Functional Nanomaterials for Advanced Bioelectrode Interfaces: Recent Advances in Disease Detection and Metabolic Monitoring
Abstract
1. Introduction
2. Progress of Functional Nanomaterials in the Design of Biological Electrodes
2.1. Electrophysiological Sensing Nanomaterials
2.1.1. Non-Metallic Nanomaterials
2.1.2. Metallic Nanomaterials
2.2. Electrochemical Sensing Nanomaterials
2.2.1. Functionalized Materials
2.2.2. Metal Nanoparticles
2.2.3. Organic Framework Materials
2.2.4. Anti-Biofouling Coatings
2.3. Structural Design for Performance Enhancement
2.3.1. Mechanical Microstructure Engineering
2.3.2. Electrical Microstructure Design
2.3.3. Sensing Microstructures
2.3.4. Stability-Enhancing Microstructures
2.4. Multimodal Integrated Sensing Devices
2.4.1. Combination of Electrochemical with Optical, Visual, or Thermal Sensing Technologies
2.4.2. Innovations in the Design and Fabrication of Multimodal/Signal Sensors
3. Clinical and Health Management Applications
3.1. Dynamic Monitoring of Diseases
3.1.1. Non-Metallic Materials Based Sensors
3.1.2. Metabolic Disease Monitoring
3.1.3. Cancer Biomarker Monitoring
3.2. Nanomaterial-Driven Early Diagnostic Innovations
3.2.1. Nanomaterial-Enhanced Early Tumor Diagnostics
3.2.2. Advanced Biosensors for Neurodegenerative Disease Detection
3.2.3. Nanomaterial-Enhanced EEG Monitoring for Pediatrics
3.2.4. Nanomaterial-Based Sensors for Monitoring Growth and Metabolic Indicators
3.3. Application of Nanomaterials in Wearable Devices
3.3.1. Electrophysiological Sensors
3.3.2. Electrochemical Biosensors
3.3.3. Multimodal and Multifunctional Wearable Sensors
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALP | Alkaline Phosphatase |
AMMP | Aerosol Multi-Material Printing |
BIEF | Built-In Electric Field |
BMIs | Brain–Machine Interfaces |
CEA | Carcinoembryonic Antigen |
CGM | Continuous Glucose Monitoring |
CIC | Charge Injection Capacity |
CIL | Charge Injection Limit |
CNTs | Carbon Nanotubes |
COFs | Covalent Organic Frameworks |
Cor | Cortisol |
CV | Cyclic Voltammetry |
DA | Dopamine |
DBS | Deep Brain Stimulation |
DPV | Differential Pulse Voltammetry |
EC | Electrochemical |
ECG | Electrocardiography |
ECL | Electrochemiluminescence |
ECoG | Electrocorticography |
EEG | Electroencephalographic |
EMG | Electromyographic |
EOG | Electrooculography |
ER | Endoplasmic Reticulum |
eTPU | Electrospun Thermoplastic Polyurethane |
GB | Guanosine-Boric Acid |
GCE | Glassy Carbon Electrode |
GFP | Green Fluorescent Protein |
Glu | Glutamate |
GPNMB | Glycoprotein Non-Metastatic Melanoma Protein B |
IL | Ionic Liquid |
ISF | Interstitial Fluid |
ISFET | Ion-Sensitive Field-Effect Transistor |
LFP | Local Field Potential |
LIG | Laser-Induced Graphene |
LM | Liquid Metal |
LOD | Limit Of Detection |
LSPR | Local Surface Plasmon Resonance |
MFCS | Magnetic Field-Coupled Sensor |
MIECs | Mixed Ionic-Electronic Conductors |
mLPG | Microfiber Long-Period Grating |
MOFs | Metal-Organic Frameworks |
MONPs | Metal Oxide Nanoparticles |
MOVPE | Metal-Organic Vapor Phase Epitaxy |
MUA | Multi-Unit Activity |
MWCNTs | Multi-Walled Carbon Nanotubes |
NCS | Non-Convulsive Seizures |
ND | Nanodiamond |
NPs | Nanoparticles |
NT-3DFG | Nanowire-Templated Three-Dimensional Fuzzy Graphene |
NWs | Nanowires |
OECT | Organic Electrochemical Transistor |
PAA | Poly(Acrylic Acid) |
PD | Parkinson’S Disease |
PDA | Polydopamine |
PEDOT:PSS | Poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) |
PEGDA | Poly(Ethylene Glycol) Diacrylate |
POC | Point-Of-Care |
PU | Polyurethane |
PVA | Polyvinyl Alcohol |
QDs | Quantum Dots |
SEAs | Surface Electrode Arrays |
SMR | Signal-To-Motion Artifact Ratios |
SNMs | Silica Nanoporous Membranes |
SNR | Signal-To-Noise Ratio |
SPR | Surface Plasmon Resonance |
ST | Serotonin |
STEs | Stretchable Transparent Electrodes |
SWV | Square-Wave Voltammetry |
TBI | Traumatic Brain Injury |
TEM | Transmission Electron Microscope |
References
- Tian, B.; Lieber, C.M. Nanowired Bioelectric Interfaces. Chem. Rev. 2019, 119, 9136–9152. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Wang, M.; Ge, C.; Xie, Z.; Guo, Z.; Hong, W.; Gu, X.; Wang, L.; Yi, Z.; Jiang, C.; et al. Flexible bioelectrodes with enhanced wrinkle microstructures for reliable electrochemical modification and neuromodulation in vivo. Biosens. Bioelectron. 2019, 135, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Irimes, M.-B.; Pusta, A.; Cernat, A.; Feier, B.; Tertis, M.; Cristea, C.; Buzoianu, A.D.; Oprean, R. Multiplexed electrochemical sensing devices for chronic diseases diagnosis and monitoring. Trends Anal. Chem. 2024, 172, 117560. [Google Scholar] [CrossRef]
- Tawakey, S.H.; Mansour, M.; Soltan, A.; Salim, A.I. Early detection of hypo/hyperglycemia using a microneedle electrode array-based biosensor for glucose ultrasensitive monitoring in interstitial fluid. Lab Chip 2024, 24, 3958–3972. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, M.; Yang, H.; Jiang, W.; Jiang, J.; Zou, D.; Zhu, Z.; Tao, C.; Ni, S.; Zhou, Z.; et al. Ultraflexible Neural Electrodes Enabled Synchronized Long-Term Dopamine Detection and Wideband Chronic Recording Deep in Brain. ACS Nano 2024, 18, 34272–34287. [Google Scholar] [CrossRef] [PubMed]
- Taylor, I.; Du, Z.J.; Bigelow, E.; Eles, J.; Horner, A.R.; Catt, K.A.; Weber, S.; Jamieson, B.; Cui, X.T. Aptamer-functionalized neural recording electrodes for the direct measurement of cocaine in vivo. J. Mater. Chem. B 2017, 5, 2445–2458. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.-H.; Lu, Y.; Wang, L.-P. Neurotransmitter Sensing in Diagnosis and Research of Neurological Diseases. Chin. J. Anal. Chem. 2019, 47, 1651–1663. [Google Scholar] [CrossRef]
- Zhao, Y.; Jin, K.Q.; Li, J.D.; Sheng, K.K.; Huang, W.H.; Liu, Y.L. Flexible and Stretchable Electrochemical Sensors for Biological Monitoring. Adv. Mater. 2023, 35, e2305917. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Li, Y.; Chen, M.; Li, W.; Ding, C.; Luo, X. Antifouling Electrochemical Biosensor Based on the Designed Functional Peptide and the Electrodeposited Conducting Polymer for CTC Analysis in Human Blood. Anal. Chem. 2022, 94, 2204–2211. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Liang, Q.; Chang, Q.; Liu, Y.; Zhang, Q. Topological Hydrogels for Long-Term Brain Signal Monitoring, Neuromodulation, and Stroke Treatment. Adv. Mater. 2024, 36, e2310365. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Yang, L.; Shi, X.; Ye, C.; Wang, Y.; Song, D.; Xiong, W.; Gu, X.; Lu, C.; Liu, N. Ultrathin Bioelectrode Array with Improved Electrochemical Performance for Electrophysiological Sensing and Modulation. ACS Nano 2024, 18, 34971–34985. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Coleman, H.A.; Tonta, M.A.; Xiong, Z.; Li, D.; Thomas, S.; Liu, M.; Fallon, J.B.; Parkington, H.C.; Forsythe, J.S. Rapid electrophoretic deposition of biocompatible graphene coatings for high-performance recording neural electrodes. Nanoscale 2022, 14, 15845–15858. [Google Scholar] [CrossRef] [PubMed]
