Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (621)

Search Parameters:
Keywords = personal health device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1534 KiB  
Review
Recent Advances in Micro- and Nano-Enhanced Intravascular Biosensors for Real-Time Monitoring, Early Disease Diagnosis, and Drug Therapy Monitoring
by Sonia Kudłacik-Kramarczyk, Weronika Kieres, Alicja Przybyłowicz, Celina Ziejewska, Joanna Marczyk and Marcel Krzan
Sensors 2025, 25(15), 4855; https://doi.org/10.3390/s25154855 - 7 Aug 2025
Abstract
Intravascular biosensors have become a crucial and novel class of devices in healthcare, enabling the constant real-time monitoring of essential physiological parameters directly within the circulatory system. Recent developments in micro- and nanotechnology have relevantly improved the sensitivity, miniaturization, and biocompatibility of these [...] Read more.
Intravascular biosensors have become a crucial and novel class of devices in healthcare, enabling the constant real-time monitoring of essential physiological parameters directly within the circulatory system. Recent developments in micro- and nanotechnology have relevantly improved the sensitivity, miniaturization, and biocompatibility of these devices, thereby enabling their application in precision medicine. This review summarizes the latest advances in intravascular biosensor technologies, with a special focus on glucose and oxygen level monitoring, blood pressure and heart rate assessment, and early disease diagnostics, as well as modern approaches to drug therapy monitoring and delivery systems. Key challenges such as long-term biostability, signal accuracy, and regulatory approval processes are critical considerations. Innovative strategies, including biodegradable implants, nanomaterial-functionalized surfaces, and integration with artificial intelligence, are regarded as promising avenues to overcome current limitations. This review provides a comprehensive roadmap for upcoming research and the clinical translation of advanced intravascular biosensors with a strong emphasis on their transformative impact on personalized healthcare. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

15 pages, 514 KiB  
Article
Remote Patient Monitoring Applications in Healthcare: Lessons from COVID-19 and Beyond
by Azrin Khan and Dominique Duncan
Electronics 2025, 14(15), 3084; https://doi.org/10.3390/electronics14153084 - 1 Aug 2025
Viewed by 291
Abstract
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable [...] Read more.
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable devices enabled the real-time continuous monitoring of health that assisted in condition prediction and management, such as for COVID-19. This narrative review addresses these transformations by uniquely synthesizing findings from 13 diverse studies (sourced from PubMed and Google Scholar, 2020–2024) to analyze the parallel evolution of telemedicine and WDs as interconnected RPM components. It highlights the pandemic’s dual impact, as follows: accelerating RPM innovation and adoption while simultaneously unmasking systemic challenges such as inequities in access and a need for robust integration approaches; while telemedicine usage soared during the pandemic, consumption post-pandemic, as indicated by the reviewed studies, suggests continued barriers to adoption among older adults. Likewise, wearable devices demonstrated significant potential in early disease detection and long-term health management, with promising applications extending beyond COVID-19, including long COVID conditions. Addressing the identified challenges is crucial for healthcare providers and systems to fully embrace these technologies and this would improve efficiency and patient outcomes. Full article
Show Figures

