Emerging Diagnostic Approaches for Musculoskeletal Disorders: Advances in Imaging, Biomarkers, and Clinical Assessment
Abstract
1. Introduction
2. Evolution of Imaging Modalities in Musculoskeletal Diagnostics
2.1. Conventional Imaging: Strengths and Limitations
2.2. Advanced Functional and Molecular Imaging
2.3. Point-of-Care Ultrasound
3. Biomarkers in Musculoskeletal Disease Stratification
3.1. Inflammatory and Bone Turnover Markers
3.2. Genetic and Epigenetic Biomarkers Associated with Disease Development
3.3. Novel Biochemical Markers for Disease Monitoring
4. Integrative Clinical Assessment Frameworks
4.1. Comprehensive Physical Examination Approaches
4.2. Dynamic Assessment and Movement Analysis
4.3. Integration of Patient-Reported Outcomes
5. Artificial Intelligence and Decision Support Systems
5.1. Machine Learning Applications in Imaging Interpretation
5.2. Predictive Analytics for Disease Progression
5.3. Clinical Decision Support Systems in Practice
6. Challenges and Future Directions
6.1. Standardization and Validation Requirements
6.2. Integration of Multiple Diagnostic Modalities
6.3. Ethical Considerations and Cost-Effectiveness
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woolf, A.D.; Pfleger, B. Burden of Major Musculoskeletal Conditions. Bull. World Health Organ. 2003, 81, 646–656. [Google Scholar] [PubMed]
- Guermazi, A.; Roemer, F.W.; Hayashi, D. Imaging of Osteoarthritis: Update from a Radiological Perspective. Curr. Opin. Rheumatol. 2011, 23, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Guermazi, A.; Roemer, F.; Zhang, Y.; Neogi, T. Structural Correlates of Pain in Joints with Osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1170–1178. [Google Scholar] [CrossRef]
- Eckstein, F.; Wirth, W.; Nevitt, M.C. Recent Advances in Osteoarthritis Imaging—The Osteoarthritis Initiative. Nat. Rev. Rheumatol. 2012, 8, 622–630. [Google Scholar] [CrossRef]
- Burns, J.E.; Yao, J.; Summers, R.M. Artificial Intelligence in Musculoskeletal Imaging: A Paradigm Shift. J. Bone Miner. Res. 2020, 35, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, A.; Cyriac, J.; Stieltjes, B.; Kober, T.; Richiardi, J.; Omoumi, P. Artificial Intelligence in Musculoskeletal Imaging: Review of Current Literature, Challenges, Robotics, and Trends. Semin. Musculoskelet. Radiol. 2019, 23, 304–311. [Google Scholar] [CrossRef]
- Saukko, A.E.A.; Nykänen, O.; Sarin, J.K.; Nissi, M.J.; Te Moller, N.C.R.; Weinans, H.; Mancini, I.A.D.; Visser, J.; Brommer, H.; van Weeren, P.R.; et al. Dual-Contrast Computed Tomography Enables Detection of Equine Posttraumatic Osteoarthritis In Vitro. J. Orthop. Res. 2022, 40, 703–711. [Google Scholar] [CrossRef]
- Bureau, N.J. Point-of-Care Musculoskeletal Ultrasound: The Evolution of Ultrasound Improving Patient Care. AJR Am. J. Roentgenol. 2024, 222, e2330398. [Google Scholar] [CrossRef]
- Roemer, F.W.; Crema, M.D.; Trattnig, S.; Guermazi, A. Advances in Imaging of Osteoarthritis and Cartilage. Radiology 2011, 260, 332–354. [Google Scholar] [CrossRef]
- Murphey, M.D.; Quale, J.L.; Martin, N.L.; Bramble, J.M.; Cook, L.T.; Dwyer, S.J., 3rd. Computed Radiography in Musculoskeletal Imaging: State of the Art. AJR Am. J. Roentgenol. 1992, 158, 19–27. [Google Scholar] [CrossRef]
- Vijayanathan, S.; Butt, S.; Gnanasegaran, G.; Groves, A.M. Advantages and Limitations of Imaging the Musculoskeletal System by Conventional Radiological, Radionuclide, and Hybrid Modalities. Semin. Nucl. Med. 2009, 39, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Bencardino, J.T.; Stone, T.J.; Roberts, C.C. ACR Appropriateness Criteria: Chronic Wrist Pain. J. Am. Coll. Radiol. 2018, 15, S189–S199. [Google Scholar]
- Mercado, C.L. BI-RADS Update. Radiol. Clin. N. Am. 2014, 52, 481–487. [Google Scholar] [CrossRef]
- Oei, E.H.G.; Runhaar, J. Imaging of Early-Stage Osteoarthritis: The Needs and Challenges for Diagnosis and Classification. Skelet. Radiol. 2023, 52, 2031–2036. [Google Scholar] [CrossRef] [PubMed]
- Al Nakshabandi, N.; Joharji, E.; El-Haddad, H. Radiology in Rheumatology. In Skills in Rheumatology [Internet]; Almoallim, H., Cheikh, M., Eds.; Springer: Singapore, 2021; Chapter 5. Available online: https://www.ncbi.nlm.nih.gov/books/NBK585751/ (accessed on 20 May 2025).
- Demehri, S.; Baffour, F.I.; Klein, J.G.; Ghotbi, E.; Ibad, H.A.; Moradi, K.; Taguchi, K.; Fritz, J.; Carrino, J.A.; Guermazi, A.; et al. Musculoskeletal CT Imaging: State-of-the-Art Advancements and Future Directions. Radiology. 2023, 308, e230344. [Google Scholar] [CrossRef]
- Willemink, M.J.; Persson, M.; Pourmorteza, A.; Pelc, N.J.; Fleischmann, D. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018, 289, 293–312. [Google Scholar] [CrossRef]
- Flohr, T.; Petersilka, M.; Henning, A.; Ulzheimer, S.; Ferda, J.; Schmidt, B. Photon-Counting CT Review. Phys. Med. 2020, 79, 126–136. [Google Scholar] [CrossRef]
- Persson, M.; Huber, B.; Karlsson, S.; Liu, X.; Chen, H.; Xu, C.; Yveborg, M.; Bornefalk, H.; Danielsson, M. Energy-Resolved CT Imaging with a Photon-Counting Silicon-Strip Detector. Phys. Med. Biol. 2014, 59, 6709–6727. [Google Scholar] [CrossRef]
- Baffour, F.I.; Glazebrook, K.N.; Ferrero, A.; Leng, S.; McCollough, C.H.; Fletcher, J.G.; Rajendran, K. Photon-Counting Detector CT for Musculoskeletal Imaging: A Clinical Perspective. AJR Am. J. Roentgenol. 2023, 220, 551–560. [Google Scholar] [CrossRef]
- McCollough, C.H.; Leng, S.; Yu, L.; Fletcher, J.G. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015, 276, 637–653. [Google Scholar] [CrossRef]
- Greffier, J.; Villani, N.; Defez, D.; Dabli, D.; Si-Mohamed, S. Spectral CT Imaging: Technical Principles of Dual-Energy CT and Multi-Energy Photon-Counting CT. Diagn. Interv. Imaging 2023, 104, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Wellenberg, R.H.H.; Hakvoort, E.T.; Slump, C.H.; Boomsma, M.F.; Maas, M.; Streekstra, G.J. Metal Artifact Reduction Techniques in Musculoskeletal CT-Imaging. Eur. J. Radiol. 2018, 107, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Gong, E.; Pauly, J.M.; Wintermark, M.; Zaharchuk, G. Deep Learning Enables Reduced Gadolinium Dose for Contrast-Enhanced MRI. J Magn Reson Imaging 2018, 289, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Klintström, E.; Ly, A.; Sandborg, M.; Woisetschläger, M.; Tesselaar, E. Image quality of photon-counting detector CT for visualization of maxillofacial anatomy in comparison with energy-integrating detector CT and intraoperative C-arm CBCT. Eur. J. Radiol. 2024, 181, 111785. [Google Scholar] [CrossRef]
- McCollough, C.H.; Rajendran, K.; Leng, S. Standardization and Quantitative Imaging with Photon Counting Detector CT. Investig. Radiol. 2023, 58, 451. [Google Scholar] [CrossRef]
- Grunz, J.-P.; Huflage, H. Photon-Counting Detector CT Applications in Musculoskeletal Radiology. Investig. Radiol. 2025, 60, 198. [Google Scholar] [CrossRef]
- Siegel, M.J.; Ramirez-Giraldo, J.C. Photon counting detector computed tomography in pediatric cardiothoracic CT imaging. Radiol. Adv. 2024, 1, umae012. [Google Scholar] [CrossRef]
- Lachance, C.; Horton, J. Photon-Counting CT: High Resolution, Less Radiation. Canadian Agency for Drugs and Technologies in Health. 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK602525/ (accessed on 20 May 2025).