- Sanaeifar, N.; Rabiee, M.; Abdolrahim, M.; Tahriri, M.; Vashaee, D.; Tayebi, L. A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal. Biochem. 2017, 519, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Li, F.; Xue, F.; Wang, Y.; Li, B.; Tang, R.; Wang, Y.; Bi, G.Q.; Pei, W. Transparent, flexible graphene-ITO-based neural microelectrodes for simultaneous electrophysiology recording and calcium imaging of intracortical neural activity in freely moving mice. Microsyst. Nanoeng. 2025, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, M.; Bhardwaj, S.K.; Mishra, Y.K.; Kaushik, A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson’s Disease Diagnostics. Biosensors 2021, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, N.; Erickson, B.; Murphy, B.B.; Richardson, A.G.; Robbins, G.; Apollo, N.V.; Mentzelopoulos, G.; Mathis, T.; Hantanasirisakul, K.; Bagga, P.; et al. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Sci. Transl. Med. 2021, 13, eabf8629. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, Y.; Wang, H.; Hou, S. Gold nanoparticles decorated on single layer graphene applied for electrochemical ultrasensitive glucose biosensor. J. Electroanal. Chem. 2019, 855, 113495. [Google Scholar] [CrossRef]
- Hsine, Z.; Mlika, R.; Jaffrezic-Renault, N.; Korri-Youssoufi, H. Review—Recent Progress in Graphene Based Modified Electrodes for Electrochemical Detection of Dopamine. Chemosensors 2022, 10, 249. [Google Scholar] [CrossRef]
- Chen, X.; Noy, A. Antifouling strategies for protecting bioelectronic devices. APL Mater. 2021, 9, 020701. [Google Scholar] [CrossRef]
- Chandra, S.; Miller, A.D.; Bendavid, A.; Martin, P.J.; Wong, D.K.Y. Minimizing Fouling at Hydrogenated Conical-Tip Carbon Electrodes during Dopamine Detection In Vivo. Anal. Chem. 2014, 86, 2443–2450. [Google Scholar] [CrossRef] [PubMed]
- Soomro, R.A.; Zhang, P.; Fan, B.; Wei, Y.; Xu, B. Progression in the Oxidation Stability of MXenes. Nano-Micro Lett. 2023, 15, 108. [Google Scholar] [CrossRef] [PubMed]
- Mobini, S.; Gonzalez, M.U.; Caballero-Calero, O.; Patrick, E.E.; Martin-Gonzalez, M.; Garcia-Martin, J.M. Effects of nanostructuration on the electrochemical performance of metallic bioelectrodes. Nanoscale 2022, 14, 3179–3190. [Google Scholar] [CrossRef]
- Han, Q.; Wang, H.; Wang, J. Multi-Mode/Signal Biosensors: Electrochemical Integrated Sensing Techniques. Adv. Funct. Mater. 2024, 34, 2403122. [Google Scholar] [CrossRef]
- Hubel, D.H. Tungsten Microelectrode for Recording from Single Units. Science 1957, 125, 549–550. [Google Scholar] [CrossRef] [PubMed]
- Bretag, A.H. The glass micropipette electrode: A history of its inventors and users to 1950. J. Gen. Physiol. 2017, 149, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Rousche, P.J.; Normann, R.A. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J. Neurosci. Methods 1998, 82, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Albulbul, A. Evaluating Major Electrode Types for Idle Biological Signal Measurements for Modern Medical Technology. Bioengineering 2016, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Maynard, E.M.; Nordhausen, C.T.; Normann, R.A. The Utah Intracortical Electrode Array: A recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 1997, 102, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Yeager, J.D.; Phillips, D.J.; Rector, D.M.; Bahr, D.F. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J. Neurosci. Methods 2008, 173, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Richardson-Burns, S.M.; Hendricks, J.L.; Foster, B.; Povlich, L.K.; Kim, D.-H.; Martin, D.C. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 2007, 28, 1539–1552. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.T.; Zhou, D.D. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 502–508. [Google Scholar] [CrossRef] [PubMed]
- McCallum, G.A.; Sui, X.; Qiu, C.; Marmerstein, J.; Zheng, Y.; Eggers, T.E.; Hu, C.; Dai, L.; Durand, D.M. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes. Sci. Rep. 2017, 7, 11723. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.J.; Steinmetz, N.A.; Siegle, J.H.; Denman, D.J.; Bauza, M.; Barbarits, B.; Lee, A.K.; Anastassiou, C.A.; Andrei, A.; Aydin, C.; et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 2017, 551, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Sha, B.; Zhao, S.; Gu, M.; Khodagholy, D.; Wang, L.; Bi, G.Q.; Du, Z. Doping-induced assembly interface for noninvasive in vivo local and systemic immunomodulation. Proc. Natl. Acad. Sci. USA 2023, 120, e2306777120. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Liu, C.; Jiang, Z.; Zhao, Q.; Shen, A.; Wu, Y.; Gu, W. Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics. Smart Med. 2024, 3, e20240027. [Google Scholar] [CrossRef] [PubMed]
- Keles, G.; Sifa Ataman, E.; Taskin, S.B.; Polatoglu, I.; Kurbanoglu, S. Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis. Biosensors 2024, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Frewin, C.L.; Esrafilzadeh, D.; Yu, C.; Wang, C.; Pancrazio, J.J.; Romero-Ortega, M.; Jalili, R.; Wallace, G. High-Performance Graphene-Fiber-Based Neural Recording Microelectrodes. Adv. Mater. 2019, 31, e1805867. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Qi, M.; Zhang, Y.; Cao, C.; Goldys, E.M. Nanocomposites of gold nanoparticles and graphene oxide towards an stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I. Anal. Chim. Acta 2016, 909, 1–8. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Lin, D.; Wang, Y.; Xiao, Y.; Che, J. Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface. Colloids Surf. B Biointerfaces 2011, 87, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Kozai, T.D.; Catt, K.; Du, Z.; Na, K.; Srivannavit, O.; Haque, R.U.; Seymour, J.; Wise, K.D.; Yoon, E.; Cui, X.T. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings. IEEE Trans. Biomed. Eng. 2016, 63, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Kim, J.H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int. J. Nanomed. 2016, 11, 1927–1945. [Google Scholar] [CrossRef] [PubMed]
- Golabchi, A.; Wu, B.; Du, Z.J.; Cui, X.T. Long-Term Neural Recording Performance of PEDOT/CNT/Dexamethasone-Coated Electrode Array Implanted in Visual Cortex of Rats. Adv. NanoBiomed Res. 2025, 5, 2400114. [Google Scholar] [CrossRef]
- Xu, B.; Pei, J.; Feng, L.; Zhang, X.D. Graphene and graphene-related materials as brain electrodes. J. Mater. Chem. B 2021, 9, 9485–9496. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, Y.; Gu, M.; Yang, Z.; Zhan, L.; Du, Z. Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface. Int. J. Mol. Sci. 2023, 24, 5182. [Google Scholar] [CrossRef] [PubMed]
- Pyo, Y.W.; Kim, H.; Park, H.G. Graphene-Integrated Ultrathin Neural Probe for Multiregional Cortical Recordings. ACS Nano 2025, 19, 19951–19961. [Google Scholar] [CrossRef] [PubMed]