Figure 1

58 pages, 1238 KiB  
Review
The Collapse of Brain Clearance: Glymphatic-Venous Failure, Aquaporin-4 Breakdown, and AI-Empowered Precision Neurotherapeutics in Intracranial Hypertension
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7223; https://doi.org/10.3390/ijms26157223 - 25 Jul 2025
Viewed by 379
Abstract
Although intracranial hypertension (ICH) has traditionally been framed as simply a numerical escalation of intracranial pressure (ICP) and usually dealt with in its clinical form and not in terms of its complex underlying pathophysiology, an emerging body of evidence indicates that ICH is [...] Read more.
Although intracranial hypertension (ICH) has traditionally been framed as simply a numerical escalation of intracranial pressure (ICP) and usually dealt with in its clinical form and not in terms of its complex underlying pathophysiology, an emerging body of evidence indicates that ICH is not simply an elevated ICP process but a complex process of molecular dysregulation, glymphatic dysfunction, and neurovascular insufficiency. Our aim in this paper is to provide a complete synthesis of all the new thinking that is occurring in this space, primarily on the intersection of glymphatic dysfunction and cerebral vein physiology. The aspiration is to review how glymphatic dysfunction, largely secondary to aquaporin-4 (AQP4) dysfunction, can lead to delayed cerebrospinal fluid (CSF) clearance and thus the accumulation of extravascular fluid resulting in elevated ICP. A range of other factors such as oxidative stress, endothelin-1, and neuroinflammation seem to significantly impair cerebral autoregulation, making ICH challenging to manage. Combining recent studies, we intend to provide a revised conceptualization of ICH that recognizes the nuance and complexity of ICH that is understated by previous models. We wish to also address novel diagnostics aimed at better capturing the dynamic nature of ICH. Recent advances in non-invasive imaging (i.e., 4D flow MRI and dynamic contrast-enhanced MRI; DCE-MRI) allow for better visualization of dynamic changes to the glymphatic and cerebral blood flow (CBF) system. Finally, wearable ICP monitors and AI-assisted diagnostics will create opportunities for these continuous and real-time assessments, especially in limited resource settings. Our goal is to provide examples of opportunities that exist that might augment early recognition and improve personalized care while ensuring we realize practical challenges and limitations. We also consider what may be therapeutically possible now and in the future. Therapeutic opportunities discussed include CRISPR-based gene editing aimed at restoring AQP4 function, nano-robotics aimed at drug targeting, and bioelectronic devices purposed for ICP modulation. Certainly, these proposals are innovative in nature but will require ethically responsible confirmation of long-term safety and availability, particularly to low- and middle-income countries (LMICs), where the burdens of secondary ICH remain preeminent. Throughout the review, we will be restrained to a balanced pursuit of innovative ideas and ethical considerations to attain global health equity. It is not our intent to provide unequivocal answers, but instead to encourage informed discussions at the intersections of research, clinical practice, and the public health field. We hope this review may stimulate further discussion about ICH and highlight research opportunities to conduct translational research in modern neuroscience with real, approachable, and patient-centered care. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

16 pages, 301 KiB  
Review
Positional Therapy: A Real Opportunity in the Treatment of Obstructive Sleep Apnea? An Update from the Literature
by Elvia Battaglia, Valentina Poletti, Eleonora Volpato and Paolo Banfi
Life 2025, 15(8), 1175; https://doi.org/10.3390/life15081175 - 24 Jul 2025
Viewed by 605
Abstract
Obstructive sleep apnea (OSA) is a prevalent and heterogeneous sleep disorder associated with significant health and societal burdens. While continuous positive airway pressure (CPAP) remains the gold standard treatment, its limitations in adherence and patient tolerance have highlighted the need for alternative therapies. [...] Read more.
Obstructive sleep apnea (OSA) is a prevalent and heterogeneous sleep disorder associated with significant health and societal burdens. While continuous positive airway pressure (CPAP) remains the gold standard treatment, its limitations in adherence and patient tolerance have highlighted the need for alternative therapies. Positional therapy (PT), which targets apneas that occur predominantly in the supine position, has emerged as a promising option for individuals with positional OSA (POSA). This narrative review synthesizes the current literature on PT, examining its clinical indications, typologies, comparative efficacy with CPAP, oral appliances, and hypoglossal nerve stimulation, as well as data on adherence and barriers to long-term use. Traditional methods such as the tennis ball technique have largely been replaced by modern vibrotactile devices, which demonstrate improved comfort, adherence, and comparable short-term outcomes in selected POSA subjects. While PT remains inferior to CPAP in reducing overall AHI and oxygen desaturation, it performs favorably in terms of mean disease alleviation (MDA) and sleep continuity. Importantly, treatment effectiveness is influenced by both anatomical and non-anatomical traits, underscoring the need for accurate phenotyping and individualized care. PT should be considered within a broader patient-centered model that incorporates preferences, lifestyle, and motivational factors. Further research is needed to validate long-term efficacy, optimize selection criteria, and integrate PT into personalized OSA management strategies. Full article
(This article belongs to the Special Issue Current Trends in Obstructive Sleep Apnea)
39 pages, 7688 KiB  
Review
Advances and Applications of Graphene-Enhanced Textiles: A 10-Year Review of Functionalization Strategies and Smart Fabric Technologies
by Patricia Rocio Durañona Aznar and Heitor Luiz Ornaghi Junior
Textiles 2025, 5(3), 28; https://doi.org/10.3390/textiles5030028 - 22 Jul 2025
Viewed by 441
Abstract
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten [...] Read more.
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten years, focusing on their functional properties and real-world applications. This article examines the main strategies used to incorporate graphene and its derivatives—such as graphene oxide and reduced graphene oxide—into textile substrates through coating, printing, or composite formation. The structural, electrical, thermal, mechanical, and electrochemical properties of these fabrics are discussed based on characterization techniques including microscopy, Raman spectroscopy, and cyclic voltammetry. Functional evaluations in wearable strain sensors, biosignal acquisition, electrothermal systems, and energy storage devices are highlighted to demonstrate the versatility of these materials. Although challenges remain in scalability, durability, and washability, recent developments in fabrication and encapsulation methods show significant potential to overcome these limitations. This review concludes by outlining the major opportunities and future directions for graphene-based textiles in areas such as personalized health monitoring, active thermal wear, and integrated wearable electronics. Full article
Show Figures

