Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (809)

Search Parameters:
Keywords = permissible limit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1316 KiB  
Article
The Mobility and Distribution of Lead and Cadmium in the Ecosystems of Two Lakes in Poland and Their Effect on Humans and the Environment
by Monika Rajkowska-Myśliwiec, Mikołaj Protasowicki and Agata Witczak
Water 2025, 17(15), 2255; https://doi.org/10.3390/w17152255 - 29 Jul 2025
Viewed by 236
Abstract
The presence of lead (Pb) and cadmium (Cd) can have considerable effects on the environment and on humans. The present study examines their levels in two lakes with different trophic levels located in northwestern Poland; their concentrations were determined in water and the [...] Read more.
The presence of lead (Pb) and cadmium (Cd) can have considerable effects on the environment and on humans. The present study examines their levels in two lakes with different trophic levels located in northwestern Poland; their concentrations were determined in water and the bottom sediments, in common reed and in the organs of pike, bream and roach. The work also evaluates Pb and Cd bioavailability in bottom sediments, their potential for biomagnification, their bioaccumulation in the food chain and risk to human consumers. Metal concentrations were determined by graphite furnace atomic absorption spectrometry (GFAAS). The geochemical fractions of the metals were isolated by sequential extraction. Both Pb and Cd demonstrated low bioavailability, with the carbonate fraction playing a key role in their bioconversion. The concentrations of Pb and Cd in some organs and tissue types of fish and reeds correlated with their levels in water and sediments. No biomagnification was observed between the studied fish species. Calculations based on BMDL, TWI and THQ concentrations found Pb and Cd levels in the edible parts of fish to be within permissible limits and not to pose any threat to consumer health. Full article
Show Figures

Figure 1

21 pages, 3547 KiB  
Article
Enzymatic Degumming of Soybean Oil for Raw Material Preparation in BioFuel Production
by Sviatoslav Polovkovych, Andriy Karkhut, Volodymyr Gunka, Yaroslav Blikharskyy, Roman Nebesnyi, Semen Khomyak, Jacek Selejdak and Zinoviy Blikharskyy
Appl. Sci. 2025, 15(15), 8371; https://doi.org/10.3390/app15158371 - 28 Jul 2025
Viewed by 179
Abstract
The paper investigates the process of degumming substandard soybean oil using an enzyme complex of phospholipases to prepare it as a feedstock for biodiesel production. Dehumidification is an important refining step aimed at reducing the phosphorus content, which exceeds the permissible limits according [...] Read more.
The paper investigates the process of degumming substandard soybean oil using an enzyme complex of phospholipases to prepare it as a feedstock for biodiesel production. Dehumidification is an important refining step aimed at reducing the phosphorus content, which exceeds the permissible limits according to ASTM, EN, and ISO standards, by re-moving phospholipids. The enzyme complex of phospholipases includes phospholipase C, which specifically targets phosphatidylinositol, and phospholipase A2, which catalyzes the hydrolysis of phospholipids into water-soluble phosphates and lysophospholipids. This process contributes to the efficient removal of phospholipids, increased neutral oil yield, and reduced residual oil in the humic phase. The use of an enzyme complex of phospholipases provides an innovative, cost-effective, and environmentally friendly method of oil purification. The results of the study demonstrate the high efficiency of using the phospholipase enzyme complex in the processing of substandard soybean oil, which allows reducing the content of total phosphorus to 0.001% by weight, turning it into a high-quality raw material for biodiesel production. The proposed approach contributes to increasing the profitability of agricultural raw materials and the introduction of environmentally friendly technologies in the field of renewable energy. Full article
(This article belongs to the Special Issue Biodiesel Production: Current Status and Perspectives)
Show Figures

