Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = perchlorate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3503 KiB  
Article
New Efficient High-Energy Materials Based on 4,6-Dinitrobenzimidazol-2-one Core: Simulations of Properties
by Jelena Tamuliene and Jonas Sarlauskas
Processes 2025, 13(8), 2386; https://doi.org/10.3390/pr13082386 - 27 Jul 2025
Viewed by 260
Abstract
In this study, the impact of incorporating energetic substituents such as -NO2, -NH2, -NH3, -N2 (both with perchlorate anion), and -N3 into 4,6-dinitrobenzimidazol-2-one on its detonation performance and stability was investigated. The DFT B3LYP/cc-pVTZ method [...] Read more.
In this study, the impact of incorporating energetic substituents such as -NO2, -NH2, -NH3, -N2 (both with perchlorate anion), and -N3 into 4,6-dinitrobenzimidazol-2-one on its detonation performance and stability was investigated. The DFT B3LYP/cc-pVTZ method was employed to evaluate key molecular properties: the HOMO–LUMO gap, cohesive energy, chemical hardness, and electronegativity. Based on these parameters, the resulting changes in chemical and thermal stability were assessed. The results achieved highlight the significant role of ionic bonding in enhancing both the stability and density of the compounds. Our results indicate that the benzimidazoles enriched by energetic groups possess energetic properties better than TNT, with some variants surpassing HMX. The analysis of the stability and sensitivity based on oxygen balance investigation suggests that by varying the incorporated substituents, it is possible to design both primary and secondary explosives from a common molecular scaffold. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Viewed by 333
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

18 pages, 4914 KiB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Viewed by 268
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

15 pages, 3645 KiB  
Article
PVP-Regulated Self-Assembly of High-Strength Micrometer-Scale Al/CuO/AP Energetic Microspheres with Enhanced Reactivity
by Xuyang Wu, Hongbao Wang, Chenglong Jiao, Benbo Zhao, Shixiong Sun and Yunjun Luo
Polymers 2025, 17(14), 1994; https://doi.org/10.3390/polym17141994 - 21 Jul 2025
Viewed by 241
Abstract
Al-based nanocomposite energetic materials have broad application prospects in explosives and propellants, owing to their excellent energy release efficiency. However, their insufficient reliability, poor stability, and difficulty of formation limit their practical application. This study employed self-assembly using a hydrophilic polymer polyvinylpyrrolidone (PVP) [...] Read more.
Al-based nanocomposite energetic materials have broad application prospects in explosives and propellants, owing to their excellent energy release efficiency. However, their insufficient reliability, poor stability, and difficulty of formation limit their practical application. This study employed self-assembly using a hydrophilic polymer polyvinylpyrrolidone (PVP) together with nano-aluminum powder (Al), copper oxide (CuO), and ammonium perchlorate (AP) to obtain high-strength and high-activity composite micrometer-sized microspheres. The influence of PVP concentration on the mechanical behavior of Al/AP composite microspheres was systematically investigated, and Al was replaced with ultrasonically dispersed Al/CuO to explore the mechanism of action of PVP in the system and the catalytic behavior of CuO. PVP significantly enhanced the interfacial bonding strength. The Al/AP/5%PVP microspheres achieved a strength of 8.4 MPa under 40% compressive strain, representing a 365% increase relative to Al/AP. The Al/CuO/AP/5%PVP microspheres achieved a strength of 10.2 MPa, representing a 309% increase relative to Al/CuO. The mechanical properties of the composite microspheres were improved by more than threefold, and their thermal reactivities were also higher. This study provides a new method for the controlled preparation of high-strength, high-activity, micrometer-sized energetic microspheres. These materials are expected to be applied in composite solid propellants to enhance their combustion efficiency. Full article
(This article belongs to the Special Issue Eco-Friendly Polymeric Coatings and Adhesive Technology, 2nd Edition)
Show Figures