Figure 1

34 pages, 2648 KiB  
Review
Microfluidic Sensors for Micropollutant Detection in Environmental Matrices: Recent Advances and Prospects
by Mohamed A. A. Abdelhamid, Mi-Ran Ki, Hyo Jik Yoon and Seung Pil Pack
Biosensors 2025, 15(8), 474; https://doi.org/10.3390/bios15080474 - 22 Jul 2025
Viewed by 423
Abstract
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic [...] Read more.
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic sensors, including biosensors, have gained prominence as versatile and transformative tools for real-time environmental monitoring, enabling precise and rapid detection of trace-level contaminants in complex environmental matrices. Their miniaturized design, low reagent consumption, and compatibility with portable and smartphone-assisted platforms make them particularly suited for on-site applications. Recent breakthroughs in nanomaterials, synthetic recognition elements (e.g., aptamers and molecularly imprinted polymers), and enzyme-free detection strategies have significantly enhanced the performance of these biosensors in terms of sensitivity, specificity, and multiplexing capabilities. Moreover, the integration of artificial intelligence (AI) and machine learning algorithms into microfluidic platforms has opened new frontiers in data analysis, enabling automated signal processing, anomaly detection, and adaptive calibration for improved diagnostic accuracy and reliability. This review presents a comprehensive overview of cutting-edge microfluidic sensor technologies for micropollutant detection, emphasizing fabrication strategies, sensing mechanisms, and their application across diverse pollutant categories. We also address current challenges, such as device robustness, scalability, and potential signal interference, while highlighting emerging solutions including biodegradable substrates, modular integration, and AI-driven interpretive frameworks. Collectively, these innovations underscore the potential of microfluidic sensors to redefine environmental diagnostics and advance sustainable pollution monitoring and management strategies. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