- Ria, N.; Eladly, A.; Masvidal-Codina, E.; Illa, X.; Guimera, A.; Hills, K.; Garcia-Cortadella, R.; Duvan, F.T.; Flaherty, S.M.; Prokop, M.; et al. Flexible graphene-based neurotechnology for high-precision deep brain mapping and neuromodulation in Parkinsonian rats. Nat. Commun. 2025, 16, 2891. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, R.; Scida, A.; Saracino, E.; Conte, G.; Kovtun, A.; Candini, A.; Kirdajova, D.; Spennato, D.; Marchetti, V.; Lazzarini, C.; et al. Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes. Nat. Nanotechnol. 2024, 19, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Gou, S.; Li, P.; Yang, S.; Bi, G.; Du, Z. High-Performance MXene/PEDOT-PSS Microscale Fiber Electrodes for Neural Recording and Stimulation. Adv. Funct. Mater. 2025, 35, 2424236. [Google Scholar] [CrossRef]
- He, S.; Sun, X.; Zhang, H.; Yuan, C.; Wei, Y.; Li, J. Preparation Strategies and Applications of MXene-Polymer Composites: A Review. Macromol. Rapid Commun. 2021, 42, e2100324. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Li, C.; Han, J.; Huang, W.; Zhou, J.; Yang, Y. Hydrophilic antifouling 3D porous MXene/holey graphene nanocomposites for electrochemical determination of dopamine. Microchem. J. 2022, 181, 107713. [Google Scholar] [CrossRef]
- Song, J.; Chen, H.; Sun, Y.; Liu, Z. Layered MXene Films via Self-Assembly. Small 2024, 20, e2406855. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Cui, X.; Li, S.; Wei, J.; Li, P.; Wang, Y.; Lee, C.-S. Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics 2020, 9, 2233–2249. [Google Scholar] [CrossRef]
- Gou, S.; Yang, S.; Cheng, Y.; Yang, S.; Liu, H.; Li, P.; Du, Z. Applications of 2D Nanomaterials in Neural Interface. Int. J. Mol. Sci. 2024, 25, 8615. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Chen, Y.; Averbeck, S.; Hendricks, Q.; Murphy, B.; Ferleger, B.; Driscoll, N.; Shekhirev, M.; Takano, H.; Richardson, A.; et al. Transparent MXene Microelectrode Arrays for Multimodal Mapping of Neural Dynamics. Adv. Healthc. Mater. 2025, 14, e2402576. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, Y.; Liu, Y.; Zhu, D.; Xing, S.; Lambert, N.; Weisbecker, H.; Liu, S.; Davis, B.; Zhang, L.; et al. Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants. Sci. Adv. 2024, 10, eadp8866. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wu, J.; Jing, G.; Zhang, H.; Zeng, S.; Tian, X.; Zou, X.; Wen, J.; Su, H.; Zhong, C.-J.; et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl. Catal. B Environ. 2018, 239, 665–676. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.-Y.; Li, F. Flexible electrochemical sensors based on nanomaterials: Constructions, applications and prospects. Chem. Eng. J. 2025, 504, 158101. [Google Scholar] [CrossRef]
- Jiang, Z.; Nayeem, M.O.G.; Fukuda, K.; Ding, S.; Jin, H.; Yokota, T.; Inoue, D.; Hashizume, D.; Someya, T. Highly Stretchable Metallic Nanowire Networks Reinforced by the Underlying Randomly Distributed Elastic Polymer Nanofibers via Interfacial Adhesion Improvement. Adv. Mater. 2019, 31, e1903446. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Setyawati, M.I.; Leong, D.T.; Xie, J. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 2018, 357, 1–17. [Google Scholar] [CrossRef]
- Qin, C.; Sun, Q.; Chen, Y.; Fahad, S.; Wu, J.; Dong, Y.; Yu, H.; Wang, M. Evaporation-induced self-assembled ultrathin AgNW networks for highly conformable wearable electronics. npj Flex. Electron. 2024, 8, 26. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.; Wang, A.; Zhu, Z.; Moses, K.; Wang, T.; Li, P.; Huang, W. Sponge Inspired Flexible, Antibacterial Aerogel Electrode with Long-Term High-Quality Electrophysiological Signal Recording for Human-Machine Interface. Adv. Funct. Mater. 2024, 34, 2309704. [Google Scholar] [CrossRef]
- Yoon, H.; Choi, J.; Kim, J.; Kim, J.; Min, J.; Kim, D.; Jeong, S.; Lee, J.G.; Bang, J.; Choi, S.H.; et al. Adaptive Epidermal Bioelectronics by Highly Breathable and Stretchable Metal Nanowire Bioelectrodes on Electrospun Nanofiber Membrane. Adv. Funct. Mater. 2024, 34, 2313504. [Google Scholar] [CrossRef]
- Hu, R.; Yao, B.; Geng, Y.; Zhou, S.; Li, M.; Zhong, W.; Sun, F.; Zhao, H.; Wang, J.; Ge, J.; et al. High-Fidelity Bioelectrodes with Bidirectional Ion-Electron Transduction Capability by Integrating Multiple Charge-Transfer Processes. Adv. Mater. 2024, 36, e2403111. [Google Scholar] [CrossRef] [PubMed]
- Hohman, J.N.; Kim, M.; Wadsworth, G.A.; Bednar, H.R.; Jiang, J.; LeThai, M.A.; Weiss, P.S. Directing substrate morphology via self-assembly: Ligand-mediated scission of gallium-indium microspheres to the nanoscale. Nano Lett. 2011, 11, 5104–5110. [Google Scholar] [CrossRef] [PubMed]
- Nor-Azman, N.A.; Ghasemian, M.B.; Fuchs, R.; Liu, L.; Widjajana, M.S.; Yu, R.; Chiu, S.H.; Idrus-Saidi, S.A.; Flores, N.; Chi, Y.; et al. Mechanism behind the Controlled Generation of Liquid Metal Nanoparticles by Mechanical Agitation. ACS Nano 2024, 18, 11139–11152. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kim, K.; Lee, S.Y.; Moon, S.; Lee, J.Y. Stretchable Electrodes Based on Over-Layered Liquid Metal Networks. Adv. Mater. 2023, 35, e2210112. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Hang, C.; Yang, S.; Qi, J.; Dong, R.; Zhang, Y.; Sun, H.; Jiang, X. In Situ Deposition of Skin-Adhesive Liquid Metal Particles with Robust Wear Resistance for Epidermal Electronics. Nano Lett. 2022, 22, 4482–4490. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Tian, G.; Liang, C.; Wang, T.; Ma, X.; Gong, G.; Qi, D. Thermal-Sinterable EGaIn Nanoparticle Inks for Highly Deformable Bioelectrode Arrays. Adv. Healthc. Mater. 2023, 12, e2202531. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Wang, X.; Li, W.; Liu, Z.; Li, Q.; Yan, F. Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal particles. Nat. Electron. 2024, 7, 576–585. [Google Scholar] [CrossRef]
- Yuan, R.; Zheng, Y.; Shin, H.; Xu, G.; Fan, S.; Du, Z. Delayed muscle fatigue during electrical stimulation of the proximal nerve using asymmetric random high-frequency carrier pulse cluster. J. Neuroeng. Rehabil. 2025, 22, 125. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, Y.; Yang, C.; Wang, Q.; Fang, T.; Bai, C.; Wang, J.; Kong, D. Spray-on electronic tattoos with MXene and liquid metal nanocomposites. Chem. Eng. J. 2024, 500, 157504. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Ma, C.; Liu, H. Large-area, stretchable, ordered silver nanowires electrode by superwetting-induced transfer of ionic liquid@silver nanowires complex. Chem. Eng. J. 2023, 476, 146505. [Google Scholar] [CrossRef]
- ISO 10993-1:2018; Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing Within a Risk Management Process. International Organization for Standardization: Geneva, Switzerland, 2018.
- IEC 60601-1:2005+AMD1:2012; Medical Electrical Equipment—Part 1: General Requirements for Basic Safety and Essential Performance. International Electrotechnical Commission: Geneva, Switzerland, 2012.