Figure 1

16 pages, 2441 KiB  
Article
Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water
by Zeineb Baatout, Achref Jebnouni, Nawfel Sakly, Safa Teka, Nuzaiha Mohamed, Sayda Osman, Raoudha Soury, Mabrouka El Oudi, Salman Hamdan Alsaqri, Nejmeddine Smida Jaballah and Mustapha Majdoub
Polymers 2025, 17(14), 1937; https://doi.org/10.3390/polym17141937 - 15 Jul 2025
Viewed by 390
Abstract
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H [...] Read more.
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H NMR, 13C NMR, 31P NMR, and FT-IR spectroscopies combined with AFM and contact angle measurements demonstrate how the enhanced solubility of modified cyclodextrin improves thin film quality. The innovation lies in the synergistic combination of two detection mechanisms: the “Host-Guest” inclusion in the cyclodextrin cavity and anionic exchange between the bromide ions of the phosphonium groups and perchlorate anions. Under optimized functionalization conditions, EIS reveals high sensitivity and selectivity, achieving a record-low detection limit (LOD) of ~10−12 M and a wide linear range of detection (10−11 M–10−4 M). Sensing mechanisms at the functionalized transducer interfaces are examined through numerical fitting of Cole-Cole impedance spectra via a single relaxation equivalent circuit. Real water sample analysis confirms the sensor’s practical applicability, with recoveries between 96.9% and 109.8% and RSDs of 2.4–4.8%. Finally, a comparative study with reported membrane sensors shows that β-CDP offers superior performance, wider range, higher sensitivity, lower LOD, and simpler synthesis. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

10 pages, 1102 KiB  
Article
Prediction of Propellant Electrostatic Sensitivity Based on Small-Sample Machine Learning Models
by Fei Wang, Kai Cui, Jinxiang Liu, Wenhai He, Qiuyu Zhang, Weihai Zhang and Tianshuai Wang
Aerospace 2025, 12(7), 622; https://doi.org/10.3390/aerospace12070622 - 11 Jul 2025
Viewed by 277
Abstract
Hydroxyl-terminated-polybutadiene (HTPB)-based composite solid propellants are extensively used in aerospace and defense applications due to their high energy density, thermal stability, and processability. However, the presence of highly sensitive energetic components in their formulations leads to a significant risk of accidental ignition under [...] Read more.
Hydroxyl-terminated-polybutadiene (HTPB)-based composite solid propellants are extensively used in aerospace and defense applications due to their high energy density, thermal stability, and processability. However, the presence of highly sensitive energetic components in their formulations leads to a significant risk of accidental ignition under electrostatic discharge, posing serious safety concerns during storage, transportation, and handling. To address this issue, this study explores the prediction of electrostatic sensitivity in HTPB propellants using machine learning techniques. A dataset comprising 18 experimental formulations was employed to train and evaluate six machine learning models. Among them, the Random Forest (RF) model achieved the highest predictive accuracy (R2 = 0.9681), demonstrating a strong generalization capability through leave-one-out cross-validation. Feature importance analysis using SHAP and Gini index methods revealed that aluminum, catalyst, and ammonium perchlorate were the most influential factors. These findings provide a data-driven approach for accurately predicting electrostatic sensitivity and offer valuable guidance for the rational design and safety optimization of HTPB-based propellant formulations. Full article
Show Figures

Figure 1

22 pages, 2704 KiB  
Article
Thermal Interaction Mechanisms of Ammonium Perchlorate and Ammonia Borane
by Yunlong Zhang, Rui Pu, Shaoli Chen and Qilong Yan
Molecules 2025, 30(13), 2680; https://doi.org/10.3390/molecules30132680 - 20 Jun 2025
Viewed by 396
Abstract
Ammonia borane (AB), with a theoretical hydrogen content of 19.6 wt%, is constrained by its low crystalline density (0.758 g/cm3) and poor thermal stability (decomposing at 100 °C). In this study, AB/ammonium perchlorate (AP) composites were synthesized via freeze-drying at a [...] Read more.
Ammonia borane (AB), with a theoretical hydrogen content of 19.6 wt%, is constrained by its low crystalline density (0.758 g/cm3) and poor thermal stability (decomposing at 100 °C). In this study, AB/ammonium perchlorate (AP) composites were synthesized via freeze-drying at a 1:1 molar ratio. The integration of AP introduced intermolecular interactions that suppressed AB decomposition, increasing the onset temperature by 80 °C. Subsequent vacuum calcination at 100 °C for 2 h formed oxygen/fuel-integrated ammonium perchlorate borane (APB), which achieved decomposition temperatures exceeding 350 °C. The proposed mechanism involved AB decomposing into borazine and BN polymers at 100 °C, which then NH3BH2+/ClO4 combined to form APB. At 350 °C, APB underwent the following redox reactions: 4NH3BH2ClO4 → N2↑ + 4HCl↑ + 2B2O3 + N2O↑ + O2↑ + 7H2O↑ + H2↑, while residual AP decomposed. The composite exhibited improved density (1.66 g/cm3) and generated H2, N2, O2, and HCl, demonstrating potential for hydrogen storage. Additionally, safety was enhanced by the suppression of AB’s exothermic decomposition (100–200 °C). APB, with its high energy density and thermal stability, was identified as a promising high-energy additive for high-burning-rate propellants. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Graphical abstract