25 pages, 1283 KiB  
Systematic Review
Reinforcement Learning and Its Clinical Applications Within Healthcare: A Systematic Review of Precision Medicine and Dynamic Treatment Regimes
by Timothy C. Frommeyer, Michael M. Gilbert, Reid M. Fursmidt, Youngjun Park, John Paul Khouzam, Garrett V. Brittain, Daniel P. Frommeyer, Ean S. Bett and Trevor J. Bihl
Healthcare 2025, 13(14), 1752; https://doi.org/10.3390/healthcare13141752 - 19 Jul 2025
Viewed by 503
Abstract
Background/Objectives: Reinforcement learning (RL), a subset of machine learning, has emerged as a promising tool for supporting precision medicine and dynamic treatment regimes by enabling adaptive, data-driven clinical decision making. Despite its potential, challenges such as interpretability, reward definition, data limitations, and [...] Read more.
Background/Objectives: Reinforcement learning (RL), a subset of machine learning, has emerged as a promising tool for supporting precision medicine and dynamic treatment regimes by enabling adaptive, data-driven clinical decision making. Despite its potential, challenges such as interpretability, reward definition, data limitations, and clinician adoption remain. This review aims to evaluate the recent advancements in RL in precision medicine and dynamic treatment regimes, highlight clinical fields of application, and propose practical frameworks for future integration into medical practice. Methods: A systematic review was conducted following PRISMA guidelines across PubMed, MEDLINE, and Web of Science databases, focusing on studies from January 2014 to December 2024. Articles were included based on their relevance to RL applications in precision medicine and dynamic treatment regime within healthcare. Data extraction captured study characteristics, algorithms used, specialty area, and outcomes. Results: Forty-six studies met the inclusion criteria. RL applications were concentrated in endocrinology, critical care, oncology, and behavioral health, with a focus on dynamic and personalized treatment planning. Hybrid and value-based RL methods were the most utilized. Since 2020, there has been a sharp increase in RL research in healthcare, driven by advances in computational power, digital health technologies, and increased use of wearable devices. Conclusions: RL offers a powerful opportunity to augment clinical decision making by enabling dynamic and individualized patient care. Addressing key barriers related to transparency, data availability, and alignment with clinical workflows will be critical to translating RL into everyday medical practice. Full article
(This article belongs to the Special Issue Artificial Intelligence in Healthcare: Opportunities and Challenges)
Show Figures

Figure 1

62 pages, 4690 KiB  
Review
Functional Nanomaterials for Advanced Bioelectrode Interfaces: Recent Advances in Disease Detection and Metabolic Monitoring
by Junlong Ma, Siyi Yang, Zhihao Yang, Ziliang He and Zhanhong Du
Sensors 2025, 25(14), 4412; https://doi.org/10.3390/s25144412 - 15 Jul 2025
Viewed by 884
Abstract
As critical interfaces bridging biological systems and electronic devices, the performance of bioelectrodes directly determines the sensitivity, selectivity, and reliability of biosensors. Recent advancements in functional nanomaterials (e.g., carbon nanomaterials, metallic nanoparticles, 2D materials) have substantially enhanced the application potential of bioelectrodes in [...] Read more.
As critical interfaces bridging biological systems and electronic devices, the performance of bioelectrodes directly determines the sensitivity, selectivity, and reliability of biosensors. Recent advancements in functional nanomaterials (e.g., carbon nanomaterials, metallic nanoparticles, 2D materials) have substantially enhanced the application potential of bioelectrodes in disease detection, metabolic monitoring, and early diagnosis through strategic material selection, structural engineering, interface modification, and antifouling treatment. This review systematically examines the latest progress in nanomaterial-enabled interface design of bioelectrodes, with particular emphasis on performance enhancements in electrophysiological/electrochemical signal acquisition and multimodal sensing technologies. We comprehensively analyze cutting-edge developments in dynamic metabolic parameter monitoring for chronic disease management, as well as emerging research on flexible, high-sensitivity electrode interfaces for early disease diagnosis. Furthermore, this work focused on persistent technical challenges regarding nanomaterial biocompatibility and long-term operational stability while providing forward-looking perspectives on their translational applications in wearable medical devices and personalized health management systems. The proposed framework offers actionable guidance for researchers in this interdisciplinary field. Full article
(This article belongs to the Special Issue Nanomaterial-Driven Innovations in Biosensing and Healthcare)
Show Figures