Figure 1

18 pages, 6211 KiB  
Article
An Optimization Method to Enhance the Accuracy of Noise Source Impedance Extraction Based on the Insertion Loss Method
by Rongxuan Zhang, Ziliang Zhang, Jun Zhan and Chunying Gong
Micromachines 2025, 16(8), 864; https://doi.org/10.3390/mi16080864 - 26 Jul 2025
Viewed by 287
Abstract
The optimal design of electromagnetic interference (EMI) filters relies on accurate characterization of noise source impedance. The conventional insertion loss method involves integrating two distinct passive two-port networks between the linear impedance stabilization network (LISN) and the equipment under test (EUT). The utilization [...] Read more.
The optimal design of electromagnetic interference (EMI) filters relies on accurate characterization of noise source impedance. The conventional insertion loss method involves integrating two distinct passive two-port networks between the linear impedance stabilization network (LISN) and the equipment under test (EUT). The utilization of the insertion loss to formulate a system of binary quadratic equations concerning the real and imaginary components of the impedance of the noise source enables the precise extraction of the magnitude and phase of the noise source impedance in theory. However, inherent inaccuracies in the insertion loss method during extraction can compromise impedance accuracy or even cause extraction failure. This work employs a series inductance method to overcome these limitations. Exact analytical expressions are derived for the magnitude and phase of the noise source impedance. Subsequently, the application scope of the series insertion loss method is analyzed, and the impact of insertion loss measurement error on noise source impedance extraction accuracy is quantified. Requirements for improving extraction accuracy are discussed, and method optimization strategies are proposed. The permissible range of insertion loss error ensuring a solution exists is deduced. Finally, simulation and experimental results validate the proposed approach in a buck converter. Full article
Show Figures

Figure 1

26 pages, 1894 KiB  
Article
Illegal Waste Dumps and Water Quality: Environmental and Logistical Challenges for Sustainable Development—A Case Study of the Ružín Reservoir (Slovakia)
by Oľga Glova Végsöová and Martin Straka
Environments 2025, 12(8), 251; https://doi.org/10.3390/environments12080251 - 22 Jul 2025
Viewed by 527
Abstract
The aim of the article is to highlight the increasing environmental burden on aquatic ecosystems in Slovakia due to continuous pollution from municipal, industrial and agricultural sources. Laboratory analyses have shown alarming exceedance of the limit values of contaminants, with nitrate nitrogen (NO [...] Read more.
The aim of the article is to highlight the increasing environmental burden on aquatic ecosystems in Slovakia due to continuous pollution from municipal, industrial and agricultural sources. Laboratory analyses have shown alarming exceedance of the limit values of contaminants, with nitrate nitrogen (NO3) reaching 5.8 mg/L compared to the set limit of 2.5 mg/L and phosphorus concentrations exceeding the permissible values by a factor of five, thereby escalating the risk of eutrophication and loss of ecological stability of the aquatic ecosystem. The accumulation of heavy metals is also a problem—lead (Pb) concentrations reach up to 9.7 μg/L, which exceeds the safe limit by a factor of ten. Despite the measures implemented, such as scum barriers, there is continuous contamination of the aquatic environment, with illegal waste dumps and uncontrolled runoff of agrochemicals playing a significant role. The research results underline the critical need for a more effective environmental policy and more rigorous monitoring of toxic substances in real time. These findings highlight not only the urgency of more effective environmental policy and stricter real-time monitoring of toxic substances, but also the necessity of integrating environmental logistics into the design of sustainable solutions. Logistical approaches including the optimization of waste collection, coordination of stakeholders and creation of infrastructural conditions can significantly contribute to reducing environmental burdens and ensure the continuity of environmental management in ecologically sensitive areas. Full article
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador
by Daniel Garcés, Samantha Jiménez-Oyola, Yolanda Sánchez-Palencia, Fredy Guzmán-Martínez, Raúl Villavicencio-Espinoza, Sebastián Jaramillo-Zambrano, Victoria Rosado, Bryan Salgado-Almeida and Josué Marcillo-Guillén
Minerals 2025, 15(8), 767; https://doi.org/10.3390/min15080767 - 22 Jul 2025
Viewed by 341
Abstract
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization [...] Read more.
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization and X-ray Fluorescence Spectrometry (XRF) were used to analyze the content of potentially toxic elements (PTEs) of interest (As, Cd, Cr, Cu, Ni, Pb, and Zn), and X-ray Diffraction (XRD) for mineralogical characterization. The contamination index (IC) was calculated to assess the potential hazard associated with the content of PTEs in the mining wastes. To assess environmental risks, leaching tests were carried out to evaluate the potential release of PTEs, and Acid-Base Accounting (ABA) tests were conducted to determine the likelihood of acid mine drainage formation. The results revealed that the PETs concentration exceeded the maximum permissible limits in all samples, according to Ecuadorian regulations: As, Pb, and Cd were identified as critical contaminants. Mineralogically, quartz was the dominant phase, followed by carbonates (calcite, dolomite and magnesite), phyllosilicates (chlorite and illite), and minor amounts of pyrite and talc. The IC indicated high to very high contamination risk levels, with As being the predominant contributor. Although leaching tests met the established limits for non-hazardous mining waste, the ABA test showed that all samples had a high potential for long-term acid generation. These results underscore the need for implementing management strategies to mitigate the environmental impacts and the development of plans to protect local ecosystems and communities from the adverse effects of mining activities. Full article
Show Figures