- Varga-Szemes, A.; Emrich, T. Photon-counting detector CT: A disrupting innovation in medical imaging. Eur. Radiol. Exp. 2025, 9, 38. [Google Scholar] [CrossRef]
- Kogan, F.; Fan, A.P.; Monu, U.; Iagaru, A.; Hargreaves, B.A.; Gold, G.E. Quantitative Imaging of Bone-Cartilage Interactions in ACL-Injured Patients with PET-MRI. Osteoarthr. Cartil. 2018, 26, 790–796. [Google Scholar] [CrossRef]
- MacKay, J.W.; Low, S.B.L.; Smith, T.O.; Toms, A.P.; McCaskie, A.W.; Gilbert, F.J. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr. Cartil. 2021, 29, 783–793. [Google Scholar] [CrossRef]
- Baum, T.; Joseph, G.B.; Karampinos, D.C.; Jungmann, P.M.; Link, T.M.; Bauer, J.S. Cartilage and Meniscal T2 Relaxation Time as Non-Invasive Biomarker for Knee Osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Østergaard, M.; Boesen, M. Imaging in Rheumatoid Arthritis: The Role of Magnetic Resonance Imaging and Computed Tomography. La Radiol. Med. 2019, 124, 1128–1141. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, F.; Burstein, D.; Link, T.M. Quantitative MRI of Cartilage and Bone: Degenerative Changes in Osteoarthritis. NMR Biomed. 2006, 19, 822–854. [Google Scholar] [CrossRef]
- Raynauld, J.P.; Martel-Pelletier, J.; Berthiaume, M.J.; Beaudoin, G.; Choquette, D.; Haraoui, B.; Tannenbaum, H.; Meyer, J.M.; Beary, J.F.; Cline, G.A.; et al. Long Term Evaluation of Disease Progression through the Quantitative Magnetic Resonance Imaging of Symptomatic Knee Osteoarthritis Patients: Correlation with Clinical Symptoms and Radiographic Changes. Arthritis Res. Ther. 2006, 8, R21. [Google Scholar] [CrossRef] [PubMed]
- Wirth, W.; Ladel, C.; Maschek, S.; Wisser, A.; Eckstein, F.; Roemer, F. Quantitative Measurement of Cartilage Morphology in Osteoarthritis: Current Knowledge and Future Directions. Skelet. Radiol. 2023, 52, 2107–2122. [Google Scholar] [CrossRef]
- Gondim Teixeira, P.A.; Omoumi, P.; Blum, A. Four-Dimensional CT of the Musculoskeletal System: Current Applications and Future Perspectives. AJR Am. J. Roentgenol. 2019, 213, 760–770. [Google Scholar]
- Leng, S.; Yu, L.; McCollough, C.H. Dynamic CT Imaging: Principles and Applications in Musculoskeletal Radiology. Semin. Musculoskelet. Radiol. 2021, 25, 213–222. [Google Scholar]
- Shakoor, D.; Demehri, S.; Fritz, J. Dynamic Imaging of the Musculoskeletal System: 4D-CT and Beyond. Radiol. Clin. N. Am. 2020, 58, 779–791. [Google Scholar]
- Ghotbi, E.; Ibad, H.A.; Hadidchi, R.; Baffour, F.; Demehri, S. A Minireview of Four-Dimensional CT and Joint Biomechanics. Osteoarthr. Imaging 2024, 4, 100241. [Google Scholar] [CrossRef]
- Sofka, C.M.; Potter, H.G.; Adler, R.S.; Pavlov, H. Musculoskeletal Imaging Update: Current Applications of Advanced Imaging Techniques to Evaluate the Early and Long-Term Complications of Patients with Orthopedic Implants. HSS J. 2006, 2, 73–77. [Google Scholar] [CrossRef]
- Buzzatti, L.; Keelson, B.; Apperloo, J.; Scheerlinck, T.; Baeyens, J.P.; Van Gompel, G.; Vandemeulebroucke, J.; de Maeseneer, M.; de Mey, J.; Buls, N.; et al. Four-dimensional CT as a valid approach to detect and quantify kinematic changes after selective ankle ligament sectioning. Sci. Rep. 2019, 9, 1291. [Google Scholar] [CrossRef] [PubMed]
- Seah, R.B.; Mak, W.K.; Bryant, K.; Korlaet, M.; Dwyer, A.; Bain, G.I. Four-Dimensional Computed Tomography Scan for Dynamic Elbow Disorders: Recommendations for Clinical Utility. JSES Int. 2021, 6, 182–186. [Google Scholar] [CrossRef]
- Adachi, T.; Kato, Y.; Kiyotomo, D.; Kawamukai, K.; Takazawa, S.; Suzuki, T.; Machida, Y. Accuracy Verification of Four-Dimensional CT Analysis of Knee Joint Movements: A Pilot Study Using a Knee Joint Model and Motion-Capture System. Cureus 2023, 15, e35616. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.T.; Wiens, C.; Kuczynski, M.; Manske, S.; Schneider, P.S. Four-Dimensional Computed Tomography: Musculoskeletal Applications. Can. J. Surg. 2022, 65, E388–E393. [Google Scholar] [CrossRef] [PubMed]
- Paine, A.; Ritchlin, C. Bone Remodeling in Psoriasis and Psoriatic Arthritis: An Update. Curr. Opin. Rheumatol. 2016, 28, 66–75. [Google Scholar] [CrossRef]
- Kowada, T.; Kikuta, J.; Kubo, A.; Ishii, M.; Maeda, H.; Mizukami, S.; Kikuchi, K. In Vivo Fluorescence Imaging of Bone-Resorbing Osteoclasts. J. Am. Chem. Soc. 2011, 133, 17772–17776. [Google Scholar] [CrossRef]
- Pánczél, Á.; Nagy, S.P.; Farkas, J.; Jakus, Z.; Győri, D.S.; Mócsai, A. Fluorescence-Based Real-Time Analysis of Osteoclast Development. Front. Cell Dev. Biol. 2021, 9, 657935. [Google Scholar] [CrossRef]
- Maeda, H.; Kowada, T.; Kikuta, J.; Furuya, M.; Shirazaki, M.; Mizukami, S.; Ishii, M.; Kikuchi, K. Real-Time Intravital Imaging of pH Variation Associated with Osteoclast Activity. Nat. Chem. Biol. 2016, 12, 579–585. [Google Scholar] [CrossRef]
- Weissleder, R.; Ntziachristos, V. Shedding Light onto Live Molecular Imaging. Nat. Med. 2003, 9, 123–128. [Google Scholar] [CrossRef]
- Owen, R.; Reilly, G.C. In Vitro Models of Bone Remodelling and Associated Disorders. Front. Bioeng. Biotechnol. 2018, 6, 134. [Google Scholar] [CrossRef]
- Dubey, J.; Shian, B. Point-of-Care Ultrasound for Musculoskeletal Injection and Clinical Evaluation. Prim. Care 2022, 49, 163–189. [Google Scholar] [CrossRef] [PubMed]
- Waterbrook, A.L.; Adhikari, S.; Stolz, U.; Adrion, C. The Accuracy of Point-of-Care Ultrasound to Diagnose Long Bone Fractures in the ED. Am. J. Emerg. Med. 2013, 31, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Chartier, L.B.; Bosco, L.; Lapointe-Shaw, L.; Chenkin, J. Use of Point-of-Care Ultrasound in Long Bone Fractures: A Systematic Review and Meta-Analysis. CJEM 2017, 19, 131–142. [Google Scholar] [CrossRef]
- .Parri, N.; Crosby, B.J.; Mills, L.; Soucy, Z.; Musolino, A.M.; Da Dalt, L.; Cirilli, A.; Grisotto, L.; Kuppermann, N. Point-of-Care Ultrasound for the Diagnosis of Skull Fractures in Children Younger Than Two Years of Age. J. Pediatr. 2018, 196, 230–236.e2. [Google Scholar] [CrossRef]
- Iacob, R.; Stoicescu, E.R.; Cerbu, S.; Iacob, D.; Amaricai, E.; Catan, L.; Belei, O.; Iacob, E.R. Could Ultrasound Be Used as a Triage Tool in Diagnosing Fractures in Children? A Literature Review. Healthcare 2022, 10, 823. [Google Scholar] [CrossRef]
- Champagne, N.; Eadie, L.; Regan, L.; Wilson, P. The Effectiveness of Ultrasound in the Detection of Fractures in Adults with Suspected Upper or Lower Limb Injury: A Systematic Review and Subgroup Meta-Analysis. BMC Emerg. Med. 2019, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.S.; Adhikari, S.; Dalen, J. Point-of-Care Ultrasound in the Emergency Department: Diagnostic Accuracy for Fractures. Ann. Emerg. Med. 2017, 70, S92. [Google Scholar]
- Taljanovic, M.S.; Gimber, L.H.; Klauser, A.S.; Porrino, J.A.; Chadaz, T.S.; Omar, I.M. Ultrasound in the Evaluation of Musculoskeletal Soft-Tissue Masses. Semin. Roentgenol. 2017, 52, 241–254. [Google Scholar] [CrossRef]
- Aly, A.R.; Rajasekaran, S.; Ashworth, N. Ultrasound-Guided Shoulder Girdle Injections Are More Accurate and More Effective than Landmark-Guided Injections: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2015, 49, 1042–1049. [Google Scholar] [CrossRef]
- Finnoff, J.T.; Hall, M.M.; Adams, E.; Berkoff, D.; Concoff, A.L.; Dexter, W.; Smith, J. American Medical Society for Sports Medicine (AMSSM) Position Statement: Interventional Musculoskeletal Ultrasound in Sports Medicine. PM R 2015, 7, 151–168.e12. [Google Scholar] [CrossRef]
