; Yogisharadhya, R.; Bora, D.P.; Balamurugan, V. Evaluation of stability of live attenuated camelpox vaccine stabilized with different stabilizers and reconstituted with various diluents. Biologicals 2014, 42, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Latif, M.Z.; Muhammad, K.; Hussain, R.; Siddique, F.; Altaf, I.; Anees, M.; Anees, M.; Imran, M.; Hameed, M.; Farooq, M. Effect of stabilizers on infectivity titer of freeze dried Peste des Petits Ruminants virus vaccine. Pak. Vet. J. 2018, 38, 169–173. [Google Scholar] [CrossRef]
- Bora, M.; Sunil, S.; Suni, S.; Reddy, G.S. Effect of chemical stabilizers on pellet profile and stability of lyophilized Peste-Des-Petits ruminants, sheep pox and goat pox vaccines at different temperatures. Pharma Innov. J. 2019, 8, 1182–1187. Available online: https://www.thepharmajournal.com/archives/2019/vol8issue4/PartR/8-4-128-635.pdf (accessed on 3 February 2024).
- Duru, C.; Ahmed, M.; Matejtschuk, P. Analytical options for the measurement of residual moisture content in lyophilized biological materials. Am. Pharm. Rev. 2010, 13, 42–47. [Google Scholar]
Batch No. | Stabilizer Used |
---|---|
PPR Vaccine 1 | Lactalbumin hydrolysate–sucrose |
PPR Vaccine 2 | Lactalbumin hydrolysate–sucrose |
PPR Vaccine 3 | Sucrose–peptone |
PPR Vaccine 4 | Weybridge medium |
PPR Vaccine 5 | Trehalose |
PPR Vaccine 6 | Lactose and N-Z Amine |
PPR Vaccine 7 | Lactalbumin hydrolysate-sucrose–L glutamine |
PPR Vaccine 8 | Skimmed milk |
PPR Vaccine 9 | Lactose and N-Z Amine |
PPR Vaccine 10 | Lactalbumin hydrolysate–haltose–gelatine |
Vaccines Batches Tested | Vaccine Titre (TCID50/dose) | Residual Moisture Content | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
−20 °C | 40 °C | 45 °C | ||||||||||
Day 0 | Day 3 | Day 5 | Day 3 | Day 5 | ||||||||
Titre | SD (+/−) | Titre | SD (+/−) | Titre | SD (+/−) | Titre | SD (+/−) | Titre | SD (+/−) | (%) | SD (+/−) | |
PPR Vaccine 1 | 3.05 | 0.35 | 2.5 | 0.00 | 2 | 0.14 | 1.75 | 0.07 | 1.55 | 0.07 | 2.5 | 0.22 |
PPR Vaccine 2 | 3.5 | 0.00 | 3.15 | 0.21 | 3.05 | 0.07 | 3 | 0.14 | 2.55 | 0.21 | 1.1 | 0.35 |
PPR Vaccine 3 | 3.65 | 0.07 | 2.2 | 0.14 | 2 | 0.42 | 1.5 | 0.28 | 1.45 | 0.07 | 1.9 | 0.34 |
PPR Vaccine 4 | 3 | 0.14 | 1.35 | 0.07 | 1 | 0.00 | 1.05 | 0.07 | 0.9 | 0.00 | 3.5 | 0.00 |
PPR Vaccine 5 | 3.05 | 0.07 | 2.8 | 0.00 | 2.55 | 0.07 | 2.25 | 0.21 | 1.9 | 0.00 | 2.2 | 0.26 |
PPR Vaccine 6 | 3.3 | 0.14 | 2.85 | 0.07 | 2.55 | 0.21 | 2.1 | 0.00 | 1.85 | 0.00 | 1.7 | 1.01 |
PPR Vaccine 7 | 2.7 | 0.00 | 2.05 | 0.21 | 1.9 | 0.00 | 1.95 | 0.21 | 1.75 | 0.21 | 2.4 | 0.00 |
PPR Vaccine 8 | 2.95 | 0.21 | 2.5 | 0.28 | 2.25 | 0.35 | 2.15 | 0.21 | 1.65 | 0.07 | 2.2 | 0.38 |
PPR Vaccine 9 | 2.9 | 0.14 | 2.45 | 0.21 | 1.55 | 0.21 | 0.9 | 0.14 | 0.85 | 0.07 | 2.7 | 0.13 |
PPR Vaccine 10 | 2.95 | 0.07 | 1.95 | 0.07 | 1.55 | 0.07 | 1.05 | 0.07 | 0.5 | 0.00 | 1.9 | 0.11 |