Figure 1

17 pages, 309 KiB  
Article
Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment
by Jarosław Chmielewski, Elżbieta Wszelaczyńska, Jarosław Pobereżny, Magdalena Florek-Łuszczki and Barbara Gworek
Sustainability 2025, 17(15), 6666; https://doi.org/10.3390/su17156666 - 22 Jul 2025
Viewed by 385
Abstract
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, [...] Read more.
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, and fruits collected from 16 allotment gardens (AGs) located in Warsaw. A total of 112 samples were analyzed (72 vegetable and 40 fruit samples). Vegetables from AGs accumulated significantly higher levels of HMs than fruits. Leafy vegetables, particularly those cultivated near high-traffic roads, exhibited markedly elevated levels of Pb, Cd, and Zn compared to those grown in peripheral areas. Lead concentrations exceeded permissible limits by six to twelve times, cadmium by one to thirteen times, and zinc by 0.7 to 2.4 times. Due to high levels of Pb and Cd, tomatoes should not be cultivated in urban environments. Regardless of location, only trace amounts of HMs were detected in fruits. The greatest health risk is associated with the consumption of leafy vegetables. Lettuce should be considered an indicator plant for assessing environmental contamination. The obtained Hazard Index (HI) values indicate that only the tested fruits are safe for consumption. Meanwhile, the values of the Hazard Quotient (HQ) indicate no health risk associated with the consumption of lettuce, cherries, and red currants. Among the analyzed elements, Pb showed a higher potential health risk than other metals. This study emphasizes the need for continuous monitoring of HM levels in urban soils and the establishment of baseline values for public health purposes. Remediation of contaminated soils and the implementation of safer agricultural practices are recommended to reduce the exposure of urban populations to the risks associated with the consumption of contaminated produce. In addition, the safety of fruits and vegetables grown in urban areas is influenced by the location of the AGs and the level of industrialization of the agglomeration. Therefore, the safety assessment of plant products derived from AGs should be monitored on a continuous basis, especially in vegetables. Full article
(This article belongs to the Special Issue Soil Microorganisms, Plant Ecology and Sustainable Restoration)
26 pages, 3044 KiB  
Article
Optimization of YF17D-Vectored Zika Vaccine Production by Employing Small-Molecule Viral Sensitizers to Enhance Yields
by Sven Göbel, Tilia Zinnecker, Ingo Jordan, Volker Sandig, Andrea Vervoort, Jondavid de Jong, Jean-Simon Diallo, Peter Satzer, Manfred Satzer, Kai Dallmeier, Udo Reichl and Yvonne Genzel
Vaccines 2025, 13(7), 757; https://doi.org/10.3390/vaccines13070757 - 16 Jul 2025
Viewed by 823
Abstract
Background: Modern viral vector production needs to consider process intensification for higher yields from smaller production volumes. However, innate antiviral immunity triggered in the producer cell may limit virus replication. While commonly used cell lines (e.g., Vero or E1A-immortalised cells) are already compromised [...] Read more.
Background: Modern viral vector production needs to consider process intensification for higher yields from smaller production volumes. However, innate antiviral immunity triggered in the producer cell may limit virus replication. While commonly used cell lines (e.g., Vero or E1A-immortalised cells) are already compromised in antiviral pathways, the redundancy of innate signaling complicates host cell optimization by genetic engineering. Small molecules that are hypothesized to target antiviral pathways (Viral Sensitizers, VSEs) added to the culture media offer a versatile alternative to genetic modifications to increase permissiveness and, thus, viral yields across multiple cell lines. Methods: To explore how the yield for a chimeric Zika vaccine candidate (YF-ZIK) could be further be increased in an intensified bioprocess, we used spin tubes or an Ambr15 high-throughput microbioreactor system as scale-down models to optimize the dosing for eight VSEs in three host cell lines (AGE1.CR.pIX, BHK-21, and HEK293-F) based on their tolerability. Results: Addition of VSEs to an already optimized infection process significantly increased infectious titers by up to sevenfold for all three cell lines tested. The development of multi-component VSE formulations using a design of experiments approach allowed further synergistic titer increases in AGE1.CR.pIX cells. Scale-up to 1 L stirred-tank bioreactors and 3D-printed mimics of 200 or 2000 L reactors resulted in up to threefold and eightfold increases, respectively. Conclusions: Addition of single VSEs or combinations thereof allowed a further increase in YF-ZIK titers beyond the yield of an already optimized, highly intensified process. The described approach validates the use of VSEs and can be instructive for optimizing other virus production processes. Full article
Show Figures