- Vassalou, E.E.; Klontzas, M.E.; Triantafyllou, M.; Kakkos, G.A.; Spanakis, K.; Karantanas, A.H. Ultrasound-Guided Glenohumeral Joint Injection Using a Modified Posterior Approach. Mediterr. J. Rheumatol. 2025, 36, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Arrambide-Garza, F.J.; Guerrero-Zertuche, J.T.; Alvarez-Villalobos, N.A.; Quiroga-Garza, A.; Espinosa-Uribe, A.; Vilchez-Cavazos, F.; Salinas-Alvarez, Y.; Rivera-Perez, J.A.; Elizondo-Omaña, R.E. Rotator Interval vs Posterior Approach Ultrasound-Guided Corticosteroid Injections in Primary Frozen Shoulder: A Meta-Analysis of Randomized Controlled Trials. Arch. Phys. Med. Rehabil. 2024, 105, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Skedros, J.G.; Adondakis, M.G.; Knight, A.N.; Pilkington, M.B. Frequency of Shoulder Corticosteroid Injections for Pain and Stiffness After Shoulder Surgery and Their Potential to Enhance Outcomes with Physiotherapy: A Retrospective Study. Pain Ther. 2017, 6, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Soh, E.; Li, W.; Ong, K.O.; Chen, W.; Bautista, D. Image-Guided versus Blind Corticosteroid Injections in Adults with Shoulder Pain: A Systematic Review. BMC Musculoskelet. Disord. 2011, 12, 137. [Google Scholar] [CrossRef]
- Selame, L.; Walsh, L.; Schwid, M.; Al Jalbout, N.; Gray, M.R.; Dashti, M.; Shokoohi, H. Point-of-Care Ultrasound Unveiling Rotator Cuff Injuries in the Emergency Department: A Case Series. Cureus 2023, 15, e47665. [Google Scholar] [CrossRef]
- Selame, L.A.J.; Matsas, B.; Krauss, B.; Goldsmith, A.J.; Shokoohi, H. A Stepwise Guide to Performing Shoulder Ultrasound: The Acromio-Clavicular Joint, Biceps, Subscapularis, Impingement, Supraspinatus Protocol. Cureus 2021, 13, e18354. [Google Scholar] [CrossRef]
- Adler, R.S. Musculoskeletal Ultrasound: A Technical and Historical Perspective. J. Ultrasonogr. 2023, 23, e172–e187. [Google Scholar] [CrossRef]
- Okoroha, K.R.; Fidai, M.S.; Tramer, J.S.; Davis, K.D.; Kolowich, P.A. Diagnostic Accuracy of Ultrasound for Rotator Cuff Tears. Ultrasonography 2019, 38, 215–220. [Google Scholar] [CrossRef]
- Smith, T.O.; Back, T.; Toms, A.P.; Hing, C.B. Diagnostic Accuracy of Ultrasound for Rotator Cuff Tears in Adults: A Systematic Review. Br. J. Sports Med. 2011, 45, 1036–1040. [Google Scholar] [CrossRef]
- Aminzadeh, B.; Najafi, S.; Moradi, A.; Abbasi, B.; Farrokh, D.; Emadzadeh, M. Evaluation of Diagnostic Precision of Ultrasound for Rotator Cuff Disorders in Patients with Shoulder Pain. Arch. Bone Jt. Surg. 2020, 8, 689–695. [Google Scholar]
- Garnero, P.; Delmas, P.D. Biomarkers in Osteoarthritis. Curr. Opin. Rheumatol. 2003, 15, 641–646. [Google Scholar] [CrossRef]
- Dieppe, P.; Cushnaghan, J.; Young, P.; Kirwan, J. Prediction of the Progression of Joint Space Narrowing in Osteoarthritis of the Knee by Bone Scintigraphy. Ann. Rheum. Dis. 1993, 52, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.Q.; Zhang, J.F.; He, Q.Q.; Wang, Z. Cartilage Oligomeric Matrix Protein, C-Terminal Cross-Linking Telopeptide of Type II Collagen, and Matrix Metalloproteinase-3 as Biomarkers for Knee and Hip Osteoarthritis (OA) Diagnosis: A Systematic Review and Meta-Analysis. Osteoarthr. Cartil. 2019, 27, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Hao, B.; Sun, J.; Yin, M. C-Terminal Cross-Linked Telopeptides of Type II Collagen as Biomarker for Radiological Knee Osteoarthritis: A Meta-Analysis. Cartilage 2018, 11, 512. [Google Scholar] [CrossRef]
- Valdes, A.M.; Spector, T.D. The Clinical Relevance of Genetic Susceptibility to Osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2010, 24, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B.; Jordan, J.M.; Doherty, M.; Wilson, A.G.; Moskowitz, R.; Hochberg, M.; Loeser, R.; Hooper, M.; Renner, J.B.; Crane, M.M.; et al. The Genetics of Generalized Osteoarthritis (GOGO) Study: Study Design and Evaluation of Osteoarthritis Phenotypes. Osteoarthr. Cartil. 2007, 15, 120–127. [Google Scholar] [CrossRef]
- Ratcliffe, A.; Seibel, M.J. Biochemical Markers of Osteoarthritis. Curr. Opin. Rheumatol. 1990, 2, 770–776. [Google Scholar] [CrossRef]
- Lynskey, S.J.; Macaluso, M.J.; Gill, S.D.; McGee, S.L.; Page, R.S. Biomarkers of Osteoarthritis—A Narrative Review on Causal Links with Metabolic Syndrome. Life 2023, 13, 730. [Google Scholar] [CrossRef]
- Kong, S.Y.; Stabler, T.V.; Criscione, L.G.; Elliott, A.L.; Jordan, J.M.; Kraus, V.B. Diurnal variation of serum and urine biomarkers in patients with radiographic knee osteoarthritis. Arthritis Rheum. 2006, 54, 2496–2504. [Google Scholar] [CrossRef]
- Park, Y.M.; Kim, S.J.; Lee, K.J.; Yang, S.S.; Min, B.-H.; Yoon, H.C. Detection of CTX-II in serum and urine to diagnose osteoarthritis by using a fluoro-microbeads guiding chip. Biosens. Bioelectron. 2015, 67, 192–199. [Google Scholar] [CrossRef]
- Lotz, M.; Martel-Pelletier, J.; Christiansen, C.; Brandi, M.-L.; Bruyère, O.; Chapurlat, R.; Collette, J.; Cooper, C.; Giacovelli, G.; Kanis, J.A.; et al. Value of biomarkers in osteoarthritis: Current status and perspectives. Ann. Rheum. Dis. 2013, 72, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B.; Karsdal, M.A. Foundations of Osteoarthritis Section 3: Clinical Monitoring in OA Chapter 15: Biomarkers. Osteoarthr. Cartil. 2021, 30, 1159. [Google Scholar] [CrossRef]
- Vasikaran, S.; Eastell, R.; Bruyère, O.; Foldes, A.J.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trenti, T.; et al. Markers of Bone Turnover for the Prediction of Fracture Risk and Monitoring of Osteoporosis Treatment: A Need for International Reference Standards. Osteoporosis. Int. 2011, 22, 391–420. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Szulc, P. Use of Bone Turnover Markers in Postmenopausal Osteoporosis. Lancet Diabetes Endocrinol. 2017, 5, 908–923. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.C.; Black, D.M.; Garnero, P.; Hochberg, M.; Ott, S.; Orloff, J.; Thompson, D.E.; Ewing, S.K.; Delmas, P.D.; Fracture Intervention Trial Study Group. Change in Bone Turnover and Hip, Non-Spine, and Vertebral Fracture in Alendronate-Treated Women: The Fracture Intervention Trial. J. Bone Miner. Res. 2004, 19, 1250–1258. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Ganti, L. The Treatment and Monitoring of Osteoporosis using Bone Turnover Markers. Orthop. Rev. 2025, 17, 127772. [Google Scholar] [CrossRef]
- Szulc, P.; Delmas, P.D. Biochemical Markers of Bone Turnover in Men. Calcif. Tissue Int. 2001, 69, 229–234. [Google Scholar] [CrossRef]
- Brown, J.P.; Albert, C.; Nassar, B.A.; Adachi, J.D.; Cole, D.; Davison, K.S.; Don-Wauchope, A.C.; Goltzman, D.; Hanley, D.A.; Jamal, S.A.; et al. Bone Turnover Markers in the Management of Postmenopausal Osteoporosis. Clin. Biochem. 2009, 42, 929–942. [Google Scholar] [CrossRef]
- Hochberg, M.C.; Altman, R.D.; April, K.T.; Benkhalti, M.; Guyatt, G.; McGowan, J.; Towheed, T.; Welch, V.; Wells, G.; Tugwell, P. American College of Rheumatology 2012 Recommendations for the Use of Nonpharmacologic and Pharmacologic Therapies in Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res. 2012, 64, 465–474. [Google Scholar] [CrossRef]
- Black, D.M.; Bauer, D.C.; Vittinghoff, E.; Lui, L.Y.; Grauer, A.; Marin, F.; Kruse, K.; Eckert, G.; Cauley, J.A. Treatment-Related Changes in Bone Turnover and Fracture Risk Reduction in Clinical Trials of Antiresorptive Drugs. J. Bone Miner. Res. 2018, 33, 634–642. [Google Scholar]
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Cavalier, E. Bone markers and chronic kidney diseases. J. Lab. Precis. Med. 2018, 3, 62. [Google Scholar] [CrossRef]