- Du, Z.; Lu, Y.; Wei, P.; Deng, C.; Li, X. Progress in Devices and Materials for Implantable Multielectrode Arrays. Acta Phys.-Chim. Sin. 2020, 36, 2007004. [Google Scholar] [CrossRef]
- Sha, B.; Du, Z. Neural repair and regeneration interfaces: A comprehensive review. Biomed. Mater. 2024, 19, 022002. [Google Scholar] [CrossRef] [PubMed]
- Kozai, T.D.Y.; Du, Z.; Gugel, Z.V.; Smith, M.A.; Chase, S.M.; Bodily, L.M.; Caparosa, E.M.; Friedlander, R.M.; Cui, X.T. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. J. Neurosci. Methods 2015, 242, 15–40. [Google Scholar] [CrossRef] [PubMed]
- Alba, N.A.; Du, Z.J.; Catt, K.A.; Kozai, T.D.; Cui, X.T. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating. Biosensors 2015, 5, 618–646. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.J.; Kolarcik, C.L.; Kozai, T.D.Y.; Luebben, S.D.; Sapp, S.A.; Zheng, X.S.; Nabity, J.A.; Cui, X.T. Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater. 2017, 53, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, X.; Gan, L.; Liu, S.; Luo, H.; Du, X.; Loutfy, S.A.; Tan, H.; Guo, J.; Li, C. Carbon-based implantable bioelectronics. Appl. Phys. Rev. 2024, 11, 031311. [Google Scholar] [CrossRef]
- Mani, A.; Anirudhan, T.S. Electrochemical sensing of cortisol by gold nanoparticle incorporated carboxylated graphene oxide based molecularly imprinted polymer. Chem. Eng. J. 2024, 493, 152654. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Lee, Y.Y.; Samad, A.A.; Reza, M.S.; Kim, D.Y.; Islam, Z.; Park, J.Y. MXene@Pt nanocomposite and nanoporous carbon reinforced 3D graphene-based electrochemical multi-sensing patch for wearable sweat analysis. Chem. Eng. J. 2025, 514, 163292. [Google Scholar] [CrossRef]
- Du, Z.J.; Bi, G.-Q.; Cui, X.T. Electrically Controlled Neurochemical Release from Dual-Layer Conducting Polymer Films for Precise Modulation of Neural Network Activity in Rat Barrel Cortex. Adv. Funct. Mater. 2017, 28, 1703988. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Zheng, D.; Al-Rubeaan, K.; Luong, J.H.T.; Sheu, F.-S. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol. Adv. 2011, 29, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Yuwen, T.; Shu, D.; Zou, H.; Yang, X.; Wang, S.; Zhang, S.; Liu, Q.; Wang, X.; Wang, G.; Zhang, Y.; et al. Carbon nanotubes: A powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J. Nanobiotechnol. 2023, 21, 320. [Google Scholar] [CrossRef] [PubMed]
- Misia, G.; Evangelisti, C.; Merino, J.P.; Pitzalis, E.; Abelairas, A.M.; Mosquera, J.; Criado, A.; Prato, M.; Silvestri, A. Design and optimization of an electrochemical sensor based on carbon nanotubes for the reliable voltammetric detection of serotonin in complex biological fluids. Carbon 2024, 229, 119550. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, P.; Lu, Y. Copper-cobalt dual-site on N-doped carbon nanotube with dual-promoted synergy for glucose electrochemical detection. Anal. Chim. Acta 2024, 1298, 342405. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, X.; Zhao, Y.; Qin, J.; Xu, H.; Dong, L.; Gao, S.; Zhong, L. Novel electrochemical non-enzymatic glucose sensor based on 3D Au@Pt core–shell nanoparticles decorated graphene oxide/multi-walled carbon nanotubes composite. Microchem. J. 2022, 174, 107061. [Google Scholar] [CrossRef]
- Wu, X.; Ma, P.; Sun, Y.; Du, F.; Song, D.; Xu, G. Application of MXene in Electrochemical Sensors: A Review. Electroanalysis 2021, 33, 1827–1851. [Google Scholar] [CrossRef]
- Murugan, N.; Jerome, R.; Preethika, M.; Sundaramurthy, A.; Sundramoorthy, A.K. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid. J. Mater. Sci. Technol. 2021, 72, 122–131. [Google Scholar] [CrossRef]
- Ezzah Ab Latif, F.; Numan, A.; Mubarak, N.M.; Khalid, M.; Abdullah, E.C.; Manaf, N.A.; Walvekar, R. Evolution of MXene and its 2D heterostructure in electrochemical sensor applications. Coord. Chem. Rev. 2022, 471, 214755. [Google Scholar] [CrossRef]
- Mun, T.J.; Yang, E.; Moon, J.; Kim, S.; Park, S.G.; Kim, M.; Choi, N.; Lee, Y.; Kim, S.J.; Seong, H. Silane-Functionalized MXene-PEGDA Hydrogel for Enhanced Electrochemical Sensing of Neurotransmitters and Antioxidants. ACS Appl. Polym. Mater. 2024, 6, 9533–9544. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Cao, J.; Liu, Y.; Shao, M.; Xu, X.; Chen, H. Enhanced electron transfer and stability via hetero-interface engineering of MXene@MOF: Electrochemical sensors for direct detection of GPNMB in serum of PD. Sens. Actuators B Chem. 2024, 417, 136066. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, L.; Liu, Z.; Wang, X. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2020, 2, 1077–1094. [Google Scholar] [CrossRef]
- Li, Y.; Tan, S.; Zhang, X.; Li, Z.; Cai, J.; Liu, Y. Design Strategies and Emerging Applications of Conductive Hydrogels in Wearable Sensing. Gels 2025, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lim, E.G.; Hoettges, K.; Song, P. A Review of Carbon Nanotubes, Graphene and Nanodiamond Based Strain Sensor in Harsh Environments. C 2023, 9, 108. [Google Scholar] [CrossRef]
- Bialas, K.; Moschou, D.; Marken, F.; Estrela, P. Electrochemical sensors based on metal nanoparticles with biocatalytic activity. Microchim. Acta 2022, 189, 172. [Google Scholar] [CrossRef] [PubMed]
- George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Mikrochim Acta 2018, 185, 358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ru, Y.; Gao, H.-L.; Wang, S.-W.; Yan, J.; Gao, K.-Z.; Jia, X.-D.; Luo, H.-W.; Fang, H.; Zhang, A.-Q.; et al. Sol-gel synthesis and electrochemical performance of NiCo2O4 nanoparticles for supercapacitor applications. J. Electrochem. Sci. Eng. 2019, 9, 243–253. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, D.; Yang, Y.; Song, X. An Electrochemical Nonenzymatic Microsensor Modified by Nickel Cobaltate Nanospheres for Glucose Sensing in Urine. IEEE Sens. J. 2021, 21, 13074–13081. [Google Scholar] [CrossRef]
- Miao, F.; Wang, H.; Li, X.; Tao, B.; Li, H. Linear NiCo2O4 modified by CuO nanoparticles with wide range and high sensitivity for glucose detection and excellent ultracapacitor performance. Vacuum 2025, 232, 113879. [Google Scholar] [CrossRef]
- Lv, J.; Kong, C.; Xu, Y.; Yang, Z.; Zhang, X.; Yang, S.; Meng, G.; Bi, J.; Li, J.; Yang, S. Facile synthesis of novel CuO/Cu2O nanosheets on copper foil for high sensitive nonenzymatic glucose biosensor. Sens. Actuators B Chem. 2017, 248, 630–638. [Google Scholar] [CrossRef]
- Wang, X.; Hu, C.; Liu, H.; Du, G.; He, X.; Xi, Y. Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens. Actuators B Chem. 2010, 144, 220–225. [Google Scholar] [CrossRef]
- Baziak, A.; Kusior, A. Comparative Study of Polymer-Modified Copper Oxide Electrochemical Sensors: Stability and Performance Analysis. Sensors 2024, 24, 5290. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.I.; Aruldoss, R.; Pant, B.; Kulandhaisamy, I.; Raffik, R.; Sonawane, G.B. Magnetic Nanoparticle-Based Biosensors for the Sensitive and Selective Detection of Urine Glucose. Adv. Sci. Technol. 2022, 117, 79–84. [Google Scholar] [CrossRef]
- Nayak, L.; Mohanty, S.; Nayak, S.K.; Ramadoss, A. A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 2019, 7, 8771–8795. [Google Scholar] [CrossRef]
- Guan, M.; Huang, Z.; Bao, Z.; Ou, Y.; Zou, S.; Liu, G. Gold nanoparticles incorporated liquid metal for wearable sensors and wound healing. Chem. Eng. J. 2025, 508, 161120. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Jiao, Z.; Zhu, R.; Ma, L.; Zhou, K.; Yu, Z.; Wei, Q. Engineering a Au-NPs/Nafion modified nanoporous diamond sensing interface for reliable voltammetric quantification of dopamine in human serum. Chem. Eng. J. 2022, 446, 136927. [Google Scholar] [CrossRef]