25 pages, 8234 KiB  
Article
Preparation of Cu-Containing Substances via an Ultrasonic-Assisted Solvothermal Approach and Their Catalytic Effects on the Thermal Decomposition of Ammonium Perchlorate
by Cheng-Hsiung Peng, Pin-Hsien Su, Jin-Shuh Li and Yan-Jun Ke
Materials 2025, 18(13), 2928; https://doi.org/10.3390/ma18132928 - 20 Jun 2025
Viewed by 316
Abstract
In this study, a one-pot, ultrasonic-assisted solvothermal method was successfully employed to prepare three copper-containing compounds: copper benzene-1,3,5-tricarboxylate (Cu3(BTC)2), copper powder, and copper-metalized activated carbon (Cu@AC). This method is efficient and safe and has potential for use in scalable [...] Read more.
In this study, a one-pot, ultrasonic-assisted solvothermal method was successfully employed to prepare three copper-containing compounds: copper benzene-1,3,5-tricarboxylate (Cu3(BTC)2), copper powder, and copper-metalized activated carbon (Cu@AC). This method is efficient and safe and has potential for use in scalable production. The characteristics of the resulting products were analyzed using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area measurement along with pore size distribution, and thermogravimetric analysis–differential scanning calorimetry (TG-DSC). Additionally, the catalytic effects of these products on the thermal decomposition of ammonium perchlorate (AP) were evaluated. All three substances were found to lower the thermal decomposition temperature of AP and enhance heat release. Cu3(BTC)2 demonstrated exceptional catalytic performance and compatibility with AP, as shown using the vacuum stability test (VST). The thermal analysis results indicated that the thermal decomposition temperature and apparent activation energy of AP decreased from ~442 °C to around 340 °C and from ~207 kJ mol−1 to approximately 128 kJ mol−1, respectively, when 3 wt% Cu3(BTC)2 was contained in AP. Moreover, the heat released via the exothermic decomposition of AP increased from 740 J g−1 to1716 J g−1. A possible reaction mechanism is proposed based on the evolved gas analysis (EGA) findings to explain the observed catalytic effects. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

14 pages, 5725 KiB  
Article
Synergistic Regulation of Combustion Behavior and Safety Characteristics of Graphene Modified Core–Shell Al@AP Composites
by Jiahui Shi, Jiahao Liang, Xiaole Sun, Yingjun Li, Haijun Zhang, Xueyong Guo, Shi Yan, Junwei Li and Jianxin Nie
Nanomaterials 2025, 15(11), 853; https://doi.org/10.3390/nano15110853 - 2 Jun 2025
Viewed by 440
Abstract
Improving the energy release and safety of composite solid propellants is a key focus in energetic materials research. Graphene, with its excellent thermal conductivity and lubrication properties, is a promising additive. In this study, Al@AP core–shell particles doped with graphene were prepared via [...] Read more.
Improving the energy release and safety of composite solid propellants is a key focus in energetic materials research. Graphene, with its excellent thermal conductivity and lubrication properties, is a promising additive. In this study, Al@AP core–shell particles doped with graphene were prepared via an in-situ deposition method. The structure, thermal decomposition, combustion, and safety performance of the graphene-doped Al@AP samples were investigated. Results showed that AP effectively coated aluminium to form a typical core-shell structure, with graphene uniformly loaded into the framework. Graphene contents of 1.0 and 4.0 wt.% reduced AP’s thermal decomposition temperature by 0.97 and 16.68 °C, respectively. Closed-bomb and laser ignition tests revealed that pressure rise rates and combustion intensity increased with graphene content up to 1.0 wt.% but declined beyond that. Peak pressure reached 114.65 kPa at 1.0 wt.% graphene, and the maximum pressure increase rate was 13.29 kPa ms−1 at 2.0 wt.%. Additionally, graphene significantly improved safety by reducing sensitivity to impact and friction. The enhanced performance is attributed to graphene’s large surface area and excellent thermal and electrical conductivity that promote AP decomposition and combustion, combined with its lubricating effect that enhances safety, though excessive graphene may hinder these benefits. This study provides balanced design criteria for graphene-doped Al@AP as solid propellants. Full article
Show Figures