- Evangelou, E.; Chapman, K.; Meulenbelt, I.; Karassa, F.B.; Loughlin, J.; Carr, A.; Doherty, M.; Lango Allen, H.; Wallis, G.A.; Valdes, A.M.; et al. Large-Scale Analysis of Association Between GDF5 and FRZB Variants and Osteoarthritis. Arthritis Rheum. 2009, 60, 1710–1721. [Google Scholar] [CrossRef]
- Southam, L.; Rodriguez-Lopez, J.; Wilkins, J.M.; Pombo-Suarez, M.; Snelling, S.; Gomez-Reino, J.J.; Chapman, K.; Loughlin, J. An SNP in the 5’-UTR of GDF5 Is Associated with Osteoarthritis Susceptibility in Europeans. Hum. Mol. Genet. 2007, 16, 2226–2232. [Google Scholar] [CrossRef]
- Egli, R.J.; Southam, L.; Wilkins, J.M.; Lorenzen, I.; Pombo-Suarez, M.; Gonzalez, A.; Carr, A.; Chapman, K.; Loughlin, J. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. Arthritis Rheum. 2009, 60, 2055–2064. [Google Scholar] [CrossRef] [PubMed]
- Syddall, C.M.; Reynard, L.N.; Young, D.A.; Loughlin, J. The Identification of Trans-Acting Factors That Regulate the Expression of GDF5 via the Osteoarthritis Susceptibility SNP rs143383. PLoS Genet. 2013, 9, e1003557. [Google Scholar] [CrossRef]
- Cai, Z.; Long, T.; Zhao, Y.; Lin, R.; Wang, Y. Epigenetic Regulation in Knee Osteoarthritis. Front. Genet. 2022, 13, 942982. [Google Scholar] [CrossRef]
- Zhang, Y.; Jordan, J.M. Epidemiology of Osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef]
- Eckstein, F.; Guermazi, A.; Gold, G.; Duryea, J.; Hellio Le Graverand, M.P.; Wirth, W.; Miller, C.G. Imaging of Cartilage and Bone: Promises and Pitfalls in Clinical Trials of Osteoarthritis. Osteoarthr. Cartil. 2014, 22, 1516–1532. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Mabuchi, A.; Shi, D.; Kubo, T.; Takatori, Y.; Saito, S.; Fujioka, M.; Sudo, A.; Uchida, A.; Yamamoto, S.; et al. A Functional Polymorphism in the 5’ UTR of GDF5 Is Associated with Susceptibility to Osteoarthritis. Nat. Genet. 2007, 39, 529–533. [Google Scholar] [CrossRef]
- Rego-Pérez, I.; Durán-Sotuela, A.; Ramos-Louro, P.; Blanco, F.J. Genetic biomarkers in osteoarthritis: A quick overview. Fac. Rev. 2021, 10, 78. [Google Scholar] [CrossRef]
- Chapman, K.; Takahashi, A.; Meulenbelt, I.; Watson, C.; Rodriguez-Lopez, J.; Egli, R.; Tsezou, A.; Malizos, K.N.; Kloppenburg, M.; Shi, D.; et al. A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5’ UTR of GDF5 with osteoarthritis susceptibility. Hum. Mol. Genet. 2008, 17, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Williams, F.M.K.; Popham, M.; Hart, D.J.; de Schepper, E.; Bierma-Zeinstra, S.; Hofman, A.; Uitterlinden, A.G.; Arden, N.K.; Cooper, C.; Spector, T.D.; et al. GDF5 single-nucleotide polymorphism rs143383 is associated with lumbar disc degeneration in Northern European women. Arthritis Rheum. 2011, 63, 708–712. [Google Scholar] [CrossRef]
- Tsezou, A.; Satra, M.; Oikonomou, P.; Bargiotas, K.; Malizos, K.N. The growth differentiation factor 5 (GDF5) core promoter polymorphism is not associated with knee osteoarthritis in the Greek population. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2008, 26, 136–140. [Google Scholar] [CrossRef]
- Loughlin, J. Genetics of osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 479–483. [Google Scholar] [CrossRef]
- Zengini, E.; Hatzikotoulas, K.; Tachmazidou, I.; Steinberg, J.; Hartwig, F.P.; Southam, L.; Hackinger, S.; Boer, C.G.; Styrkarsdottir, U.; Gilly, A.; et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet. 2018, 50, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Styrkarsdottir, U.; Helgason, H.; Sigurdsson, A.; Norddahl, G.L.; Agustsdottir, A.B.; Reynisdottir, I.; Gudbjartsson, D.F.; Jonasdottir, A.; Sulem, P.; Helgason, A.; et al. Whole-Genome Sequencing Identifies Rare Variants Associated with Osteoarthritis. Nat. Genet. 2017, 49, 1567–1572. [Google Scholar]
- Rousseau, J.C.; Garnero, P. Biological Markers in Osteoarthritis. Bone 2012, 51, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B.; Reed, A.; Soderblom, E.J.; Moseley, M.A.; Hsueh, M.F.; Attur, M.G.; Samuels, J.; Abramson, S.B.; Li, Y.J. Serum Proteomic Panel Validated for Prediction of Knee Osteoarthritis Progression. Osteoarthr. Cartil. Open 2023, 6, 100425. [Google Scholar] [CrossRef]
- Felson, D.T.; Lohmander, L.S. Whither Osteoarthritis Biomarkers? Osteoarthr. Cartil. 2009, 17, 419–422. [Google Scholar] [CrossRef]
- Henrotin, Y. Osteoarthritis in year 2021: Biochemical markers. Osteoarthr. Cartil. 2022, 30, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B.; Burnett, B.; Coindreau, J.; Cottrell, S.; Eyre, D.; Gendreau, M.; Gardiner, J.; Garnero, P.; Hardin, J.; Henrotin, Y.; et al. Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthr. Cartil. 2011, 19, 515–542. [Google Scholar] [CrossRef]
- Attur, M.; Krasnokutsky-Samuels, S.; Samuels, J.; Abramson, S.B. Prognostic Biomarkers in Osteoarthritis. Curr. Opin. Rheumatol. 2013, 25, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Convill, J.G.; Tawy, G.F.; Freemont, A.J.; Biant, L.C. Clinically Relevant Molecular Biomarkers for Use in Human Knee Osteoarthritis: A Systematic Review. Cartilage 2021, 13, 1511S–1531S. [Google Scholar] [CrossRef] [PubMed]
- Lafeber, F.P.; van Spil, W.E. Osteoarthritis Year in Review 2013: Biomarkers. Osteoarthr. Cartil. 2013, 21, 1826–1833. [Google Scholar] [CrossRef]
- Park, S.Y.; Chae, D.S.; Lee, J.S.; Cho, B.K.; Lee, N.Y. Point-of-Care Testing of the MTF1 Osteoarthritis Biomarker Using Phenolphthalein-Soaked Swabs. Biosensors 2023, 13, 535. [Google Scholar] [CrossRef]
- van Spil, W.E.; DeGroot, J.; Lems, W.F.; Oostveen, J.C.; Lafeber, F.P. Serum and Urinary Biochemical Markers for Knee Osteoarthritis: A Systematic Review. Osteoarthr. Cartil. 2010, 18, 1271–1280. [Google Scholar] [CrossRef]
- Cibere, J.; Zhang, H.; Thorne, A.; Wong, H.; Singer, J.; Kopec, J.A.; Guermazi, A.; Peterfy, C.; Nicolaou, S.; Munk, P.L.; et al. Association of Clinical Findings with Pre-Radiographic and Radiographic Knee Osteoarthritis in a Population-Based Study. Arthritis Care Res. 2010, 62, 1691–1698. [Google Scholar] [CrossRef]
- Carrer, H.C.; Zanca, G.G.; Haik, M.N. Clinical Assessment of Chronic Musculoskeletal Pain—A Framework Proposal Based on a Narrative Review of the Literature. Diagnostics 2022, 13, 62. [Google Scholar] [CrossRef]
- Reider, B. The Orthopaedic Physical Examination Second Edition. Available online: https://cintabukumedis.wordpress.com/wp-content/uploads/2014/01/the-orthopaedic-physical-exam.pdf (accessed on 20 May 2025).
- Hoens, A. Orthopaedic Clinical Examination: An Evidence-Based Approach for Physical Therapists. Physiother. Can. 2008, 60, 198. [Google Scholar]
- Stiell, I.G.; Greenberg, G.H.; McKnight, R.D.; Nair, R.C.; McDowell, I.; Worthington, J.R. A study to develop clinical decision rules for the use of radiography in acute ankle injuries. Ann. Emerg. Med. 1992, 21, 384–390. [Google Scholar] [CrossRef]
- Kibler, W.B.; Chandler, T.J.; Uhl, T.; Maddux, R.E. A musculoskeletal approach to the preparticipation physical examination. Preventing injury and improving performance. Am. J. Sports Med. 1989, 17, 525–531. [Google Scholar] [CrossRef]
- Grindel, S. Evidence based medicine in the musculoskeletal examination. Br. J. Sports Med. 1998, 32, 278–279. [Google Scholar]
- Simel, D.L.; Rennie, D. The Rational Clinical Examination: Evidence-Based Clinical Diagnosis|JAMAevidence|McGraw Hill Medical. Mhmedical.com. 2023. Available online: https://jamaevidence.mhmedical.com/book.aspx?bookId=845 (accessed on 20 May 2025).