Batch No. | −20 °C | Reconstituted Vaccine Titre (TCID50/dose) Following Incubation at 4 °C | Reconstituted Vaccine Titre (TCID50/dose) Following Incubation at 40 °C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 2 h | 4 h | 6 h | 2 h | 4 h | 6 h | ||||||||
Titre | SD (+/−) | Titre | SD (+/−) | Titre | SD (+/−) | Titre | SD (+/−) | Titre | SD (+/−) | Titre | SD (+/−) | Titre | SD (+/−) | |
PPR Vaccine 1 | 3.45 | 0.07 | 3.35 | 0.07 | 3.3 | 0.14 | 2.95 | 0.35 | 2.9 | 0.42 | 2.8 | 0.14 | 2.55 | 0.07 |
PPR Vaccine 2 | 3.65 | 0.07 | 3.65 | 0.07 | 3.5 | 0.14 | 3.3 | 0.14 | 3.5 | 0.00 | 3.15 | 0.07 | 3.1 | 0.14 |
PPR Vaccine 3 | 3.65 | 0.07 | 3.55 | 0.07 | 3.45 | 0.07 | 3.2 | 0.14 | 3.1 | 0.14 | 2.85 | 0.07 | 2.6 | 0.14 |
PPR Vaccine 4 | 3.1 | 0.14 | 2.95 | 0.07 | 2.75 | 0.07 | 2.45 | 0.07 | 2.95 | 0.07 | 2.6 | 0.14 | 1.95 | 0.07 |
PPR Vaccine 5 | 3.05 | 0.21 | 2.85 | 0.07 | 2.8 | 0.00 | 2.65 | 0.21 | 2.6 | 0.14 | 2.25 | 0.07 | 2.05 | 0.07 |
PPR Vaccine 6 | 3.1 | 0.14 | 2.9 | 0.14 | 2.75 | 0.35 | 2.6 | 0.00 | 2.9 | 0.00 | 2.7 | 0.56 | 2.25 | 0.21 |
PPR Vaccine 7 | 3 | 0.14 | 2.65 | 0.07 | 2.55 | 0.07 | 2.5 | 0.14 | 2.4 | 0.14 | 2.0 | 0.00 | - | - |
PPR Vaccine 8 | 3.05 | 0.07 | 2.95 | 0.07 | 2.85 | 0.07 | 2.35 | 0.07 | 2.05 | 0.21 | 1.95 | 0.07 | 1.85 | 0.07 |
PPR Vaccine 9 | 3 | 0.14 | 2.85 | 0.07 | 2.55 | 0.07 | 1.9 | 0.14 | 1.55 | 0.21 | - | - | - | - |
PPR Vaccine 10 | 2.85 | 0.00 | 2.6 | 0.14 | 2.15 | 0.14 | - | 0.00 | 2.25 | 0.07 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diallo, A.; Motsoane, M.C.; Gelaw, H.B.; Baziki, J.-D.-D.; Boukary, C.R.M.; Melesse, G.A.; Chitsungo, E.; Gebresillassie, M.; Tessema, Y.D.; Olugasa, B.O.; et al. An Evaluation of the Thermotolerance of Various Formulations of Freeze-Dried and Reconstituted Peste des Petits Ruminant Vaccines. Vet. Sci. 2024, 11, 525. https://doi.org/10.3390/vetsci11110525
Diallo A, Motsoane MC, Gelaw HB, Baziki J-D-D, Boukary CRM, Melesse GA, Chitsungo E, Gebresillassie M, Tessema YD, Olugasa BO, et al. An Evaluation of the Thermotolerance of Various Formulations of Freeze-Dried and Reconstituted Peste des Petits Ruminant Vaccines. Veterinary Sciences. 2024; 11(11):525. https://doi.org/10.3390/vetsci11110525
Chicago/Turabian StyleDiallo, Amadou, Moipone Christina Motsoane, Hassen Belay Gelaw, Jean-De-Dieu Baziki, Cisse R. Moustapha Boukary, Gelagay Ayelet Melesse, Ethel Chitsungo, Meseret Gebresillassie, Yebechaye Degefa Tessema, Babasola O. Olugasa, and et al. 2024. "An Evaluation of the Thermotolerance of Various Formulations of Freeze-Dried and Reconstituted Peste des Petits Ruminant Vaccines" Veterinary Sciences 11, no. 11: 525. https://doi.org/10.3390/vetsci11110525
APA StyleDiallo, A., Motsoane, M. C., Gelaw, H. B., Baziki, J.-D.-D., Boukary, C. R. M., Melesse, G. A., Chitsungo, E., Gebresillassie, M., Tessema, Y. D., Olugasa, B. O., Ishola, O., Nwankpa, N., & Bodjo, C. S. (2024). An Evaluation of the Thermotolerance of Various Formulations of Freeze-Dried and Reconstituted Peste des Petits Ruminant Vaccines. Veterinary Sciences, 11(11), 525. https://doi.org/10.3390/vetsci11110525