Graphical abstract

27 pages, 5499 KiB  
Article
Enhancing Fault Ride-Through and Power Quality in Wind Energy Systems Using Dynamic Voltage Restorer and Battery Energy Storage System
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbs, Abdullrahman A. Al-Shammaa and Hassan M. Hussein Farh
Electronics 2025, 14(14), 2760; https://doi.org/10.3390/electronics14142760 - 9 Jul 2025
Viewed by 379
Abstract
Doubly Fed Induction Generator (DFIG)-based Wind Energy Systems (WESs) have become increasingly prominent in the global energy sector, owing to their superior efficiency and operational flexibility. Nevertheless, DFIGs are notably vulnerable to fluctuations in the grid, which can result in power quality issues—including [...] Read more.
Doubly Fed Induction Generator (DFIG)-based Wind Energy Systems (WESs) have become increasingly prominent in the global energy sector, owing to their superior efficiency and operational flexibility. Nevertheless, DFIGs are notably vulnerable to fluctuations in the grid, which can result in power quality issues—including voltage swells, sags, harmonic distortion, and flicker—while also posing difficulties in complying with Fault Ride-Through (FRT) standards established by grid regulations. To address the previously mentioned challenges, this paper develops an integrated approach utilizing a Dynamic Voltage Restorer (DVR) in conjunction with a Lithium-ion storage system. The DVR is coupled in series with the WES terminal, while the storage system is coupled in parallel with the DC link of the DFIG through a DC/DC converter, enabling rapid voltage compensation and bidirectional energy exchange. Simulation results for a 2 MW WES employing DFIG modeled in MATLAB/Simulink demonstrate the efficacy of the proposed system. The approach maintains terminal voltage stability, reduces Total Harmonic Distortion (THD) to below 0.73% during voltage sags and below 0.42% during swells, and limits DC-link voltage oscillations within permissible limits. The system also successfully mitigates voltage flicker (THD reduced to 0.41%) and harmonics (THD reduced to 0.4%), ensuring compliance with IEEE Standard 519. These results highlight the proposed system’s ability to enhance both PQ and FRT capabilities, ensuring uninterrupted wind power generation under various grid disturbances. Full article
Show Figures

Figure 1

18 pages, 5852 KiB  
Article
Spatial Distribution of Heavy Metals in the Water of Tequesquitengo Lake, Morelos, Mexico, and Their Biosorption by Pectin
by S. Viridiana Vargas-Solano, Y. Yelitza Lizcano-Delgado, Francisco Rodríguez-González, Julio A. Saldivar-Calvo, Rita Martínez-Velarde, Alex Osorio-Ruiz, María Luisa Corona Rangel and Sandra S. Morales-García
Water 2025, 17(14), 2050; https://doi.org/10.3390/w17142050 - 8 Jul 2025
Viewed by 317
Abstract
In this study, the presence of heavy metals (HMs) is determined to assess surface water contamination; biosorbent materials are also used to remove them and thus improve their quality. The objective of this work was to study the spatial distribution of HMs in [...] Read more.
In this study, the presence of heavy metals (HMs) is determined to assess surface water contamination; biosorbent materials are also used to remove them and thus improve their quality. The objective of this work was to study the spatial distribution of HMs in water samples from Tequesquitengo Lake, Morelos, Mexico; pectin was also used for HM biosorption. For this, fifteen water samples were collected from the central and peripheral zones of the lake; HMs such as Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, and Hg were identified and quantified by atomic absorption spectroscopy (AAS). The metal evaluation index (HEI) was calculated, as well as the percentage of HM removal with pectin. The water samples presented high concentrations of Pb, Cr, and Mn in contrast to the other HMs studied. Furthermore, these showed high concentrations (161.2, 85.2, and 65.6 µg/L, respectively) in the peripheral zone. Therefore, these values exceed the permissible limit for human consumption, except for Mn. The HEI value indicated that the lake water exhibits low contamination. After the adsorption of HMs with pectin, Cr (100%), Ni (83%) and Cd (37%) were removed, reducing the total concentration of HMs in the water in all samples. Full article
Show Figures