Figure 1

21 pages, 1759 KiB  
Review
Three Decades of Managing Pediatric Obstructive Sleep Apnea Syndrome: What’s Old, What’s New
by Beatrice Panetti, Claudia Federico, Giuseppe Francesco Sferrazza Papa, Paola Di Filippo, Armando Di Ludovico, Sabrina Di Pillo, Francesco Chiarelli, Alessandra Scaparrotta and Marina Attanasi
Children 2025, 12(7), 919; https://doi.org/10.3390/children12070919 - 11 Jul 2025
Viewed by 649
Abstract
Obstructive sleep apnea syndrome (OSAS) in children and adolescents is a prevalent and multifactorial disorder associated with significant short- and long-term health consequences. While adenotonsillectomy (AT) remains the first-line treatment, a substantial proportion of patients—especially those with obesity, craniofacial anomalies, or comorbid conditions—exhibit [...] Read more.
Obstructive sleep apnea syndrome (OSAS) in children and adolescents is a prevalent and multifactorial disorder associated with significant short- and long-term health consequences. While adenotonsillectomy (AT) remains the first-line treatment, a substantial proportion of patients—especially those with obesity, craniofacial anomalies, or comorbid conditions—exhibit persistent or recurrent symptoms, underscoring the need for individualized and multimodal approaches. This review provides an updated and comprehensive overview of current and emerging treatments for pediatric OSAS, with a focus on both surgical and non-surgical options, including pharmacological, orthodontic, and myofunctional therapies. A narrative synthesis of recent literature was conducted, including systematic reviews, randomized controlled trials, and large cohort studies published in the last 10 years. The review emphasizes evidence-based indications, mechanisms of action, efficacy outcomes, safety profiles, and limitations of each therapeutic modality. Adjunctive and alternative treatments such as rapid maxillary expansion, mandibular advancement devices, myofunctional therapy, intranasal corticosteroids, leukotriene receptor antagonists, and hypoglossal nerve stimulation show promising results in selected patient populations. Personalized treatment plans based on anatomical, functional, and developmental characteristics are essential to optimize outcomes. Combination therapies appear particularly effective in children with residual disease after AT or with specific phenotypes such as Down syndrome or maxillary constriction. Pediatric OSAS requires a tailored, multidisciplinary approach that evolves with the child’s growth and clinical profile. Understanding the full spectrum of available therapies allows clinicians to move beyond a one-size-fits-all model, offering more precise and durable treatment pathways. Emerging strategies may further redefine the therapeutic landscape in the coming years. Full article
Show Figures

Figure 1

21 pages, 482 KiB  
Review
Assistive Technologies for Individuals with a Disability from a Neurological Condition: A Narrative Review on the Multimodal Integration
by Mirjam Bonanno, Beatrice Saracino, Irene Ciancarelli, Giuseppe Panza, Alfredo Manuli, Giovanni Morone and Rocco Salvatore Calabrò
Healthcare 2025, 13(13), 1580; https://doi.org/10.3390/healthcare13131580 - 1 Jul 2025
Viewed by 875
Abstract
Background/Objectives: Neurological disorders often result in a broad spectrum of disabilities that impact mobility, communication, cognition, and sensory processing, leading to significant limitations in independence and quality of life. Assistive technologies (ATs) offer tools to compensate for these impairments, support daily living, and [...] Read more.
Background/Objectives: Neurological disorders often result in a broad spectrum of disabilities that impact mobility, communication, cognition, and sensory processing, leading to significant limitations in independence and quality of life. Assistive technologies (ATs) offer tools to compensate for these impairments, support daily living, and improve quality of life. The World Health Organization encourages the adoption and diffusion of effective assistive technology (AT). This narrative review aims to explore the integration, benefits, and challenges of assistive technologies in individuals with neurological disabilities, focusing on their role across mobility, communication, cognitive, and sensory domains. Methods: A narrative approach was adopted by reviewing relevant studies published between 2014 and 2024. Literature was sourced from PubMed and Scopus using specific keyword combinations related to assistive technology and neurological disorders. Results: Findings highlight the potential of ATs, ranging from traditional aids to intelligent systems like brain–computer interfaces and AI-driven devices, to enhance autonomy, communication, and quality of life. However, significant barriers remain, including usability issues, training requirements, accessibility disparities, limited user involvement in design, and a low diffusion of a health technology assessment approach. Conclusions: Future directions emphasize the need for multidimensional, user-centered solutions that integrate personalization through machine learning and artificial intelligence to ensure long-term adoption and efficacy. For instance, combining brain–computer interfaces (BCIs) with virtual reality (VR) using machine learning algorithms could help monitor cognitive load in real time. Similarly, ATs driven by artificial intelligence technology could be useful to dynamically respond to users’ physiological and behavioral data to optimize support in daily tasks. Full article
Show Figures