Graphical abstract

16 pages, 3293 KiB  
Article
Investigation of PBT-AP Interactions in PBT-Based Solid Propellants: A Combined Density Functional Theory and Molecular Dynamics Study
by Kun Liu and Xinlu Cheng
Polymers 2025, 17(11), 1492; https://doi.org/10.3390/polym17111492 - 27 May 2025
Viewed by 311
Abstract
Poly(3,3-bis(azidomethyl)oxetane(BAMO)-tetrahydrofuran(THF)) copolymer (PBT) and ammonium perchlorate (AP) are critical components of solid rocket propellants, where their interfacial bonding mechanisms and temperature-dependent mechanical properties are pivotal to propellant reliability. In this study, density functional theory (DFT) calculations were employed to evaluate the adsorption energies [...] Read more.
Poly(3,3-bis(azidomethyl)oxetane(BAMO)-tetrahydrofuran(THF)) copolymer (PBT) and ammonium perchlorate (AP) are critical components of solid rocket propellants, where their interfacial bonding mechanisms and temperature-dependent mechanical properties are pivotal to propellant reliability. In this study, density functional theory (DFT) calculations were employed to evaluate the adsorption energies between common AP crystal surfaces and PBT units, identifying the most energetically favorable adsorption configurations. The atomic configurations and charge transfer characteristics at the PBT-AP interface were systematically analyzed. Molecular dynamics (MD) simulations were further conducted to determine the thermally stable operating range of the PBT-AP system. The results reveal a strong temperature dependence of mechanical performance, with viscous failure mechanisms and damage thresholds during static tensile processes investigated across varying temperatures. Notably, mechanical properties remain stable below 60 °C but deteriorate significantly above this temperature. This study elucidates the influence of a PBT-AP interfacial microstructure and temperature on mechanical performance and tensile fracture damage boundaries, providing crucial insights for the design, formulation, and safe application of PBT-based solid rocket propellants. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

15 pages, 2160 KiB  
Article
Testing Low-Density Polyethylene Membranes for Lithium Isotope Electromigration System
by Andreea Maria Iordache, Ramona Zgavarogea, Ana Maria Nasture, Erdin Feizula, Roxana Elena Ionete, Rui Santos and Constantin Nechita
Materials 2025, 18(11), 2519; https://doi.org/10.3390/ma18112519 - 27 May 2025
Viewed by 371
Abstract
The growing energy demand has emphasized the importance of developing nuclear technologies and high-purity lithium isotopes (6Li and 7Li) as raw materials. This study investigates how voltage and migration time affect two types of low-density polyethylene membranes—one impregnated with ionic [...] Read more.
The growing energy demand has emphasized the importance of developing nuclear technologies and high-purity lithium isotopes (6Li and 7Li) as raw materials. This study investigates how voltage and migration time affect two types of low-density polyethylene membranes—one impregnated with ionic liquids and the other non-impregnated—for lithium isotope separation via electromigration from a lithium-loaded organic phase to an aqueous solution. We developed a laboratory-made setup for high-precision lithium isotope measurements (2RSD = ±0.30‰) of natural carbonate samples (LSVEC) and an optimized protocol for isotope ratio measurements using quadrupole ICP-MS with the sample-standard bracketing method (SSB). The results document that both impregnated and non-impregnated membranes can achieve promising 6Li enrichment under different environmental conditions, including ionic liquids and organic solutions in the cathode chamber. Lithium-ion mobility is influenced by voltage in an environment assisted by 0.1 mol/L tetrabutylammonium perchlorate and increases quasi-linearly from 5 to 15 V. Between 20 and 25 h, the lithium-ion concentration had the maximum value, after which the trend declined. In the BayesGLM model, we incorporated all data and systematically eliminated those with a low enrichment factor, either individually or in groups. Our findings indicated that the model was not significantly affected by the exclusion of measurements with low α. This suggests that voltage and migration time are crucial, and achieving a better enrichment factor depends on applying the optimal ratio of ionic liquids, crown ethers, and organic solvents. Ionic liquids used for impregnation sustain enrichment in the first hours, particularly for 7Li; however, after 25 h, 6Li demonstrated a higher enrichment capacity. The maximum single-stage separation factor for 6Li/7Li was achieved at 24 and 48 h for an impregnated membrane M2 (α = 1.021/1.029) and a non-impregnated membrane M5 (α = 1.031/1.038). Full article
Show Figures