- Hegedus, E.J.; Goode, A.P.; Cook, C.E.; Michener, L.; Myer, G.D.; Myer, C.A.; Wright, R.W. Which Physical Examination Tests Provide Clinicians with the Most Value When Examining the Shoulder? Update of a Systematic Review. Br. J. Sports Med. 2012, 46, 964–978. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D.H.; Simel, D.L.; Bates, D.W.; Katz, J.N.; Schaffer, J.L. The rational clinical examination. Does this patient have a torn meniscus or ligament of the knee? Value of the physical examination. JAMA 2001, 286, 1610–1620. [Google Scholar] [CrossRef]
- Jette, A.M. The Functional Status Index: Reliability and validity of a self-report functional disability measure. J. Rheumatol. Suppl. 1987, 14 (Suppl. S15), 15–21. [Google Scholar] [PubMed]
- Binkley, J.M.; Stratford, P.W.; Lott, S.A.; Riddle, D.L. The Lower Extremity Functional Scale (LEFS): Scale development, measurement properties, and clinical application. Phys. Ther. 1999, 79, 371–383. [Google Scholar] [PubMed]
- Fairbank, J.C.; Pynsent, P.B. The Oswestry Disability Index. Spine 2000, 25, 2940–2953. [Google Scholar] [CrossRef]
- Hulleck, A.A.; Menoth Mohan, D.; Abdallah, N.; El Rich, M.; Khalaf, K. Present and future of gait assessment in clinical practice: Towards the application of novel trends and technologies. Front. Med. Technol. 2022, 4, 901331. [Google Scholar] [CrossRef]
- Krasnik, R.; Mikov, A.; Ilic, V.; Jorgovanovic, N.; Demesi, D.C. The use of Dynamic Electromyography in Gait analysis. Health MED 2011, 5, 888–893. Available online: https://www.researchgate.net/publication/288723970_The_use_of_Dynamic_Electromyography_in_Gait_analysis (accessed on 20 May 2025).
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef] [PubMed]
- Boekesteijn, R.J.; van Gerven, J.; Geurts, A.C.H.; Smulders, K. Objective gait assessment in individuals with knee osteoarthritis using inertial sensors: A systematic review and meta-analysis. Gait Posture 2022, 98, 109–120. [Google Scholar] [CrossRef]
- Tanpure, S.; Phadnis, A.; Nagda, T.; Rathod, C.; Kothurkar, R.; Chavan, A. Gait variability and biomechanical distinctions in knee osteoarthritis: Insights from a 3D analysis in an adult elderly cohort. J. Orthop. 2023, 49, 172–179. [Google Scholar] [CrossRef]
- Astephen, J.L.; Deluzio, K.J.; Caldwell, G.E.; Dunbar, M.J.; Hubley-Kozey, C.L. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels. J. Biomech. 2008, 41, 868–876. [Google Scholar] [CrossRef]
- Kobsar, D.; Osis, S.T.; Boyd, J.E.; Hettinga, B.A.; Ferber, R. Wearable sensors to predict improvement following an exercise intervention in patients with knee osteoarthritis. J. Neuroeng. Rehabil. 2017, 14, 94. [Google Scholar] [CrossRef]
- Hubley-Kozey, C.L.; Deluzio, K.J.; Landry, S.C.; McNutt, J.S.; Stanish, W.D. Neuromuscular alterations during walking in persons with moderate knee osteoarthritis. J. Electromyogr. Kinesiol. 2006, 16, 365–378. [Google Scholar] [CrossRef]
- Bennell, K.L.; Hunt, M.A.; Wrigley, T.V.; Lim, B.W.; Hinman, R.S. Role of muscle in the genesis and management of knee osteoarthritis. Rheum. Dis. Clin. N. Am. 2008, 34, 731–754. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hu, S.; Zhao, R.; Zhang, Y.; Huang, L.; Shi, J.; Li, P.; Wei, X. Gait analysis of bilateral knee osteoarthritis and its correlation with Western Ontario and McMaster University osteoarthritis index assessment. Medicina 2022, 58, 1419. [Google Scholar] [CrossRef] [PubMed]
- Shan, G. Research on Biomechanics, Motor Control and Learning of Human Movements. Appl. Sci. 2024, 14, 10678. [Google Scholar] [CrossRef]
- Cappozzo, A.; Della Croce, U.; Leardini, A.; Chiari, L. Human movement analysis using stereophotogrammetry. Part 1: Theoretical background. Gait Posture 2005, 21, 186–196. [Google Scholar]
- Disselhorst-Klug, C.; Williams, S. Surface Electromyography Meets Biomechanics: Correct Interpretation of sEMG-Signals in Neuro-Rehabilitation Needs Biomechanical Input. Front. Neurol. 2020, 11, 603550. [Google Scholar] [CrossRef] [PubMed]
- Orlin, M.N.; McPoil, T.G. Plantar Pressure Assessment. Phys. Ther. 2000, 80, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Franettovich Smith, M.M. Immediate Effects of Footwear Design on In-Shoe Plantar Pressures, Impact Forces and Comfort in Women With Plantar Heel Pain. J. Foot Ankle Res. 2025, 18, e70055. [Google Scholar] [CrossRef]
- Perry, J.; Burnfield, J.M. Gait Analysis: Normal and Pathological Function. J. Sports Sci. Med. 2010, 9, 353–354. [Google Scholar] [PubMed]
- van der Linden, M.L. Knee Kinematics in Functional Activities Seven Years After Total Knee Arthroplasty. Clin. Biomech. 2007, 22, 537–542. [Google Scholar] [CrossRef]
- Andriacchi, T.P.; Mündermann, A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr. Opin. Rheumatol. 2006, 18, 514–518. [Google Scholar] [CrossRef]
- Hafer, J.F.; Vitali, R.; Gurchiek, R.; Curtze, C.; Shull, P.; Cain, S.M. Challenges and advances in the use of wearable sensors for lower extremity biomechanics. J. Biomech. 2023, 157, 111714. [Google Scholar] [CrossRef] [PubMed]
- Riglet, L.; Nicol, F.; Leonard, A.; Eby, N.; Claquesin, L.; Orliac, B.; Ornetti, P.; Laroche, D.; Gueugnon, M. The Use of Embedded IMU Insoles to Assess Gait Parameters: A Validation and Test-Retest Reliability Study. Sensors 2023, 23, 8155. [Google Scholar] [CrossRef]
- Bangaru, S.S.; Wang, C.; Aghazadeh, F. Data Quality and Reliability Assessment of Wearable EMG and IMU Sensor for Construction Activity Recognition. Sensors 2020, 20, 5264. [Google Scholar] [CrossRef]
- Shirazi, S.Y.; Welzel, J.; Jeung, S.; Godbersen, L. A Standardized Framework for Sensor Placement in Human Motion Capture and Wearable Applications. arXiv 2024, arXiv:2412.21159. [Google Scholar]
- Tan, T.; Chiasson, D.P.; Hu, H.; Shull, P.B. Influence of IMU position and orientation placement errors on ground reaction force estimation. J. Biomech. 2019, 97, 109416. [Google Scholar] [CrossRef] [PubMed]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef]
- Scalona, E.; Di Marco, R.; Castelli, E.; Desloovere, K.; Van Der Krogt, M.; Cappa, P.; Rossi, S. Inter-laboratory and inter-operator reproducibility in gait analysis measurements in pediatric subjects. Int. Biomech. 2019, 6, 19–33. [Google Scholar] [CrossRef]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation Study of WOMAC: A Health Status Instrument for Measuring Clinically Important Patient Relevant Outcomes to Antirheumatic Drug Therapy. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar] [PubMed]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual Framework and Item Selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Roland, M.; Morris, R. A Study of the Natural History of Back Pain. Part I: Development of a Reliable and Sensitive Measure of Disability in Low-Back Pain. Spine 1983, 8, 141–144. [Google Scholar] [CrossRef]
- Hudak, P.L.; Amadio, P.C.; Bombardier, C. Development of an Upper Extremity Outcome Measure: The DASH (Disabilities of the Arm, Shoulder, and Hand). Am. J. Ind. Med. 1996, 29, 602–608. [Google Scholar] [CrossRef]
- EuroQol Group. EuroQol—A New Facility for the Measurement of Health-Related Quality of Life. Health Policy 1990, 16, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Mokkink, L.B.; Terwee, C.B.; Patrick, D.L.; Alonso, J.; Stratford, P.W.; Knol, D.L.; Bouter, L.M.; de Vet, H.C. The COSMIN Checklist for Assessing the Methodological Quality of Studies on Measurement Properties of Health-Related Patient-Reported Outcomes. Qual. Life Res. 2010, 19, 539–549. [Google Scholar] [CrossRef]
- Terwee, C.B.; Bot, S.D.; de Boer, M.R.; van der Windt, D.A.; Knol, D.L.; Dekker, J.; Bouter, L.M.; de Vet, H.C. Quality Criteria Were Proposed for Measurement Properties of Health Status Questionnaires. J. Clin. Epidemiol. 2007, 60, 34–42. [Google Scholar] [CrossRef]