Figure 1

17 pages, 477 KiB  
Systematic Review
E-Health and M-Health in Obesity Management: A Systematic Review and Meta-Analysis of RCTs
by Manuela Chiavarini, Irene Giacchetta, Patrizia Rosignoli and Roberto Fabiani
Nutrients 2025, 17(13), 2200; https://doi.org/10.3390/nu17132200 - 1 Jul 2025
Viewed by 733
Abstract
Background: Obesity in adults is a growing health concern. The principal interventions used in obesity management are lifestyle-change interventions such as diet, exercise, and behavioral therapy. Although they are effective, current treatment options have not succeeded in halting the global rise in the [...] Read more.
Background: Obesity in adults is a growing health concern. The principal interventions used in obesity management are lifestyle-change interventions such as diet, exercise, and behavioral therapy. Although they are effective, current treatment options have not succeeded in halting the global rise in the prevalence of obesity or achieving sustained long-term weight maintenance at the population level. E-health and m-health are both integral components of digital health that focus on the use of technology to improve healthcare delivery and outcomes. The use of eHealth/mHealth might improve the management of some of these treatments. Several digital health interventions to manage obesity are currently in clinical trials. Objective: The aim of our systematic review is to evaluate whether digital health interventions (e-Health and m-Health) have effects on changes in anthropometric measures, such as weight, BMI, and waist circumference and behaviors such as energy intake, eating behaviors, and physical activity. Methods: A search was conducted for randomized controlled trials (RCTs) conducted through 4 October 2024 through three databases (Medline, Web of Science, and Scopus). Studies were included if they evaluated digital health interventions (e-Health and m-Health) compared to control groups in overweight or obese adults (BMI ≥ 25 kg/m2) and reported anthropometric or lifestyle behavioral outcomes. Study quality was assessed using the Cochrane Risk of Bias Tool (RoB 2). Meta-analyses were performed using random-effects or fixed-effects models as appropriate, with statistical significance set at p < 0.05. Results: Twenty-two RCTs involving diverse populations (obese adults, overweight individuals, postpartum women, patients with eating disorders) were included. Digital interventions included biofeedback devices, smartphone apps, e-coaching systems, web-based interventions, and mixed approaches. Only waist circumference showed a statistically significant reduction (WMD = −1.77 cm; 95% CI: −3.10 to −0.44; p = 0.009). No significant effects were observed for BMI (WMD = −0.43 kg/m2; p = 0.247), body weight (WMD = 0.42 kg; p = 0.341), or lifestyle behaviors, including physical activity (SMD = −0.01; p = 0.939) and eating behavior (SMD = −0.13; p = 0.341). Body-fat percentage showed a borderline-significant trend toward reduction (WMD = −0.79%; p = 0.068). High heterogeneity was observed across most outcomes (I2 > 80%), indicating substantial variability between studies. Quality assessment revealed predominant judgments of “Some Concerns” and “High Risk” across the evaluated domains. Conclusions: Digital health interventions produce modest but significant benefits on waist circumference in overweight and obese adults, without significant effects on other anthropometric or behavioral parameters. The high heterogeneity observed underscores the need for more personalized approaches and future research focused on identifying the most effective components of digital interventions. Digital health interventions should be positioned as valuable adjuncts to, rather than replacements for, established obesity treatments. Their integration within comprehensive care models may enhance traditional interventions through continuous monitoring, real-time feedback, and improved accessibility, but interventions with proven efficacy such as behavioral counseling and clinical oversight should be maintained. Full article
Show Figures