- Zhao, L.; Niu, G.; Gao, F.; Lu, K.; Sun, Z.; Li, H.; Stenzel, M.; Liu, C.; Jiang, Y. Gold Nanorods (AuNRs) and Zeolitic Imidazolate Framework-8 (ZIF-8) Core-Shell Nanostructure-Based Electrochemical Sensor for Detecting Neurotransmitters. ACS Omega 2021, 6, 33149–33158. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Huang, M.; Lin, X.; Li, S.F.Y.; Jiang, N.; Liu, Y.; Guo, H.; Li, Y. Novel Fe-based metal–organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection. Chem. Eng. J. 2022, 427, 130913. [Google Scholar] [CrossRef]
- Xue, R.; Liu, Y.S.; Huang, S.L.; Yang, G.Y. Recent Progress of Covalent Organic Frameworks Applied in Electrochemical Sensors. ACS Sens 2023, 8, 2124–2148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-W.; Zhu, Q.-Q.; Yuan, R.; He, H. Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sens. Actuators B Chem. 2021, 329, 129144. [Google Scholar] [CrossRef]
- Wareham-Mathiassen, S.; Jolly, P.; Radha Shanmugam, N.; Jagannath, B.; Prabhala, P.; Zhai, Y.; Ozkan, A.; Naziripour, A.; Singh, R.; Bengtsson, H.; et al. An Antimicrobial and Antifibrotic Coating for Implantable Biosensors. Biosensors 2025, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.J.; Luo, X.; Weaver, C.L.; Cui, X.T. Poly(3,4-ethylenedioxythiophene)-ionic liquid coating improves neural recording and stimulation functionality of MEAs. J. Mater. Chem. C 2015, 3, 6515–6524. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, X.; Zhu, B.; Su, B. An Overview of Antifouling Strategies for Electrochemical Analysis. Electroanalysis 2022, 34, 966–975. [Google Scholar] [CrossRef]
- Puthongkham, P.; Venton, B.J. Nanodiamond Coating Improves the Sensitivity and Antifouling Properties of Carbon Fiber Microelectrodes. ACS Sens. 2019, 4, 2403–2411. [Google Scholar] [CrossRef] [PubMed]
- Tegafaw, T.; Liu, S.; Ahmad, M.Y.; Ali Al Saidi, A.K.; Zhao, D.; Liu, Y.; Yue, H.; Nam, S.-W.; Chang, Y.; Lee, G.H. Production, surface modification, physicochemical properties, biocompatibility, and bioimaging applications of nanodiamonds. RSC Adv. 2023, 13, 32381–32397. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Jia, J.; Das, J.; Riordan, K.T.; Flynn, C.D.; Wang, Y.; Kelley, S.O.; Odom, T.W. Antifouling Spiky Nanoelectrodes Enhance Detection of Bacterial mRNA. J. Am. Chem. Soc. 2025, 147, 7868–7874. [Google Scholar] [CrossRef] [PubMed]
- Siwakoti, U.; Jones, S.A.; Kumbhare, D.; Cui, X.T.; Castagnola, E. Recent Progress in Flexible Microelectrode Arrays for Combined Electrophysiological and Electrochemical Sensing. Biosensors 2025, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.W.; Kim, E.; Koh, C.S.; Park, Y.G.; Hong, Y.M.; Lee, S.; Lee, J.; Kim, T.J.; Mun, W.; Min, S.H.; et al. Implantable Soft Neural Electrodes of Liquid Metals for Deep Brain Stimulation. ACS Nano 2025, 19, 7337–7349. [Google Scholar] [CrossRef] [PubMed]
- Tybrandt, K.; Khodagholy, D.; Dielacher, B.; Stauffer, F.; Renz, A.F.; Buzsaki, G.; Voros, J. High-Density Stretchable Electrode Grids for Chronic Neural Recording. Adv. Mater. 2018, 30, e1706520. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Deng, Y.; Yi, P.; Peng, L. Highly Fatigue-Resistant Stretchable Electrodes Based on Regular Stripe-Shaped Platinum Nanofilm. ACS Appl. Mater. Interfaces 2025, 17, 25839–25848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, J.; Wang, H.; Wang, C.; Gu, Y.; Xu, Y.; Lee, S.; Yokota, T.; Haick, H.; Someya, T.; et al. A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term electrophysiological monitoring. Sci. Adv. 2024, 10, eadj5389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Su, Y.; Xu, J.; Jin, Y.; Zhang, H.; Ma, G.; Xu, J.; Zhou, M.; Zhou, X.; Cao, F.; et al. Self-Adhesive ILn@MXene multifunctional hydrogel with excellent dispersibility for human-machine interaction, capacitor, antibacterial and detecting various physiological electrical signals in humans and animals. Nano Energy 2025, 133, 110484. [Google Scholar] [CrossRef]
- Wang, C.; Gao, B.; Fang, F.; Qi, W.; Yan, G.; Zhao, J.; Wang, W.; Bai, R.; Zhang, Z.; Zhang, Z.; et al. A Stretchable and Tough Graphene Film Enabled by Mechanical Bond. Angew. Chem. Int. Ed. Engl. 2024, 63, e202404481. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Wang, S.; Tat, T.; Chen, J. Motion artefact management for soft bioelectronics. Nat. Rev. Bioeng. 2024, 2, 541–558. [Google Scholar] [CrossRef]
- Song, D.; Li, X.; Jang, M.; Lee, Y.; Zhai, Y.; Hu, W.; Yan, H.; Zhang, S.; Chen, L.; Lu, C.; et al. An Ultra-Thin MXene Film for Multimodal Sensing of Neuroelectrical Signals with Artifacts Removal. Adv. Mater. 2023, 35, e2304956. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, S.; Li, P.; Gou, S.; Cheng, Y.; Jia, Q.; Du, Z. Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: Innovations and applications. Front. Bioeng. Biotechnol. 2024, 12, 1476447. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Zhou, J.; Wei, C.; Ponnuchamy, A.; Bappy, M.O.; Liao, Y.; Jiang, Q.; Du, Y.; Evans, C.J.; Wyatt, B.C.; et al. A Printed Microscopic Universal Gradient Interface for Super Stretchable Strain-Insensitive Bioelectronics. Adv. Mater. 2025, 37, e2414203. [Google Scholar] [CrossRef] [PubMed]
- Kolarcik, C.L.; Catt, K.; Rost, E.; Albrecht, I.N.; Bourbeau, D.; Du, Z.; Kozai, T.D.; Luo, X.; Weber, D.J.; Cui, X.T. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. J. Neural Eng. 2015, 12, 016008. [Google Scholar] [CrossRef] [PubMed]
- Pranti, A.S.; Schander, A.; Bödecker, A.; Lang, W. PEDOT: PSS coating on gold microelectrodes with excellent stability and high charge injection capacity for chronic neural interfaces. Sens. Actuators B Chem. 2018, 275, 382–393. [Google Scholar] [CrossRef]
- Li, Y.; Gu, Y.; Qian, S.; Zheng, S.; Pang, Y.; Wang, L.; Liu, B.; Liu, S.; Zhao, Q. An injectable, self-healable, and reusable PEDOT:PSS/PVA hydrogel patch electrode for epidermal electronics. Nano Res. 2024, 17, 5479–5490. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Faruk, O.; Samad, A.A.; Kim, H.; Reza, M.S.; Lee, Y.; Park, J.Y. A MOFs-Derived Hydroxyl-Functionalized Hybrid Nanoporous Carbon Incorporated Laser-Scribed Graphene-Based Multimodal Skin Patch for Perspiration Analysis and Electrocardiogram Monitoring. Adv. Funct. Mater. 2024, 34, 2405651. [Google Scholar] [CrossRef]
- Rodilla, B.L.; Arche-Nunez, A.; Ruiz-Gomez, S.; Dominguez-Bajo, A.; Fernandez-Gonzalez, C.; Guillen-Colomer, C.; Gonzalez-Mayorga, A.; Rodriguez-Diez, N.; Camarero, J.; Miranda, R.; et al. Flexible metallic core-shell nanostructured electrodes for neural interfacing. Sci. Rep. 2024, 14, 3729. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, H.; Sun, C.; Jing, Y.; Li, K.; Li, Y.; Zhang, Q.; Wang, H.; Luo, Y.; Hou, C. Topological MXene Network Enabled Mixed Ion-Electron Conductive Hydrogel Bioelectronics. ACS Nano 2024, 18, 4008–4018. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Zhang, S.; Chen, Q.; Gao, C. Synthesis of Ultrasmall Platinum Nanoparticles on Polymer Nanoshells for Size-Dependent Catalytic Oxidation Reactions. ACS Appl. Mater. Interfaces 2017, 9, 9710–9717. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Tian, H.; Qi, L.; Zhang, Y.; Yang, H.; Ge, S.; Zhang, L.; Zhang, Y.; Li, L.; Cui, K.; et al. Photothermal-thermoelectric synergy coupling localized surface plasmon resonance for enhanced flexible photoelectrochemical sensor performance. Chem. Eng. J. 2025, 503, 158393. [Google Scholar] [CrossRef]
- Ramezani, M.; Kim, J.H.; Liu, X.; Ren, C.; Alothman, A.; De-Eknamkul, C.; Wilson, M.N.; Cubukcu, E.; Gilja, V.; Komiyama, T.; et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat. Nanotechnol. 2024, 19, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, K.; Kang, K.; Ali, A.; Kim, D.W.; Ahn, H.; Ko, G.; Choi, M.; Tchoe, Y.; Park, H.Y.; et al. Transparent vertical nanotube electrode arrays on graphene for cellular recording and optical imaging. NPG Asia Mater. 2024, 16, 13. [Google Scholar] [CrossRef]