Figure 1

18 pages, 1259 KiB  
Review
Remarks on Life Feasibility on the Red Planet
by Fiorella Mancini and Giuseppe Graziano
Microorganisms 2025, 13(5), 1105; https://doi.org/10.3390/microorganisms13051105 - 11 May 2025
Viewed by 501
Abstract
The current strong interest in the exploration of Mars leads to the question of the actual possibility of the presence or possible past or future development of life on the planet. Several clues suggest that liquid water could be stably present under the [...] Read more.
The current strong interest in the exploration of Mars leads to the question of the actual possibility of the presence or possible past or future development of life on the planet. Several clues suggest that liquid water could be stably present under the surface of Mars, but on the condition that it is rich in perchlorate salts, abundant in the Martian soil, which would allow for water to remain liquid at the very low temperatures found on the planet. In this work, the main evidence on the permissiveness of Martian environments to microbial life is reviewed, with particular attention to the evaluation of the tolerance limit to the perchlorates of different microorganisms. Furthermore, a reasonable theoretical approach is offered to calculate the stability of globular proteins in aqueous solutions rich in perchlorates, trying to provide, given the current lack of valid experimental data, a rational means to try to understand the behaviour of proteins in environmental conditions very far from those of Earth. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 5011 KiB  
Article
One-Step Synthesis AlCo2O4 and Derived “Al” to Double Optimise the Thermal Decomposition Kinetics and Enthalpy of Ammonium Perchlorate
by Kaihua He, Yanzhi Yang, Zhengyi Zhao, Zhiyong Yan and Xuechun Xiao
Colloids Interfaces 2025, 9(3), 28; https://doi.org/10.3390/colloids9030028 - 10 May 2025
Viewed by 476
Abstract
The solution combustion method is widely used because of its simple operation and ability to produce porous structures. The chemical composition and morphological structure of the material can be regulated by different oxidiser-to-fuel ratios (φ). In this work, AlCo2O4 derived [...] Read more.
The solution combustion method is widely used because of its simple operation and ability to produce porous structures. The chemical composition and morphological structure of the material can be regulated by different oxidiser-to-fuel ratios (φ). In this work, AlCo2O4 derived “Al” catalytic materials were successfully synthesised by adjusting the fuel-to-oxidiser ratio using a one-step solution combustion method. On the one hand, the aluminium nanoparticles act as a part of the metal fuel in the composite solid propellant and, at the same time, serve as a catalytic material. In contrast, the thermal decomposition performance of AP was significantly improved by the synergistic catalysis of AlCo2O4. Among the samples prepared under different fuel ratios, considering all aspects (high-temperature decomposition temperature, activation energy, and decomposition heat) comprehensively, the AlCo2O4 prepared with φ = 0.5 had a more excellent catalytic effect on AP thermal decomposition, and the THTD of AP was reduced to 285.4 °C, which is 188.08 °C lower. The activation energy of the thermal decomposition of AP was also significantly reduced (from 296.14 kJ/mol to 211.67 kJ/mol). In addition, the ignition delay time of AlCo2O4-AP/HTPB was drastically shortened to 9 ms from 28 ms after the addition of 7% AlCo2O4 derived “Al” catalytic materials. Composite solid propellants have shown great potential for application. Full article
Show Figures