- Roos, E.M.; Roos, H.P.; Lohmander, L.S.; Ekdahl, C.; Beynnon, B.D. Knee Injury and Osteoarthritis Outcome Score (KOOS)—Development of a Self-Administered Outcome Measure. J. Orthop. Sports Phys. Ther. 1998, 28, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Copay, A.G.; Subach, B.R.; Glassman, S.D.; Polly, D.W., Jr.; Schuler, T.C. Understanding the minimum clinically important difference: A review of concepts and methods. Spine J. 2007, 7, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.F.; Aaronson, N.K.; Choucair, A.K.; Elliott, T.E.; Greenhalgh, J.; Halyard, M.Y.; Hess, R.; Miller, D.M.; Reeve, B.B.; Santana, M. Implementing patient-reported outcomes assessment in clinical practice: a review of the options and considerations. Qual. Life Res. 2012, 21, 1305–1314. [Google Scholar] [CrossRef]
- Basch, E.; Deal, A.M.; Kris, M.G.; Scher, H.I.; Hudis, C.A.; Sabbatini, P.; Rogak, L.; Bennett, A.V.; Dueck, A.C.; Atkinson, T.M.; et al. Symptom Monitoring with Patient-Reported Outcomes During Routine Cancer Treatment. J. Clin. Oncol. 2016, 34, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.V.; Jensen, R.E.; Basch, E. Electronic Patient-Reported Outcome Systems in Oncology Clinical Practice. CA Cancer J. Clin. 2012, 62, 337–347. [Google Scholar] [CrossRef]
- Velikova, G.; Booth, L.; Smith, A.B.; Brown, P.M.; Lynch, P.; Brown, J.M.; Selby, P.J. Measuring Quality of Life in Routine Oncology Practice Improves Communication and Patient Well-Being. J. Clin. Oncol. 2004, 22, 714–724. [Google Scholar] [CrossRef]
- Koh, D.M.; Papanikolaou, N.; Bick, U.; Illing, R.; Kahn, C.E., Jr.; Kalpathi-Cramer, J.; Matos, C.; Martí-Bonmatí, L.; Miles, A.; Mun, S.K.; et al. Artificial intelligence and machine learning in cancer imaging. Commun. Med. 2022, 2, 133. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Botnari, A.; Kadar, M.; Patrascu, J.M. A Comprehensive Evaluation of Deep Learning Models on Knee MRIs for the Diagnosis and Classification of Meniscal Tears: A Systematic Review and Meta-Analysis. Diagnostics 2024, 14, 1090. [Google Scholar] [CrossRef]
- Fritz, B.; Marbach, G.; Civardi, F.; Fucentese, S.F.; Pfirrmann, C.W.A. Deep convolutional neural network-based detection of meniscus tears: Comparison with radiologists and surgery as standard of reference. Skelet. Radiol. 2020, 49, 1207–1217, Published correction in Skeletal Radiol. 2020, 49, 1219. https://doi.org/10.1007/s00256-020-03458-0. [Google Scholar] [CrossRef]
- Roblot, V.; Giret, Y.; Bou Antoun, M.; Morillot, C.; Chassin, X.; Cotten, A.; Zerbib, J.; Fournier, L. Artificial intelligence to diagnose meniscus tears on MRI. Diagn. Interv. Imaging 2019, 100, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef]
- Ramadanov, N.; John, P.; Hable, R.; Schreyer, A.G.; Shabo, S.; Prill, R.; Salzmann, M. Artificial intelligence-guided distal radius fracture detection on plain radiographs in comparison with human raters. J. Orthop. Surg. Res. 2025, 20, 468. [Google Scholar] [CrossRef]
- Ramadanov, N.; Lettner, J.; Hable, R.; Hakam, H.T.; Prill, R.; Dimitrov, D.; Becker, R.; Schreyer, A.G.; Salzmann, M. Artificial Intelligence-Guided Assessment of Femoral Neck Fractures in Radiographs: A Systematic Review and Multilevel Meta-Analysis. Orthop. Surg. 2025, 17, 14250. [Google Scholar] [CrossRef] [PubMed]
- Salzmann, M.; Hassan Tarek, H.; Prill, R.; Becker, R.; Schreyer, A.G.; Hable, R.; Ostojic, M.; Ramadanov, N. Artificial intelligence-based assessment of leg axis parameters shows excellent agreement with human raters: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, J.; Meadows, K. The effectiveness of the use of patient-based measures of health in routine practice in improving the process and outcomes of patient care: a literature review. J. Eval. Clin. Pract. 1999, 5, 401–416. [Google Scholar] [CrossRef]
- Debs, P.; Fayad, L.M. The promise and limitations of artificial intelligence in musculoskeletal imaging. Front. Radiol. 2023, 3, 1242902. [Google Scholar] [CrossRef]
- Jha, A.K.; Bradshaw, T.J.; Buvat, I.; Hatt, M.; Kc, P.; Liu, C.; Obuchowski, N.F.; Saboury, B.; Slomka, P.J.; Sunderland, J.J.; et al. Nuclear Medicine and Artificial Intelligence: Best Practices for Evaluation (the RELAINCE Guidelines). J. Nucl. Med. 2022, 63, 1288–1299. [Google Scholar] [CrossRef]
- Mello-Thoms, C.; Mello, C.A.B. Clinical applications of artificial intelligence in radiology. Br. J. Radiol. 2023, 96, 20221031. [Google Scholar] [CrossRef]
- Güngör, E.; Vehbi, H.; Cansın, A.; Ertan, M.B. Achieving high accuracy in meniscus tear detection using advanced deep learning models with a relatively small data set. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 450–456. [Google Scholar] [CrossRef]
- Zhao, Y.; Coppola, A.; Karamchandani, U.; Amiras, D.; Gupte, C.M. Artificial intelligence applied to magnetic resonance imaging reliably detects the presence, but not the location, of meniscus tears: a systematic review and meta-analysis. Eur. Radiol. 2024, 34, 5954–5964. [Google Scholar] [CrossRef]
- Fritz, B.; Fritz, J. Artificial intelligence for MRI diagnosis of joints: a scoping review of the current state-of-the-art of deep learning-based approaches. Skeletal. Radiol. 2022, 51, 315–329. [Google Scholar] [CrossRef]
- Siouras, A.; Moustakidis, S.; Giannakidis, A.; Chalatsis, G.; Liampas, I.; Vlychou, M.; Hantes, M.; Tasoulis, S.; Tsaopoulos, D. Knee Injury Detection Using Deep Learning on MRI Studies: A Systematic Review. Diagnostics 2022, 12, 537. [Google Scholar] [CrossRef] [PubMed]
- Behr, J.; Nich, C.; D’Assignies, G.; Zavastin, C.; Zille, P.; Herpe, G.; Triki, R.; Grob, C.; Pujol, N. Deep learning-assisted detection of meniscus and anterior cruciate ligament combined tears in adult knee magnetic resonance imaging: a crossover study with arthroscopy correlation. Int. Orthop. 2025, 49, 1689–1697. [Google Scholar] [CrossRef]
- Park, K.B.; Kim, M.S.; Yoon, D.K.; Jeon, Y.D. Clinical validation of a deep learning-based approach for preoperative decision-making in implant size for total knee arthroplasty. J. Orthop. Surg. Res. 2024, 19, 637. [Google Scholar] [CrossRef] [PubMed]
- Choy, G.; Khalilzadeh, O.; Michalski, M.; Do, S.; Samir, A.E.; Pianykh, O.S.; Geis, J.R.; Pandharipande, P.V.; Brink, J.A.; Dreyer, K.J. Current Applications and Future Impact of Machine Learning in Radiology. Radiology 2018, 288, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Zaharchuk, G.; Gong, E.; Wintermark, M.; Rubin, D.; Langlotz, C.P. Deep Learning in Neuroradiology. AJNR Am. J. Neuroradiol. 2018, 39, 1396–1405. [Google Scholar]
- Prevedello, L.M.; Erdal, B.S.; Ryu, J.L.; Little, K.J.; Demirer, M.; Qian, S.; White, R.D. Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging. Radiology 2017, 285, 923–931. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Chavosh Nejad, M.; Vestergaard Matthiesen, R.; Dukovska-Popovska, I.; Jakobsen, T.; Johansen, J. Machine learning for predicting duration of surgery and length of stay: a literature review on joint arthroplasty. Int. J. Med. Inform. 2024, 192, 105631. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Whitaker, B.; Mouat-Hunter, A.; McCrory, B. Predicting length of stay using machine learning for total joint replacements performed at a rural community hospital. PLoS ONE 2022, 17, e0277479. [Google Scholar] [CrossRef]
- Ocampo Osorio, F.; Alzate-Ricaurte, S.; Mejia Vallecilla, T.E.; Cruz-Suarez, G.A. The anesthesiologist’s guide to critically assessing machine learning research: a narrative review. BMC Anesthesiol. 2024, 24, 452. [Google Scholar] [CrossRef]
- Arora, A.; Lituiev, D.; Jain, D.; Hadley, D.; Butte, A.J.; Berven, S.; Peterson, T.A. Predictive Models for Length of Stay and Discharge Disposition in Elective Spine Surgery: Development, Validation, and Comparison to the ACS NSQIP Risk Calculator. Spine 2023, 48, E1–E13. [Google Scholar] [CrossRef]
- Ong, P.H.; Pua, Y.H. A Prediction Model for Length of Stay after Total and Unicompartmental Knee Replacement. Bone Joint J. 2013, 95, 1490–1496. [Google Scholar] [CrossRef]
- Abbas, A.; Mosseri, J.; Lex, J.R.; Toor, J.; Ravi, B.; Khalil, E.B.; Whyne, C. Machine Learning Using Preoperative Patient Factors Can Predict Duration of Surgery and Length of Stay for Total Knee Arthroplasty. Int. J. Med. Inform. 2022, 158, 104670. [Google Scholar] [CrossRef]