- Ranke, D.; Lee, I.; Gershanok, S.A.; Jo, S.; Trotto, E.; Wang, Y.; Balakrishnan, G.; Cohen-Karni, T. Multifunctional Nanomaterials for Advancing Neural Interfaces: Recording, Stimulation, and Beyond. Acc. Chem. Res. 2024, 57, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Nie, J.; Cao, Y.; Gao, C.; Wang, M.; Wang, W.; Lu, X.; Ma, X.; Zhong, P. A review of how to improve Ti3C2Tx MXene stability. Chem. Eng. J. 2024, 496, 154097. [Google Scholar] [CrossRef]
- Chae, A.; Murali, G.; Lee, S.-Y.; Gwak, J.; Kim, S.J.; Jeong, Y.J.; Kang, H.; Park, S.; Lee, A.S.; Koh, D.-Y.; et al. Highly Oxidation-Resistant and Self-Healable MXene-Based Hydrogels for Wearable Strain Sensor. Adv. Funct. Mater. 2023, 33, 2213382. [Google Scholar] [CrossRef]
- Xiong, W.; Song, D.; Li, A.; Wang, T.; Shi, X.; Zhao, Z.; Li, X.; Liu, Z.; Liang, W.; Ouyang, F.; et al. An Air-Stable MXene Bio-Interfacing Thin Film Electrode. Adv. Funct. Mater. 2025, 35, 2423810. [Google Scholar] [CrossRef]
- Aidli, W.; Fumagalli, D.; Pifferi, V.; Falciola, L. From dual-mode to multi-modal electrochemical based sensors: A path toward accurate sensing. Curr. Opin. Electrochem. 2025, 50, 101655. [Google Scholar] [CrossRef]
- Tian, J.-H.; Hu, X.-Y.; Hu, Z.-Y.; Tian, H.-W.; Li, J.-J.; Pan, Y.-C.; Li, H.-B.; Guo, D.-S. A facile way to construct sensor array library via supramolecular chemistry for discriminating complex systems. Nat. Commun. 2022, 13, 4293. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wei, Y.; Gao, X.; Nie, C.; Wang, J.; Wu, Y. Engineering an Enzymatic Cascade Catalytic Smartphone-Based Sensor for Onsite Visual Ratiometric Fluorescence-Colorimetric Dual-Mode Detection of Methyl Mercaptan. Environ. Sci. Technol. 2023, 57, 1680–1691. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Singla, A.K.; Bajaj, A.; Elci, S.G.; Miranda, O.R.; Mout, R.; Yan, B.; Jirik, F.R.; Rotello, V.M. Array-Based Sensing of Metastatic Cells and Tissues Using Nanoparticle–Fluorescent Protein Conjugates. ACS Nano 2012, 6, 8233–8240. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wei, Z.; Zhou, J.; Ma, Z. Simultaneous multi-signal quantification for highly precise serodiagnosis utilizing a rationally constructed platform. Nat. Commun. 2019, 10, 5361. [Google Scholar] [CrossRef] [PubMed]
- Derkus, B. Applying the miniaturization technologies for biosensor design. Biosens. Bioelectron. 2016, 79, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Ruiz-Valdepenas Montiel, V.; Torrente-Rodriguez, R.M.; Pingarron, J.M. Bioelectroanalytical Technologies for Advancing the Frontiers To Democratize Personalized Desired Health. Anal. Chem. 2025, 97, 11371–11381. [Google Scholar] [CrossRef] [PubMed]
- Ordeig, O.; Ortiz, P.; Munoz-Berbel, X.; Demming, S.; Buttgenbach, S.; Fernandez-Sanchez, C.; Llobera, A. Dual photonic-electrochemical lab on a chip for online simultaneous absorbance and amperometric measurements. Anal. Chem. 2012, 84, 3546–3553. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Moniz, A.R.-B.; Triantis, I.; Michelakis, K.; Trzebinski, J.; Azarbadegan, A.; Field, B.; Toumazou, C.; Eames, I.; Cass, A. An integrated silicon sensor with microfluidic chip for monitoring potassium and pH. Microfluid. Nanofluidics 2011, 10, 1119–1125. [Google Scholar] [CrossRef]
- Claassen, J.; Mayer, S.A.; Kowalski, R.G.; Emerson, R.G.; Hirsch, L.J. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology 2004, 62, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Imai, A.; Takahashi, S.; Furubayashi, S.; Mizuno, Y.; Sonoda, M.; Miyazaki, T.; Miyashita, E.; Fujie, T. Flexible Thin-Film Neural Electrodes with Improved Conformability for ECoG Measurements and Electrical Stimulation. Adv. Mater. Technol. 2023, 8, 2300300. [Google Scholar] [CrossRef]
- Rostami, E.; Bellander, B.M. Monitoring of glucose in brain, adipose tissue, and peripheral blood in patients with traumatic brain injury: A microdialysis study. J. Diabetes Sci. Technol. 2011, 5, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, Y.; Liu, Q.; Lou, K.; Wang, S.; Zhang, N.; Jiang, N.; Yetisen, A.K. Multiplexed optical fiber sensors for dynamic brain monitoring. Matter 2022, 5, 3947–3976. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, N.; Yetisen, A.K. Brain neurochemical monitoring. Biosens. Bioelectron. 2021, 189, 113351. [Google Scholar] [CrossRef] [PubMed]
- Regiart, M.; Ledo, A.; Fernandes, E.; Messina, G.A.; Brett, C.M.A.; Bertotti, M.; Barbosa, R.M. Highly sensitive and selective nanostructured microbiosensors for glucose and lactate simultaneous measurements in blood serum and in vivo in brain tissue. Biosens. Bioelectron. 2022, 199, 113874. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zheng, Y. Metabolic diseases in the East Asian populations. Nat. Rev. Gastroenterol. Hepatol. 2025, 22, 500–516. [Google Scholar] [CrossRef] [PubMed]
- Klonoff, D.C. Continuous glucose monitoring: Roadmap for 21st century diabetes therapy. Diabetes Care 2005, 28, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Klupa, T.; Czupryniak, L.; Dzida, G.; Fichna, P.; Jarosz-Chobot, P.; Gumprecht, J.; Mysliwiec, M.; Szadkowska, A.; Bomba-Opon, D.; Czajkowski, K.; et al. Expanding the Role of Continuous Glucose Monitoring in Modern Diabetes Care Beyond Type 1 Disease. Diabetes Ther. 2023, 14, 1241–1266. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, S.; Liu, Y.; Xu, Z.; Zhang, K.; Guo, Y. Development of Cu nanoflowers modified the flexible needle-type microelectrode and its application in continuous monitoring glucose in vivo. Biosens. Bioelectron. 2018, 110, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Y.; Wu, F.; Cao, X.; Li, Z.; Alharbi, M.; Abbas, A.N.; Amer, M.R.; Zhou, C. Highly Sensitive and Wearable In2O3 Nanoribbon Transistor Biosensors with Integrated On-Chip Gate for Glucose Monitoring in Body Fluids. ACS Nano 2018, 12, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, Y.; Lv, X.; Jiang, S.; Jiang, S.; Sun, Z.; Zhang, M.; Li, Y. Ultra-Sensitive and Unlabeled SERS Nanosheets for Specific Identification of Glucose in Body Fluids. Adv. Funct. Mater. 2024, 34, 2315668. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Cui, Y. A wearable, rapidly manufacturable, stability-enhancing microneedle patch for closed-loop diabetes management. Microsyst. Nanoeng. 2024, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Anuthum, S.; Jakmunee, J.; Ounnunkad, K. Dual-Mode Electrochemical Biosensor Based on Gold Nanoparticles/Two-Dimensional MoWS2/Graphene Oxide Composite for Detection of Glycated Albumin and Glucose toward Advancing Diabetes Diagnosis. ACS Appl. Bio Mater. 2025, 8, 5215–5228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Du, X. Electrochemical Sensors Based on Carbon Nanomaterial Used in Diagnosing Metabolic Disease. Front. Chem. 2020, 8, 651. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, L.; Qian, K. Nanomaterials-assisted metabolic analysis toward in vitro diagnostics. Exploration 2022, 2, 20210222. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Pal, R.; Bej, S.; Mondal, M.; Kundu, K.; Banerjee, P. Recent progress in 0D optical nanoprobes for applications in the sensing of (bio)analytes with the prospect of global health monitoring and detailed mechanistic insights. Mater. Adv. 2022, 3, 4421–4459. [Google Scholar] [CrossRef]