Figure 1

30 pages, 10389 KiB  
Review
Recent Advancements in Optical Fiber Sensors for Non-Invasive Arterial Pulse Waveform Monitoring Applications: A Review
by Jing Wen Chew, Soon Xin Gan, Jingxian Cui, Wen Di Chan, Sai T. Chu and Hwa-Yaw Tam
Photonics 2025, 12(7), 662; https://doi.org/10.3390/photonics12070662 - 30 Jun 2025
Viewed by 600
Abstract
The awareness of the importance of monitoring human vital signs has increased recently due to the outbreak of the COVID-19 pandemic. Non-invasive heart rate monitoring devices, in particular, have become some of the most popular tools for health monitoring. However, heart rate data [...] Read more.
The awareness of the importance of monitoring human vital signs has increased recently due to the outbreak of the COVID-19 pandemic. Non-invasive heart rate monitoring devices, in particular, have become some of the most popular tools for health monitoring. However, heart rate data alone are not enough to reflect the health of one’s cardiovascular function or arterial health. This growing interest has spurred research into developing high-fidelity non-invasive pulse waveform sensors. These sensors can provide valuable information such as data on blood pressure, arterial stiffness, and vascular aging from the pulse waveform. Among these sensors, optical fiber sensors (OFSs) stand out due to their remarkable properties, including resistance to electromagnetic interference, capability in monitoring multiple vital signals simultaneously, and biocompatibility. This paper reviews the latest advancements in using OFSs to measure human vital signs, with a focus on pulse waveform analysis. The various working mechanisms of OFSs and their performances in measuring the pulse waveform are discussed. In addition, we also address the challenges faced by OFSs in pulse waveform monitoring and explore the opportunities for future development. This technology shows great potential for both clinical and personal non-invasive pulse waveform monitoring applications. Full article
(This article belongs to the Special Issue Novel Advances in Optical Fiber Gratings)
Show Figures

Figure 1

25 pages, 418 KiB  
Review
Emerging Diagnostic Approaches for Musculoskeletal Disorders: Advances in Imaging, Biomarkers, and Clinical Assessment
by Rahul Kumar, Kiran Marla, Kyle Sporn, Phani Paladugu, Akshay Khanna, Chirag Gowda, Alex Ngo, Ethan Waisberg, Ram Jagadeesan and Alireza Tavakkoli
Diagnostics 2025, 15(13), 1648; https://doi.org/10.3390/diagnostics15131648 - 27 Jun 2025
Viewed by 902
Abstract
Musculoskeletal (MSK) disorders remain a major global cause of disability, with diagnostic complexity arising from their heterogeneous presentation and multifactorial pathophysiology. Recent advances across imaging modalities, molecular biomarkers, artificial intelligence applications, and point-of-care technologies are fundamentally reshaping musculoskeletal diagnostics. This review offers a [...] Read more.
Musculoskeletal (MSK) disorders remain a major global cause of disability, with diagnostic complexity arising from their heterogeneous presentation and multifactorial pathophysiology. Recent advances across imaging modalities, molecular biomarkers, artificial intelligence applications, and point-of-care technologies are fundamentally reshaping musculoskeletal diagnostics. This review offers a novel synthesis by unifying recent innovations across multiple diagnostic imaging modalities, such as CT, MRI, and ultrasound, with emerging biochemical, genetic, and digital technologies. While existing reviews typically focus on advances within a single modality or for specific MSK conditions, this paper integrates a broad spectrum of developments to highlight how use of multimodal diagnostic strategies in combination can improve disease detection, stratification, and clinical decision-making in real-world settings. Technological developments in imaging, including photon-counting detector computed tomography, quantitative magnetic resonance imaging, and four-dimensional computed tomography, have enhanced the ability to visualize structural and dynamic musculoskeletal abnormalities with greater precision. Molecular imaging and biochemical markers such as CTX-II (C-terminal cross-linked telopeptides of type II collagen) and PINP (procollagen type I N-propeptide) provide early, objective indicators of tissue degeneration and bone turnover, while genetic and epigenetic profiling can elucidate individual patterns of susceptibility. Point-of-care ultrasound and portable diagnostic devices have expanded real-time imaging and functional assessment capabilities across diverse clinical settings. Artificial intelligence and machine learning algorithms now automate image interpretation, predict clinical outcomes, and enhance clinical decision support, complementing conventional clinical evaluations. Wearable sensors and mobile health technologies extend continuous monitoring beyond traditional healthcare environments, generating real-world data critical for dynamic disease management. However, standardization of diagnostic protocols, rigorous validation of novel methodologies, and thoughtful integration of multimodal data remain essential for translating technological advances into improved patient outcomes. Despite these advances, several key limitations constrain widespread clinical adoption. Imaging modalities lack standardized acquisition protocols and reference values, making cross-site comparison and clinical interpretation difficult. AI-driven diagnostic tools often suffer from limited external validation and transparency (“black-box” models), impacting clinicians’ trust and hindering regulatory approval. Molecular markers like CTX-II and PINP, though promising, show variability due to diurnal fluctuations and comorbid conditions, complicating their use in routine monitoring. Integration of multimodal data, especially across imaging, omics, and wearable devices, remains technically and logistically complex, requiring robust data infrastructure and informatics expertise not yet widely available in MSK clinical practice. Furthermore, reimbursement models have not caught up with many of these innovations, limiting access in resource-constrained healthcare settings. As these fields converge, musculoskeletal diagnostics methods are poised to evolve into a more precise, personalized, and patient-centered discipline, driving meaningful improvements in musculoskeletal health worldwide. Full article
(This article belongs to the Special Issue Advances in Musculoskeletal Imaging: From Diagnosis to Treatment)
32 pages, 4711 KiB  
Article
Anomaly Detection in Elderly Health Monitoring via IoT for Timely Interventions
by Cosmina-Mihaela Rosca and Adrian Stancu
Appl. Sci. 2025, 15(13), 7272; https://doi.org/10.3390/app15137272 - 27 Jun 2025
Viewed by 581
Abstract
As people age, more careful health monitoring becomes increasingly important. The article presents the development and implementation of an integrated system for monitoring the health of elderly individuals using Internet of Things (IoT) technology and a wearable bracelet to continuously collect vital data. [...] Read more.
As people age, more careful health monitoring becomes increasingly important. The article presents the development and implementation of an integrated system for monitoring the health of elderly individuals using Internet of Things (IoT) technology and a wearable bracelet to continuously collect vital data. The device integrates MAX30100 sensors for heart rate monitoring and MPU-6050 for step counting and sleep quality analysis (deep and superficial sleep). The collected data for average heart rate (AR), minimum (mR), maximum (MR), number of steps (S), deep sleep time (DST), and superficial sleep time (SST) is processed in real-time through a health anomaly detection algorithm (HADA), based on the dimensionality reduction method using PCA. The system is connected to the Azure cloud infrastructure, ensuring secure data transmission, preprocessing, and the automatic generation of alerts for prompt medical interventions. Studies conducted over two years demonstrated a sensitivity of 100% and an accuracy of 98.5%, with a tendency to generate additional alerts to avoid overlooking critical events. The results outline the importance of personalizing the analysis, adapting algorithms to individual characteristics, and the system’s potential to prevent medical complications and improve the quality of life for elderly individuals. Full article
Show Figures