Figure 1

22 pages, 1732 KiB  
Article
GSIDroid: A Suspicious Subgraph-Driven and Interpretable Android Malware Detection System
by Hong Huang, Weitao Huang and Feng Jiang
Sensors 2025, 25(13), 4116; https://doi.org/10.3390/s25134116 - 1 Jul 2025
Viewed by 341
Abstract
In recent years, the growing threat of Android malware has caused significant economic losses and posed serious risks to user security and privacy. Machine learning-based detection approaches have improved the accuracy of malware identification, thereby providing more effective protection for Android users. However, [...] Read more.
In recent years, the growing threat of Android malware has caused significant economic losses and posed serious risks to user security and privacy. Machine learning-based detection approaches have improved the accuracy of malware identification, thereby providing more effective protection for Android users. However, graph-based detection methods rely on whole-graph computations instead of subgraph-level analyses, and they often ignore the semantic information of individual nodes. Moreover, limited attention has been paid to the interpretability of these models, hindering a deeper understanding of malicious behaviors and restricting their utility in supporting cybersecurity professionals for further in-depth research. To address these challenges, we propose GSIDroid, a novel subgraph-driven and interpretable Android malware detection framework designed to enhance detection performance, reduce computational overhead, protect user security, and assist security experts in rigorous malware analysis. GSIDroid focuses on extracting suspicious subgraphs, integrating deep and shallow-semantic features with permission information, and incorporating both global and local interpretability modules to ensure transparent, trustworthy, and analyzable detection results. Experiments conducted on 14,520 samples demonstrate that GSIDroid achieves an F1 score of 97.14%, and its interpretability module successfully identifies critical nodes and permission features that influence detection decisions, thereby enhancing practical deployment and supporting further security research. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

21 pages, 2386 KiB  
Article
Energy Efficiency Assessment of the Electrodialysis Process in Desalinating Rest Area Water Runoff
by Małgorzata Iwanek, Paweł Suchorab, Jacek Czerwiński, Dariusz Kowalski, Ewa Hołota, Beata Kowalska, Daniel Słyś, Agnieszka Stec, Izabela Anna Tałałaj and Paweł Biedka
Energies 2025, 18(13), 3424; https://doi.org/10.3390/en18133424 - 29 Jun 2025
Viewed by 443
Abstract
The efficient use of energy is a sign of conscious environmental responsibility. Sustainable management also refers to water resources, where emphasis is placed on the possibility of retaining rainwater at the point of the precipitation occurrence. This article focused on the reuse of [...] Read more.
The efficient use of energy is a sign of conscious environmental responsibility. Sustainable management also refers to water resources, where emphasis is placed on the possibility of retaining rainwater at the point of the precipitation occurrence. This article focused on the reuse of runoff from a rest area (RA) along the expressway, wherever drinking water quality is not required. The runoff from RAs can be significantly contaminated due to the traffic-related issues. The objective of this article was to evaluate the energy efficiency of preliminary treatment of raw meltwater from a selected rest area using electrodialysis for Cl and Na+ removal. The treatment was carried out under various conditions, including different solution temperatures (20 °C and 30 °C) and electric voltages (10 V, 20 V, 30 V). The energy efficiency assessment was preceded by a characterization of runoff quality and the analysis of pollutant removal efficiency in the electrodialysis process. The most energy-efficient variant was characterized with the 0.097 Wh/(mg/L) energy expenditure ratio and 93% efficiency removal for Cl and 0.147 Wh/(mg/L) and 90% for Na+. In this variant, the permissible Cl and Na+ concentrations limits were achieved after 27 min with an energy consumption of 57 Wh. In general, the observed highest energy efficiency occurred at the beginning of the electrodialysis process and decreased over time. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 6973 KiB  
Article
TRIM5α/Cyclophilin A-Modified MDBK Cells for Lentiviral-Based Gene Editing
by Lijing Wo, Shuhui Qi, Yongqi Guo, Chao Sun and Xin Yin
Viruses 2025, 17(7), 876; https://doi.org/10.3390/v17070876 - 21 Jun 2025
Viewed by 437
Abstract
The human immunodeficiency virus 1 (HIV-1)-based lentivirus has been widely used for genetic modification. However, the efficiency of lentiviral-based gene modification in Madin–Darby bovine kidney (MDBK) cells is considerably limited. In this study, we have shown that siRNA-mediated depletion of TRIM5α, a [...] Read more.
The human immunodeficiency virus 1 (HIV-1)-based lentivirus has been widely used for genetic modification. However, the efficiency of lentiviral-based gene modification in Madin–Darby bovine kidney (MDBK) cells is considerably limited. In this study, we have shown that siRNA-mediated depletion of TRIM5α, a restriction factor in HIV-1 infection, can dramatically enhance HIV-1 infection in MDBK cells. Furthermore, we generated a doxycycline-inducible Cas9-overexpressing MDBK cell line (MDBK-iCas9) suitable for CRISPR/Cas9-mediated editing. On this basis, we created a TRIM5α knock-out MDBK-iCas9 cell line MDBK-iCas9TRIM5α−/− without additional genome insertions by combining sgRNA transfection and single-cell cloning. We found that MDBK-iCas9TRIM5α−/− displayed greater permissiveness to lentivirus infection compared with MDBK-WT cells. Notably, we found that treatment with the chemical compound cyclosporine A, which directly interacts with cell factor cyclophilin A (CypA), could markedly increase the infectivity of lentivirus in both MDBK-iCas9TRIM5α−/− and MDBK-WT cell lines, suggesting that CypA functions independently with TRIM5α as an inhibitor of the lentivirus in bovine cells. Therefore, combining bovine TRIM5α and CypA targeting could remarkably enhance lentivirus infection. In conclusion, our findings highlight a promising gene engineering strategy for bovine cells that can surmount the significant barriers to investigating the interplay between bovine viruses and their host cells. Full article
(This article belongs to the Special Issue Pestivirus 2025)
Show Figures