- Chirongoma, T.; Cabrera, A.; Bouterse, A.; Chung, D.; Patton, D.; Essilfie, A. Predicting Prolonged Length of Hospital Stay and Identifying Risk Factors Following Total Ankle Arthroplasty: A Supervised Machine Learning Methodology. J. Foot Ankle Surg. 2024, 63, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Van Nest, D.S.; Li, W.T.; Kozick, Z.; Smith, E.B.; Hozack, W.J.; Courtney, P.M. Dual Mobility and Conventional Bearings Have Comparably Low Dislocation Rates for Anterior-Based Approaches in Total Hip Arthroplasty. J. Arthroplast. 2021, 36, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Bzdok, D.; Altman, N.; Krzywinski, M. Machine Learning: Supervised Methods. Nat. Methods 2018, 15, 5–6. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Middleton, B.; Sittig, D.F.; Wright, A. Clinical Decision Support: A 25-Year Retrospective and Vision for the Future. J. Am. Med. Inform. Assoc. 2016, 23, e125–e131. [Google Scholar]
- Bates, D.W.; Kuperman, G.J.; Wang, S.; Gandhi, T.; Kittler, A.; Volk, L.; Spurr, C.; Khorasani, R.; Tanasijevic, M.; Middleton, B. Ten Commandments for Effective Clinical Decision Support. J. Am. Med. Inform. Assoc. 2003, 10, 523–530. [Google Scholar] [CrossRef]
- Kawamoto, K.; Houlihan, C.A.; Balas, E.A.; Lobach, D.F. Improving Clinical Practice Using Evidence-Based Guidelines Through Clinical Decision Support. J. Am. Med. Inform. Assoc. 2005, 12, 191–198. [Google Scholar]
- Blackmore, C.C.; Mecklenburg, R.S.; Kaplan, G.S. Effectiveness of Clinical Decision Support in Controlling Inappropriate Imaging. J. Am. Coll. Radiol. 2011, 8, 19–25. [Google Scholar] [CrossRef]
- Bright, T.J.; Wong, A.; Dhurjati, R.; Bristow, E.; Bastian, L.; Coeytaux, R.; Samsa, G.; Hasselblad, V.; Williams, J.W.; Musty, M.D.; et al. Effect of Clinical Decision-Support Systems: A Systematic Review. Ann. Intern. Med. 2012, 157, 29–43. [Google Scholar] [CrossRef]
- Ghosn, L.; Boutron, I.; Ravaud, P. Consolidated Standards of Reporting Trials (CONSORT) Extensions Covered Most Types of Randomized Controlled Trials, but the Potential Workload for Authors Was High. J. Clin. Epidemiol. 2019, 113, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Heselmans, A.; Delvaux, N.; Laenen, A.; Van de Velde, S.; Ramaekers, D.; Kunnamo, I.; Aertgeerts, B. Computerized Clinical Decision Support System for Diabetes in Primary Care Does Not Improve Quality of Care: A Cluster-Randomized Controlled Trial. Implement. Sci. 2020, 15, 5. [Google Scholar] [CrossRef]
- Horn, J.R.; Gumpper, K.F.; Hardy, J.; McDonnell, P.; Phansalkar, S.; Reilly, C. Clinical Decision Support for Drug–Drug Interactions: Improvement Needed. Portal de Periódicos da CAPES. 2013. Available online: https://www.periodicos.capes.gov.br/index.php/acervo/buscador.html?task=detalhes&id=W2080038094 (accessed on 20 May 2025).
- Sittig, D.F.; Wright, A.; Osheroff, J.A.; Middleton, B.; Teich, J.M.; Ash, J.S.; Campbell, E.; Bates, D.W. Grand challenges in clinical decision support. J. Biomed. Inform. 2008, 41, 387–392. [Google Scholar] [CrossRef]
- Gross, D.P.; Armijo-Olivo, S.; Shaw, W.S.; Williams-Whitt, K.; Shaw, N.T.; Hartvigsen, J.; Qin, Z.; Ha, C.; Woodhouse, L.J.; Steenstra, I.A. Clinical Decision Support Tools for Selecting Interventions for Patients with Disabling Musculoskeletal Disorders: A Scoping Review. J. Occup. Rehabil. 2016, 26, 286–318. [Google Scholar] [CrossRef]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Spini, G.; Mancini, E.; Attema, T.; Abspoel, M.; de Gier, J.; Fehr, S.; Veugen, T.; van Heesch, M.; Worm, D.; De Luca, A.; et al. New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment. J. Med. Syst. 2022, 46, 84. [Google Scholar] [CrossRef]
- Bradway, M.; Carrion, C.; Vallespin, B.; Saadatfard, O.; Puigdomenech, E.; Espallargues, M.; Kotzeva, A. mHealth Assessment: Conceptualization of a Global Framework. JMIR Mhealth Uhealth 2017, 5, e60. [Google Scholar] [CrossRef]
- Arigo, D.; Jake-Schoffman, D.E.; Wolin, K.; Beckjord, E.; Hekler, E.B.; Pagoto, S.L. The History and Future of Digital Health in Behavioral Medicine. Transl. Behav. Med. 2019, 9, 1133–1143. [Google Scholar] [CrossRef]
- Guermazi, A.; Omoumi, P.; Tordjman, M.; Fritz, J.; Kijowski, R.; Regnard, N.E.; Carrino, J.; Kahn, C.E., Jr.; Knoll, F.; Rueckert, D.; et al. How AI May Transform Musculoskeletal Imaging. Radiology 2024, 310, e230764, Published correction appears in Radiology 2024, 310, e249002. https://doi.org/10.1148/radiol.249002. [Google Scholar] [CrossRef] [PubMed]
- Roemer, F.W.; Demehri, S.; Omoumi, P.; Link, T.M.; Kijowski, R.; Fritz, J.; Kwee, T.C.; Hayashi, D.; Guermazi, A. State of the Art: Imaging of Osteoarthritis—Revisited 2020. Radiology 2020, 296, 5–21. [Google Scholar] [CrossRef]
- Peterfy, C.G.; Schneider, E.; Nevitt, M. The Osteoarthritis Initiative: Report on the Design Rationale for the Magnetic Resonance Imaging Protocol. Osteoarthr. Cartil. 2008, 16, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Schini, M.; Vilaca, T.; Gossiel, F.; Salam, S.; Eastell, R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr. Rev. 2023, 44, 417–473. [Google Scholar] [CrossRef]
- Wheater, G.; Elshahaly, M.; Tuck, S.P.; Datta, H.K.; van Laar, J.M. The Clinical Utility of Bone Marker Measurements in Osteoporosis. J. Transl. Med. 2013, 11, 201. [Google Scholar] [CrossRef]
- Taylor, A.K.; Lueken, S.A.; Libanati, C.; Baylink, D.J. Biochemical markers of bone turnover for the clinical assessment of bone metabolism. Rheum. Dis. Clin. N. Am. 1994, 20, 589–607. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.; et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. Radiology 2015, 277, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Fryback, D.G.; Thornbury, J.R. The Efficacy of Diagnostic Imaging. Med. Decis. Mak. 1991, 11, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Antony, B.; Singh, A. Imaging and Biochemical Markers for Osteoarthritis. Diagnostics 2021, 11, 1205. [Google Scholar] [CrossRef]
- Braun, H.J.; Gold, G.E. Diagnosis of Osteoarthritis: Imaging. Bone 2012, 51, 278–288. [Google Scholar] [CrossRef]
- Wenham, C.Y.; Conaghan, P.G. The Role of Synovitis in Osteoarthritis Pathogenesis. Ther. Adv. Musculoskelet. Dis. 2010, 2, 349–359. [Google Scholar] [CrossRef]
- Hunter, D.J.; Zhang, W.; Conaghan, P.G.; Hirko, K.; Menashe, L.; Li, L.; Reichmann, W.M.; Losina, E. Systematic Review of the Concurrent and Predictive Validity of MRI Biomarkers in OA. Osteoarthr. Cartil. 2011, 19, 557–588. [Google Scholar] [CrossRef] [PubMed]
- Kijowski, R.; Liu, F.; Caliva, F.; Pedoia, V. Deep Learning for Lesion Detection, Progression, and Prediction of Musculoskeletal Disease. J. Magn. Reson. Imaging 2020, 52, 1607–1619. [Google Scholar] [CrossRef]
- Norman, B.; Pedoia, V.; Majumdar, S. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry. Radiology 2018, 288, 177–185. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, Z.; Jang, H.; Samsonov, A.; Zhao, G.; Kijowski, R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn. Reson. Med. 2018, 79, 2379–2391. [Google Scholar] [CrossRef]
- Larson, D.B.; Magnus, D.C.; Lungren, M.P.; Shah, N.H.; Langlotz, C.P. Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence: A Proposed Framework. Radiology 2020, 295, 675–682. [Google Scholar] [CrossRef]
- Kaushal, A.; Altman, R.; Langlotz, C. Geographic Distribution of US Cohorts Used to Train Deep Learning Algorithms. JAMA 2020, 324, 1212–1214. [Google Scholar] [CrossRef] [PubMed]
- Mollura, D.J.; Azene, E.M.; Starikovsky, A.; Thelwell, A.; Iosifescu, S.; Kimble, C.; Polin, A.; Garra, B.S.; DeStigter, K.K.; Short, B.; et al. White Paper Report of the RAD-AID Conference on International Radiology for Developing Countries. J. Am. Coll. Radiol. 2010, 7, 827–835. [Google Scholar] [CrossRef]
- Welch, H.G.; Black, W.C. Overdiagnosis in Cancer. J. Natl. Cancer Inst. 2010, 102, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Jarvik, J.G.; Hollingworth, W.; Martin, B.; Emerson, S.S.; Gray, D.T.; Overman, S.; Robinson, D.; Staiger, T.; Wessbecher, F.; Sullivan, S.D.; et al. Rapid Magnetic Resonance Imaging vs Radiographs for Patients with Low Back Pain: A Randomized Controlled Trial. JAMA 2003, 289, 2810–2818. [Google Scholar] [CrossRef]