Figure 1

31 pages, 418 KiB  
Review
Trends and Challenges in Real-Time Stress Detection and Modulation: The Role of the IoT and Artificial Intelligence
by Manuel Paniagua-Gómez and Manuel Fernandez-Carmona
Electronics 2025, 14(13), 2581; https://doi.org/10.3390/electronics14132581 - 26 Jun 2025
Viewed by 705
Abstract
The integration of Internet of Things (IoT) devices and Artificial Intelligence (AI) has opened new frontiers in mental health, particularly in stress detection and management. This review explores the current literature, examining how IoT-enabled wearables, sensors, and mobile applications, combined with AI algorithms, [...] Read more.
The integration of Internet of Things (IoT) devices and Artificial Intelligence (AI) has opened new frontiers in mental health, particularly in stress detection and management. This review explores the current literature, examining how IoT-enabled wearables, sensors, and mobile applications, combined with AI algorithms, are utilized to monitor physiological and behavioral indicators of stress. Advancements in real-time stress detection, personalized interventions, and predictive modeling are highlighted, alongside a critical evaluation of existing technologies. While significant progress has been made in the field, several limitations persist, including challenges with the accuracy of stress detection, the scalability of solutions, and the generalizability of AI models across diverse populations. Key challenges are further analyzed, such as ensuring data privacy and security, achieving seamless technological integration, and advancing model personalization to account for individual variability in stress responses. Addressing these challenges is essential to developing robust, ethical, and user-centric solutions that can transform stress management in mental healthcare. This review concludes with recommendations for future research directions aimed at overcoming current barriers and enhancing the effectiveness of IoT- and AI-driven approaches to stress management. Full article
Show Figures

Figure 1

Back to TopTop