Figure 1

31 pages, 5328 KiB  
Article
Towards a Digital Twin Approach for Structural Stiffness Assessment: A Case Study on the Cho’ponota L1 Bridge
by Fatih Yesevi Okur
Appl. Sci. 2025, 15(12), 6854; https://doi.org/10.3390/app15126854 - 18 Jun 2025
Viewed by 317
Abstract
In this study, a series of comprehensive experimental tests were conducted to assess the impact of permanent displacements observed during the construction of the Cho’ponota L1 Bridge in Uzbekistan and to evaluate the bridge’s structural suitability for service. The investigation included Operational Modal [...] Read more.
In this study, a series of comprehensive experimental tests were conducted to assess the impact of permanent displacements observed during the construction of the Cho’ponota L1 Bridge in Uzbekistan and to evaluate the bridge’s structural suitability for service. The investigation included Operational Modal Analysis and static and dynamic vehicular load tests, conducted using two trucks with different weights under varying loading scenarios and speeds. A total of 28 static and 24 dynamic load cases were tested across the bridge’s four spans. Displacement measurements were acquired using geodetic instruments during the static tests, while acceleration data were recorded during dynamic tests using high-sensitivity accelerometers, from which Dynamic Amplification Factors were calculated. The results indicated that all displacement values remained within permissible safety limits, and no visible damage or cracking was detected. Beyond conventional analysis, the study proposed a test-assisted digital twin framework in which high-fidelity field data were integrated into a finite-element model. The initial numerical model was calibrated using modal properties obtained from OMA, and discrepancies were minimized through iterative updates to material parameters, especially concrete stiffness. The resulting validated digital twin accurately reflects the bridge’s current structural condition and can be used for future predictive simulations and performance-based evaluations. The findings underscore the effectiveness of combining non-destructive testing with digital twin methodology in diagnosing structural behavior and offer a replicable model for assessing bridges experiencing construction-related anomalies. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 6546 KiB  
Article
Simulation Studies of Biomass Transport in a Power Plant with Regard to Environmental Constraints
by Andrzej Jastrząb, Witold Kawalec, Zbigniew Krysa and Paweł Szczeszek
Energies 2025, 18(12), 3190; https://doi.org/10.3390/en18123190 - 18 Jun 2025
Viewed by 388
Abstract
The “carbon neutral power generation” policy of the European Union requires the phasing out of fossil fuel power plants. These plants still play a crucial role in the energy mix in many countries; therefore, efforts are put forward to lower their CO2 [...] Read more.
The “carbon neutral power generation” policy of the European Union requires the phasing out of fossil fuel power plants. These plants still play a crucial role in the energy mix in many countries; therefore, efforts are put forward to lower their CO2 emissions. The available solution for an existing coal plant is the implementation of biomass co-firing, which allows it to reduce twice its carbon footprint in order to achieve the level of natural gas plants, which are preferable on the way to zero-emission power generation. However the side effect is a significant increase in the bulk fuel volumes that are acquired, handled, and finally supplied to the power plant units. A necessary extension of the complex logistic system for unloading, quality tagging, storing, and transporting biomass may increase the plant’s noise emissions beyond the allowed thresholds. For a comprehensive assessment of the concept of expanding the power plant’s biofuel supply system (BSS), a discrete simulation model was built to dimension system elements and verify the overall correctness of the proposed solutions. Then, a dedicated noise emission model was built for the purposes of mandatory environmental impact assessment procedures for the planned expansion of the BSS. The noise model showed the possibility of exceeding the permissible noise levels at night in selected locations. The new simulations of the BSS model were used to analyze various scenarios of biomass supply with regard to alternative switching off the selected branches of the whole BSS. The length of the queue of unloaded freight trains delivering an average quality biomass after a period of 2 weeks is used as a key performance parameter of the BSS. A queue shorter than 1 freight train is accepted. Assuming the rising share of RESS in the Polish energy mix, the thermal plant’s 2-week average power output shall not exceed 70% of its maximum capacity. The results of the simulations indicate that under these constraints, the biofuel supplies can be sufficient regardless of the nighttime stops, if 50% of the supplied biomass volumes are delivered by trucks. If the trucks’ share drops to 25%, the plant’s 2-week average power output is limited to 45% of its maximum power. The use of digital spatial simulation models for a complex, cyclical-continuous transport system to control its operation is an effective method of addressing environmental conflicts at the design stage of the extension of industrial installations in urbanized areas. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