- Abbas, A.; Kattumenu, R.; Tian, L.; Singamaneni, S. Molecular linker-mediated self-assembly of gold nanoparticles: Understanding and controlling the dynamics. Langmuir 2013, 29, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Bao, C.; Liu, H.; Ma, F.; Yang, M.; Li, X. BSA-Assisted Synthesis of Au Nanoclusters/MnO2 Nanosheets for Fluorescence “Switch-On” Detection of Alkaline Phosphatase. Biosensors 2025, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Kazura, E.; Lubbers, B.R.; Dawson, E.; Phillips, J.A., 3rd; Baudenbacher, F. Nano-Calorimetry based point of care biosensor for metabolic disease management. Biomed. Microdevices 2017, 19, 50. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Yang, J.; Liu, K.; Yin, Z.; Ma, T.; Liu, S.; Xu, L.; Wang, S. Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. Nanomaterials 2020, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.L.; Graves, C.R.; Robertson, J.F. Tumour marker measurements in the diagnosis and monitoring of breast cancer. Cancer Treat. Rev. 2000, 26, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Wang, X.; Wang, J.; Li, H.; Li, F. Nucleic Acid-Functionalized Metal-Organic Framework-Based Homogeneous Electrochemical Biosensor for Simultaneous Detection of Multiple Tumor Biomarkers. Anal. Chem. 2019, 91, 3604–3610. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, H.; Fan, K.; Labunov, V.; Lazarouk, S.; Yue, X.; Liu, C.; Yang, X.; Dong, L.; Wang, G. A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA. Biosens. Bioelectron. 2021, 181, 113147. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, Y.; Huang, K.J.; Hou, Y.Y.; Sun, X.; Li, J. Real-Time Biosensor Platform Based on Novel Sandwich Graphdiyne for Ultrasensitive Detection of Tumor Marker. Anal. Chem. 2022, 94, 16980–16986. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, X.; Wang, J.; Fu, W.; Yao, C. A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers. Sci. Rep. 2016, 6, 33140. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Feng, X.; Gao, T.; Liu, G.; Mao, Y.; Lin, J.; Yu, X.; Luo, X. Aptamer induced multicoloured Au NCs-MoS2 “switch on” fluorescence resonance energy transfer biosensor for dual color simultaneous detection of multiple tumor markers by single wavelength excitation. Anal. Chim. Acta 2017, 983, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Chen, Z.; Zhao, C.; Shen, M.; Li, H.; Zhang, S.; Zhang, Z. Photoelectrochemical biosensing platforms for tumor marker detection. Coord. Chem. Rev. 2022, 469, 214675. [Google Scholar] [CrossRef]
- Postel, M.; Roosen, A.; Laurent-Puig, P.; Taly, V.; Wang-Renault, S.F. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: A cancer diagnostic perspective. Expert Rev. Mol. Diagn. 2018, 18, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Mangolini, A.; Ferracin, M.; Zanzi, M.V.; Saccenti, E.; Ebnaof, S.O.; Poma, V.V.; Sanz, J.M.; Passaro, A.; Pedriali, M.; Frassoldati, A.; et al. Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR. Biomark. Res. 2015, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Di, K.; Adeel, K.; Fan, B.; Gu, X.; Xu, H.; Shen, H.; He, N.; Li, Z. The exploration of droplet digital branched rolling circle amplification based ultrasensitive biosensor for gastric cancer cell-derived extracellular vesicles detection. Mater. Today Adv. 2022, 16, 100296. [Google Scholar] [CrossRef]
- Wilson, R.E., Jr.; O’Connor, R.; Gallops, C.E.; Kwizera, E.A.; Noroozi, B.; Morshed, B.I.; Wang, Y.; Huang, X. Immunomagnetic Capture and Multiplexed Surface Marker Detection of Circulating Tumor Cells with Magnetic Multicolor Surface-Enhanced Raman Scattering Nanotags. ACS Appl. Mater. Interfaces 2020, 12, 47220–47232. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ji, J.; Chen, P.; Wu, J.; Jin, Y.; Zhang, L.; Du, S. Salt-induced gold nanoparticles aggregation lights up fluorescence of DNA-silver nanoclusters to monitor dual cancer markers carcinoembryonic antigen and carbohydrate antigen 125. Anal. Chim. Acta 2020, 1125, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Einoch Amor, R.; Zinger, A.; Broza, Y.Y.; Schroeder, A.; Haick, H. Artificially Intelligent Nanoarray Detects Various Cancers by Liquid Biopsy of Volatile Markers. Adv. Healthc. Mater. 2022, 11, e2200356. [Google Scholar] [CrossRef] [PubMed]
- Jopek, M.A.; Pastuszak, K.; Cygert, S.; Best, M.G.; Wurdinger, T.; Jassem, J.; Żaczek, A.J.; Supernat, A. Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data. IEEE J. Transl. Eng. Health Med. 2024, 12, 306–313. [Google Scholar] [CrossRef]
- Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem. Rev. 2015, 115, 10530–10574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, M.; Gao, X.; Chen, Y.; Liu, T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol. 2019, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Tang, H.; Xiong, P.; Zhou, Z. Biomarkers-based Biosensing and Bioimaging with Graphene for Cancer Diagnosis. Nanomaterials 2019, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Ma, Z. A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim. Acta 2017, 184, 969–979. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- Blasiak, B.; van Veggel, F.C.J.M.; Tomanek, B. Applications of Nanoparticles for MRI Cancer Diagnosis and Therapy. J. Nanomater. 2013, 2013, 148578. [Google Scholar] [CrossRef]
- Ali, I.; Alsehli, M.; Scotti, L.; Tullius Scotti, M.; Tsai, S.T.; Yu, R.S.; Hsieh, M.F.; Chen, J.C. Progress in Polymeric Nano-Medicines for Theranostic Cancer Treatment. Polymers 2020, 12, 598. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Peng, Y.; Xie, X.; Feng, Y.; Li, T.; Li, S.; Qin, X.; Yang, H.; Wu, C.; Zheng, C.; et al. Dendrimer-Functionalized Superparamagnetic Nanobeacons for Real-Time Detection and Depletion of HSP90alpha mRNA and MR Imaging. Theranostics 2019, 9, 5784–5796. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Rho, W.Y.; Park, S.M.; Jun, B.H. Optical nanomaterial-based detection of biomarkers in liquid biopsy. J. Hematol. Oncol. 2024, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Kavungal, D.; Magalhaes, P.; Kumar, S.T.; Kolla, R.; Lashuel, H.A.; Altug, H. Artificial intelligence-coupled plasmonic infrared sensor for detection of structural protein biomarkers in neurodegenerative diseases. Sci. Adv. 2023, 9, eadg9644. [Google Scholar] [CrossRef] [PubMed]
- Mars, A.; Hamami, M.; Bechnak, L.; Patra, D.; Raouafi, N. Curcumin-graphene quantum dots for dual mode sensing platform: Electrochemical and fluorescence detection of APOe4, responsible of Alzheimer’s disease. Anal. Chim. Acta 2018, 1036, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Azimzadeh, M.; Nasirizadeh, N.; Rahaie, M.; Naderi-Manesh, H. Early detection of Alzheimer’s disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Adv. 2017, 7, 55709–55719. [Google Scholar] [CrossRef]
- Lu, H.; Wu, L.; Wang, J.; Wang, Z.; Yi, X.; Wang, J.; Wang, N. Voltammetric determination of the Alzheimer’s disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles. Mikrochim. Acta 2018, 185, 549. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, P.; Loureiro, J.; Delerue-Matos, C.; Morais, S.; do Carmo Pereira, M. Alzheimer’s disease: Development of a sensitive label-free electrochemical immunosensor for detection of amyloid beta peptide. Sens. Actuators B Chem. 2017, 239, 157–165. [Google Scholar] [CrossRef]
- Qin, J.; Cho, M.; Lee, Y. Ultrasensitive Detection of Amyloid-beta Using Cellular Prion Protein on the Highly Conductive Au Nanoparticles-Poly(3,4-ethylene dioxythiophene)-Poly(thiophene-3-acetic acid) Composite Electrode. Anal. Chem. 2019, 91, 11259–11265. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Barani, M.; Sabir, F.; Rahdar, A.; Kyzas, G.Z. Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview. NanoImpact 2020, 20, 100251. [Google Scholar] [CrossRef]
- Amor-Gutierrez, O.; Costa-Rama, E.; Arce-Varas, N.; Martinez-Rodriguez, C.; Novelli, A.; Fernandez-Sanchez, M.T.; Costa-Garcia, A. Competitive electrochemical immunosensor for the detection of unfolded p53 protein in blood as biomarker for Alzheimer’s disease. Anal. Chim. Acta 2020, 1093, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Migliore, L.; Uboldi, C.; Di Bucchianico, S.; Coppede, F. Nanomaterials and neurodegeneration. Environ. Mol. Mutagen. 2015, 56, 149–170. [Google Scholar] [CrossRef] [PubMed]
- Waris, A.; Ali, A.; Khan, A.U.; Asim, M.; Zamel, D.; Fatima, K.; Raziq, A.; Khan, M.A.; Akbar, N.; Baset, A.; et al. Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders. Nanomaterials 2022, 12, 2140. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Yang, Z.; Li, S.; Le, W. Nanotherapeutic and Stem Cell Therapeutic Strategies in Neurodegenerative Diseases: A Promising Therapeutic Approach. Int. J. Nanomed. 2023, 18, 611–626. [Google Scholar] [CrossRef] [PubMed]