Graphical abstract

13 pages, 2871 KiB  
Article
Integrated Microcantilever for Joint Thermal Analysis of Trace Hazardous Materials
by Yuhang Yang, Xinyu Li, Zechun Li, Ming Li, Ying Chen, Shaokui Tan, Haitao Yu, Pengcheng Xu and Xinxin Li
Sensors 2025, 25(10), 3004; https://doi.org/10.3390/s25103004 - 9 May 2025
Cited by 1 | Viewed by 2527
Abstract
During the thermal analysis of hazardous materials, the thermal instruments available may face the risk of contamination within heating chambers or damage to the instruments themselves. Herein, this work introduces an innovative detection technology that combines thermogravimetric and differential thermal analysis with an [...] Read more.
During the thermal analysis of hazardous materials, the thermal instruments available may face the risk of contamination within heating chambers or damage to the instruments themselves. Herein, this work introduces an innovative detection technology that combines thermogravimetric and differential thermal analysis with an integrated MEMS cantilever. Integrating polysilicon thermocouples and a heat-driven resistor into a single resonant cantilever achieves remarkable precision with a mass resolution of 5.5 picograms and a temperature resolution of 0.0082 °C. Validated through the thermal analysis of nylon 6, the cantilever excels in detecting nanogram-level samples, making it ideal for analyzing hazardous materials like ammonium perchlorate and TNT. Notably, it has successfully observed the evaporation of TNT in an air atmosphere. The integrated MEMS cantilever detection chip offers a groundbreaking micro-quantification solution for hazardous material analysis, significantly enhancing safety and opening new avenues for application. Full article
(This article belongs to the Special Issue Chip-Based MEMS Platforms)
Show Figures

Figure 1

15 pages, 3156 KiB  
Article
Lithium Isotope Separation Using the 15-Crown-5 Ether System and Laboratory-Made Membranes
by Andreea Maria Iordache, Ana Maria Nasture, Ramona Zgavarogea, Radu Andrei, Roxana Mandoc, Erdin Feizula, Rui Santos and Constantin Nechita
Materials 2025, 18(9), 2016; https://doi.org/10.3390/ma18092016 - 29 Apr 2025
Cited by 1 | Viewed by 739
Abstract
The enrichment of 6Li isotopes from a natural stage of 7.6% to above 59% is required for the development of next-generation green technologies capable of sustaining climate change mitigation and energy-mix targets. In this study, we developed two categories of custom laboratory-made [...] Read more.
The enrichment of 6Li isotopes from a natural stage of 7.6% to above 59% is required for the development of next-generation green technologies capable of sustaining climate change mitigation and energy-mix targets. In this study, we developed two categories of custom laboratory-made organic membranes, membranes that were non-impregnated before electromigration (AI-1) and membranes impregnated with LiNTf2 (AI-2), to evaluate their performance in lithium isotope separation. Both types of membranes were exposed in synthesis to ionic liquid and crown ether. The objective of the study was to test the performance of membranes in separating lithium isotopes from a lithium-loaded organic phase in an aqueous solution with variable potentials and time intervals. The results show that the impregnated AI-2 membranes increased the enrichment of 6Li in the early stages, and the effect decreased after 25 h. The efficiency of lithium isotope enrichment was positively related to the potential profile applied, migration time, and concentration of organic solution in the anode chamber. The 0.5 mol/L Bis-(trifluoromethane) sulfonimide lithium salt (Li[NTf2]) with 0.1 M tetra butyl ammonium perchlorate (TBAP) in acetonitrile (CH3CN) ionic solution significantly improved Li isotope separation compared with an aqueous environment with higher salt concentrations. The maximum isotopic separation coefficient (α) for AI-1.2 (15-crown-5 ether and 1 mol/L LiNTf2 in TBAP solution after 48 h of electromigration) gradually increased to 1.0317. Our results demonstrated that in the laboratory-made setup described, the migration efficiency and Li isotope separation in the catholyte environment needed a minimum of 9 V and a migration time of 6 h, respectively; these values varied with the concentration of the organic solution in the anode chamber. The ability of laboratory-engineered membranes to impart isotope selectivity and enhance permselectivity or selectivity towards singly charged ions was demonstrated through the functionality of single-collector inductively coupled plasma mass spectrometry (ICP-MS). This technology is particularly valuable and commercially feasible for future lithium isotope research in nuclear technology. Full article
Show Figures

Graphical abstract

Back to TopTop