- Brinjikji, W.; Luetmer, P.H.; Comstock, B.; Bresnahan, B.W.; Chen, L.E.; Deyo, R.A.; Halabi, S.; Turner, J.A.; Avins, A.L.; James, K.; et al. Systematic Literature Review of Imaging Features of Spinal Degeneration in Asymptomatic Populations. AJNR Am. J. Neuroradiol. 2015, 36, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Fu, R.; Carrino, J.A.; Deyo, R.A. Imaging Strategies for Low-Back Pain: Systematic Review and Meta-Analysis. Lancet 2009, 373, 463–472. [Google Scholar]
- Pandharipande, P.V.; Gazelle, G.S. Comparative effectiveness research: What it means for radiology. Radiology 2009, 253, 600–605. [Google Scholar] [CrossRef]
- Chou, R.; Qaseem, A.; Owens, D.K.; Shekelle, P.; Clinical Guidelines Committee of the American College of Physicians. Diagnostic imaging for low back pain: Advice for high-value health care from the American College of Physicians. Ann. Intern. Med. 2011, 154, 181–189, Erratum in: Ann. Intern. Med. 2012, 156 Pt 1, 71. [Google Scholar] [CrossRef] [PubMed]
- Lohmander, L.S.; Roos, E.M. The Evidence Base for Orthopaedics and Sports Medicine. BMJ 2015, 350, g7835. [Google Scholar] [CrossRef]
- Zhang, W.; Moskowitz, R.W.; Nuki, G.; Abramson, S.; Altman, R.D.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; et al. OARSI Recommendations for the Management of Hip and Knee Osteoarthritis, Part II: OARSI Evidence-Based, Expert Consensus Guidelines. Osteoarthr. Cartil. 2008, 16, 137–162. [Google Scholar] [CrossRef]
- Rosen, J.; Niazi, F.; Dysart, S. Cost-Effectiveness of Treating Early to Moderate Stage Knee Osteoarthritis with Intra-Articular Hyaluronic Acid Compared to Conservative Interventions. Adv. Ther. 2020, 37, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Losina, E.; Guermazi, A.; Burstein, D.; Lassere, M.N.; Kraus, V. A Pathway and Approach to Biomarker Validation and Qualification for Osteoarthritis Clinical Trials. Curr. Drug Targets 2010, 11, 536–545. [Google Scholar] [CrossRef]
- Karsdal, M.A.; Christiansen, C.; Ladel, C.; Henriksen, K.; Kraus, V.B.; Bay-Jensen, A.C. Osteoarthritis—A Case for Personalized Health Care? Osteoarthr. Cartil. 2014, 22, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Mosher, T.J.; Dardzinski, B.J.; Smith, M.B. Human articular cartilage: Influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. Radiology 2000, 214, 259–266. [Google Scholar] [CrossRef]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef]
- Sharpe, R.E.; Nazarian, L.N.; Parker, L.; Rao, V.M.; Levin, D.C. Dramatically Increased Musculoskeletal Ultrasound Utilization from 2000 to 2009. J. Am. Coll. Radiol. 2012, 9, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Garnero, P.; Piperno, M.; Gineyts, E.; Christgau, S.; Delmas, P.D.; Vignon, E. Cross-Sectional Evaluation of Biochemical Markers of Bone, Cartilage, and Synovial Tissue Metabolism in Patients with Knee Osteoarthritis. Ann. Rheum. Dis. 2001, 60, 619–626. [Google Scholar] [CrossRef]
- Chapman, K.; Valdes, A.M. Genetic Factors in OA Pathogenesis. Bone 2012, 51, 258–264. [Google Scholar] [CrossRef]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Cabitza, F.; Locoro, A.; Banfi, G. Machine Learning in Orthopedics: A Literature Review. Front. Bioeng. Biotechnol. 2018, 6, 75. [Google Scholar] [CrossRef]
- Jaspers, M.W.; Smeulers, M.; Vermeulen, H.; Peute, L.W. Effects of Clinical Decision-Support Systems on Practitioner Performance and Patient Outcomes. J. Am. Med. Inform. Assoc. 2011, 18, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Steinhubl, S.R.; Muse, E.D.; Topol, E.J. The Emerging Field of Mobile Health. Sci. Transl. Med. 2015, 7, 283rv3. [Google Scholar] [CrossRef]
- Conaghan, P.G.; Kloppenburg, M.; Schett, G.; Bijlsma, J.W. Osteoarthritis Research Priorities: A Report from a EULAR Ad Hoc Expert Committee. Ann. Rheum. Dis. 2014, 73, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.; Brandt, K.; Hochberg, M.; Moskowitz, R.; Bellamy, N.; Bloch, D.A.; Buckwalter, J.; Dougados, M.; Ehrlich, G.; Lequesne, M.; et al. Design and conduct of clinical trials in patients with osteoarthritis: Recommendations from a task force of the Osteoarthritis Research Society. Results from a workshop. Osteoarthr. Cartil. 1996, 4, 217–243. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Anderson, J.J.; Boers, M.; Bombardier, C.; Chernoff, M.; Fried, B.; Furst, D.; Goldsmith, C.; Kieszak, S.; Lightfoot, R.; et al. The American College of Rheumatology Preliminary Core Set of Disease Activity Measures for Rheumatoid Arthritis Clinical Trials. Arthritis Rheum. 1993, 36, 729–740. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological Assessment of Osteo-Arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef]
Imaging Modality | Diagnostic Accuracy | Implementation Cost | Availability |
---|---|---|---|
MRI | Excellent for soft tissue characterization, early cartilage degeneration, and quantitative assessment of extracellular matrix changes using advanced sequences. | High (equipment, operation, and maintenance) | Widely available in tertiary hospitals and outpatient imaging centers. |
CT | Superior for high-resolution bone imaging, fracture assessment, and cortical abnormalities; limited for soft tissue or early cartilage degeneration. | Moderate to high (depends on detector type; PCD-CT higher) | Common in hospitals; PCD-CT systems limited to academic/tertiary care centers due to high cost. |
4D-CT | High accuracy for in vivo joint kinematics and dynamic assessment of joint motion (e.g., impingement, instability); validated against optical tracking systems. | Very high (advanced acquisition hardware and processing) | Limited to research institutions or specialized centers with advanced motion analysis capability. |
POCUS | Moderate to high sensitivity for fracture detection; effective for soft tissue assessment (e.g., rotator cuff tears) and image-guided injections; operator-dependent. | Low (portable, minimal infrastructure required) | Widely accessible in emergency departments, sports medicine, and outpatient clinics. |
Biomarker | Biological Role | Clinical Context | Strengths | Limitations | Clinical Readiness |
---|---|---|---|---|---|
CTX-II (C-terminal cross-linked telopeptides of type II collagen) | Marker of cartilage degradation (Type II collagen breakdown) | Primarily studied in knee osteoarthritis |
|
| Under investigation; not yet included in guidelines for OA diagnosis or management |
PINP (Procollagen type I N-terminal propeptide) | Marker of bone formation (osteoblast activity and new collagen synthesis) | Monitoring therapy response in osteoporosis |
|
| Established in guidelines for osteoporosis monitoring and treatment response |
rs143383 (SNP in GDF5) | Genetic variant associated with reduced GDF5 expression; modulated by DNA methylation | Associated with OA susceptibility (especially knee and hip OA) |
|
| Experimental; not used in clinical practice; potential role in future risk panels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Marla, K.; Sporn, K.; Paladugu, P.; Khanna, A.; Gowda, C.; Ngo, A.; Waisberg, E.; Jagadeesan, R.; Tavakkoli, A. Emerging Diagnostic Approaches for Musculoskeletal Disorders: Advances in Imaging, Biomarkers, and Clinical Assessment. Diagnostics 2025, 15, 1648. https://doi.org/10.3390/diagnostics15131648
Kumar R, Marla K, Sporn K, Paladugu P, Khanna A, Gowda C, Ngo A, Waisberg E, Jagadeesan R, Tavakkoli A. Emerging Diagnostic Approaches for Musculoskeletal Disorders: Advances in Imaging, Biomarkers, and Clinical Assessment. Diagnostics. 2025; 15(13):1648. https://doi.org/10.3390/diagnostics15131648
Chicago/Turabian StyleKumar, Rahul, Kiran Marla, Kyle Sporn, Phani Paladugu, Akshay Khanna, Chirag Gowda, Alex Ngo, Ethan Waisberg, Ram Jagadeesan, and Alireza Tavakkoli. 2025. "Emerging Diagnostic Approaches for Musculoskeletal Disorders: Advances in Imaging, Biomarkers, and Clinical Assessment" Diagnostics 15, no. 13: 1648. https://doi.org/10.3390/diagnostics15131648
APA StyleKumar, R., Marla, K., Sporn, K., Paladugu, P., Khanna, A., Gowda, C., Ngo, A., Waisberg, E., Jagadeesan, R., & Tavakkoli, A. (2025). Emerging Diagnostic Approaches for Musculoskeletal Disorders: Advances in Imaging, Biomarkers, and Clinical Assessment. Diagnostics, 15(13), 1648. https://doi.org/10.3390/diagnostics15131648