- Fridman, I.; Cordeiro, M.; Rais-Bahrami, K.; McDonald, N.J.; Reese, J.J., Jr.; Massaro, A.N.; Conry, J.A.; Chang, T.; Soussou, W.; Tsuchida, T.N. Evaluation of Dry Sensors for Neonatal EEG Recordings. J. Clin. Neurophysiol. 2016, 33, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Damalerio, R.B.; Lim, R.; Gao, Y.; Zhang, T.T.; Cheng, M.Y. Development of Low-Contact-Impedance Dry Electrodes for Electroencephalogram Signal Acquisition. Sensors 2023, 23, 4453. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Li, N.; Luo, Y.; Chen, L. Sustainable development of electroencephalography materials and technology. SusMat 2024, 4, e195. [Google Scholar] [CrossRef]
- Liu, J.; Lin, S.; Li, W.; Zhao, Y.; Liu, D.; He, Z.; Wang, D.; Lei, M.; Hong, B.; Wu, H. Ten-Hour Stable Noninvasive Brain-Computer Interface Realized by Semidry Hydrogel-Based Electrodes. Research 2022, 2022, 9830457. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.; Goulding, R.; Filan, P.; Boylan, G. Overcoming the practical challenges of electroencephalography for very preterm infants in the neonatal intensive care unit. Acta Paediatr. 2015, 104, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Sumathi, M.; Rekha, P.; Mohan, M.; Prakasam, A.; Anbarasan, P.M.; Aroulmoji, V. Review on the Recent Applications of Nanomaterials in Energy, Environment and Health Care. Int. J. Adv. Sci. Eng. 2024, 10, 3655–3671. [Google Scholar] [CrossRef]
- El-Araby, A.; Janati, W.; Ullah, R.; Ercisli, S.; Errachidi, F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: Eco-friendly materials for advanced applications (a review). Front. Chem. 2023, 11, 1327426. [Google Scholar] [CrossRef] [PubMed]
- Javed, R.; Sajjad, A.; Naz, S.; Sajjad, H.; Ao, Q. Significance of Capping Agents of Colloidal Nanoparticles from the Perspective of Drug and Gene Delivery, Bioimaging, and Biosensing: An Insight. Int. J. Mol. Sci. 2022, 23, 10521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ying, Y.; Ping, J. Recent Advances in Plant Nanoscience. Adv. Sci. 2022, 9, e2103414. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.S.; Li, Y.; Yue, W.; Liu, B.; Li, K. Nanoparticle-based Cell Trackers for Biomedical Applications. Theranostics 2020, 10, 1923–1947. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, A.; Araki, T.; Nishimura, K.; Akiyama, M.; Uemura, T.; Kiriyama, K.; Koot, J.M.; Kasai, Y.; Kurihira, N.; Osaki, S.; et al. Fully Transparent, Ultrathin Flexible Organic Electrochemical Transistors with Additive Integration for Bioelectronic Applications. Adv. Sci. 2023, 10, e2204746. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Um, H.-K.; Choi, H.; Lee, J.S.; Kim, J.; Kim, K.; Noh, E.; Han, M.; Lee, H.W.; Choi, W.I.; et al. Stretchable and Biocompatible Transparent Electrodes for Multimodal Biosignal Sensing from Exposed Skin. Adv. Electron. Mater. 2023, 9, 2300075. [Google Scholar] [CrossRef]
- Wang, T.; Yao, S.; Shao, L.H.; Zhu, Y. Stretchable Ag/AgCl Nanowire Dry Electrodes for High-Quality Multimodal Bioelectronic Sensing. Sensors 2024, 24, 6670. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zou, Y.; Wan, Z.; Liu, M.; Wang, Y.; Chu, H.; Tan, P.; Wu, L.; Wang, E.; Ouyang, H.; et al. A patterned mechanical–electrical coupled sensing patch for multimodal muscle function evaluation. InfoMat 2025, 7, e12631. [Google Scholar] [CrossRef]
- Song, Z.; Li, R.; Li, Z.; Luo, X. Antifouling and antimicrobial wearable electrochemical sweat sensors for accurate dopamine monitoring based on amyloid albumin composite hydrogels. Biosens. Bioelectron. 2024, 264, 116640. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Nie, Q.; Wang, Y.; Wu, Y.; Tu, Y.; Xie, C.; Xiao, X.; You, R.; Lu, Y. Diaper-based wearable SERS sensing system with a silver nano dual-structure composite hydrogel for the detection of biomarkers and pH in urine. Chem. Eng. J. 2024, 498, 155207. [Google Scholar] [CrossRef]
- Li, Z.; Sun, L.P.; Tan, Y.; Wang, Z.; Yang, X.; Huang, T.; Li, J.; Zhang, Y.; Guan, B.O. Flexible Optoelectronic Hybrid Microfiber Long-period Grating Multimodal Sensor. Adv. Sci. 2025, 12, e2501352. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Liu, Q.; Xu, X.; Wang, B.; Lu, Y.; Yang, L.; Liu, X.; Wang, Y.; Li, M.; Wang, D. A Fabric-Based Multimodal Flexible Tactile Sensor With Precise Sensing and Discrimination Capabilities for Pressure-Proximity-Magnetic Field Signals. Adv. Funct. Mater. 2025, 35, 2420445. [Google Scholar] [CrossRef]
- Guo, K.; Liu, J.; Gong, N.; Li, Y.; Guo, Q. Flexible fiber-based multimodal perception system with integrated pressure, humidity, and temperature sensing for wearable application. Chem. Eng. J. 2025, 506, 159925. [Google Scholar] [CrossRef]
- Yang, S.; Cao, Y.-J.; Han, K.; Guo, J.-T.; Zheng, P.-L.; Wang, L.-Y.; Cheng, T.; Zhang, Y.-Z.; Lai, W.-Y. Stretchable transparent electrodes based on metal grid hybrids for skin-like multimodal sensing and flexible touch panel. Nano Energy 2025, 139, 110942. [Google Scholar] [CrossRef]
- Pradhan, G.B.; Shrestha, K.; Assaduzzaman, M.; Sapkota, S.; Lim, S.; Reza, M.S.; Park, J.Y. A hybrid porous carbon-decorated multi-layered graphene-based breathable and ultra-sensitive piezoresistive strain sensor for wearable physiological signal monitoring. Chem. Eng. J. 2025, 504, 158933. [Google Scholar] [CrossRef]
- Gomes, B.S.; Simões, B.; Mendes, P.M. The increasing dynamic, functional complexity of bio-interface materials. Nat. Rev. Chem. 2018, 2, 0120. [Google Scholar] [CrossRef]
- Luo, X.; Li, S.; Wu, Y.; Tan, F.; Li, C.; Gu, W.; Liu, J.; Zhu, C. Hybrid enzymatic and nanozymatic biofuel cells for wearable and implantable biosensors. TrAC Trends Anal. Chem. 2025, 185, 118169. [Google Scholar] [CrossRef]
- Wang, J.; Meng, X.; Fu, L.; Ding, J.; Li, J.; Wang, L.; Zhou, Y.; Niu, S. Implantable and wearable triboelectric nanogenerators as a novel platform for biomedical antibacterial applications. Mater. Today 2025, 87, 378–402. [Google Scholar] [CrossRef]
Development Period | Development Situation | References |
---|---|---|
1920s–1950s | Early metal and glass microelectrodes | [24,25] |
1950s–1960s | Standard reference electrode and enzyme electrode | [26,27] |
1970s–1980s | Silicon needle array microfabrication and arrayed | [26,28] |
1990s | Flexible polyimide substrate | [29] |
2000s | Interface modification of conductive polymers | [30,31] |
2010s | Nano-carbon and ultra-high-density probes | [32,33] |
2020s | Two-dimensional nanomaterials and bio-biomimetic hydrogels | [34,35] |
This review | ||
2020–2025 | The performance improvement brought by functional nanomaterials for bioelectrode interfaces, long-term stability and anti-biofouling technology integration | - |
2021–2025 | Multimodal integration and closed-loop neural regulation | - |
2023–2025 | Microstructure design promotes performance improvement | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Yang, S.; Yang, Z.; He, Z.; Du, Z. Functional Nanomaterials for Advanced Bioelectrode Interfaces: Recent Advances in Disease Detection and Metabolic Monitoring. Sensors 2025, 25, 4412. https://doi.org/10.3390/s25144412
Ma J, Yang S, Yang Z, He Z, Du Z. Functional Nanomaterials for Advanced Bioelectrode Interfaces: Recent Advances in Disease Detection and Metabolic Monitoring. Sensors. 2025; 25(14):4412. https://doi.org/10.3390/s25144412
Chicago/Turabian StyleMa, Junlong, Siyi Yang, Zhihao Yang, Ziliang He, and Zhanhong Du. 2025. "Functional Nanomaterials for Advanced Bioelectrode Interfaces: Recent Advances in Disease Detection and Metabolic Monitoring" Sensors 25, no. 14: 4412. https://doi.org/10.3390/s25144412
APA StyleMa, J., Yang, S., Yang, Z., He, Z., & Du, Z. (2025). Functional Nanomaterials for Advanced Bioelectrode Interfaces: Recent Advances in Disease Detection and Metabolic Monitoring. Sensors, 25(14), 4412. https://doi.org/10.3390/s25144412