15 pages, 2272 KiB  
Article
Native Strains T. longibrachiatum UCF17-M4 and Trichoderma sp. UCPF2 Reduce Cd Uptake in Cacao CCN51 Under Controlled Conditions
by Rozana Yanina Malca-Cerna, Cortez-Lazaro Anthony Apolinario, Chavez-Castillo Jeremy Israel, Arce-Inga Marielita and Cumpa-Velasquez Liz Marjory
Microbiol. Res. 2025, 16(6), 130; https://doi.org/10.3390/microbiolres16060130 - 17 Jun 2025
Viewed by 441
Abstract
The cacao trade and export industry has been impacted by cadmium (Cd2+) accumulation in soils, as the metal is absorbed by plants and transferred to the tissues. Consequently, cacao beans and their derivatives can become contaminated, sometimes exceeding permissible limits. In [...] Read more.
The cacao trade and export industry has been impacted by cadmium (Cd2+) accumulation in soils, as the metal is absorbed by plants and transferred to the tissues. Consequently, cacao beans and their derivatives can become contaminated, sometimes exceeding permissible limits. In this study, the capacity of native Trichoderma strains to reduce Cd accumulation in cacao was evaluated. Twelve Trichoderma strains were analyzed to assess their cadmium removal capacity through in vitro assays and their ability to reduce Cd concentration in cacao plants under controlled in vivo conditions. The in vitro results showed that several Trichoderma strains could remove cadmium and accumulate it in their biomass. However, this process is complex as it depends on metal concentration and environmental conditions. Notably, T. afroharzianum UCF18-M1 and CP24-6 exhibited high removal efficiencies at 100 ppm (61.79 ± 2.98% and 57.93 ± 4.14%, respectively). In contrast, the in vivo assays revealed that, contrary to expectations, some strains—including those with the highest removal efficiency—stimulated Cd uptake in plants, even at toxic levels, such as T. orientale BLPF1-C1. However, T. longibrachiatum UCF17-M4 and Trichoderma sp. UCPF2-C1 significantly reduced Cd accumulation in the stem. These findings highlight the potential of these strains to mitigate Cd contamination in cacao. Full article
Show Figures

Figure 1

Back to TopTop