PVP-Regulated Self-Assembly of High-Strength Micrometer-Scale Al/CuO/AP Energetic Microspheres with Enhanced Reactivity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Method
2.2.1. Preparation of Al/AP/PVP Samples
2.2.2. Preparation of Al/CuO/AP/PVP
2.3. Fourier-Transform Infrared Spectroscopy (FT-IR) Characterization of Molecular Groups
2.4. X-Ray Diffraction
2.5. Scanning Electron Microscopy
2.6. Mechanical Property Testing
2.7. Thermal Decomposition Performance Testing
3. Results
3.1. FTIR Analysis
3.2. XRD Analysis
3.3. SEM Morphological Analysis and Macro Sample Analysis
3.4. Mechanism Analysis
3.5. Mechanical Properties of Composite Particles at Different PVP Concentrations
3.6. TG/DTG Thermal Decomposition
4. Discussion
- (1)
- PVP acts as a framework, forming coordination and hydrogen bonds with metals and AP, strengthening the intermolecular interactions, and improving the mechanical properties of the entire system.
- (2)
- While enhancing the mechanical properties, the PVP solution promoted the formation of composite microspheres through the combined effects of hydrogen-bond-driven, coordination-bond-driven, and capillary forces.
- (3)
- In the Al/CuO/AP/PVP system, PVP interacted with CuO to enhance its catalytic performance.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PVP | Polyvinylpyrrolidone |
Al | Aluminum |
CuO | Copper oxide |
AP | Ammonium perchlorate |
NEMs | Nanoenergetic materials |
NMP | N-Methylpyrrolidone |
DCM | Dichloromethane |
LTD | Low-temperature decomposition temperature |
HTD | High-temperature decomposition temperature |
References
- Pang, W.; Fan, X.; Wang, K.; Chao, Y.; Xu, H.; Qin, Z.; Zhao, F. Al-Based Nano-Sized Composite Energetic Materials (Nano-CEMs): Preparation, Characterization, and Performance. Nanomaterials 2020, 10, 1039. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, C.; Wang, Y.; Wei, X. Synthesis of Energetic Materials by Microfluidics. Def. Technol. 2025, 44, 306–319. [Google Scholar] [CrossRef]
- Wang, W.; Li, H.; Zhang, M.; Zhao, F.; Xu, S.; Wang, C.; Qin, Z.; An, T.; Xu, K. Effects of Oxidizer and Architecture on the Thermochemical Reactivity, Laser Ignition and Combustion Properties of Nanothermite. Fuel 2022, 314, 123141. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J. Aluminum Agglomeration Reduction in a Composite Propellant Using Tailored Al/PTFE Particles. Combust. Flame 2014, 161, 311–321. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J.; Zhang, S.; Dreizin, E.L. Exploring Mechanisms for Agglomerate Reduction in Composite Solid Propellants with Polyethylene Inclusion Modified Aluminum. Combust. Flame 2015, 162, 846–854. [Google Scholar] [CrossRef]
- Campbell, L.L.; Hill, K.J.; Smith, D.K.; Pantoya, M.L. Thermal Analysis of Microscale Aluminum Particles Coated with Perfluorotetradecanoic (PFTD) Acid. J. Therm. Anal. Calorim. 2021, 145, 289–296. [Google Scholar] [CrossRef]
- Comet, M.; Martin, C.; Schnell, F.; Spitzer, D. Nanothermite Foams: From Nanopowder to Object. Chem. Eng. J. 2017, 316, 807–812. [Google Scholar] [CrossRef]
- Dreizin, E.L. Metal-Based Reactive Nanomaterials. Prog. Energy Combust. Sci. 2009, 35, 141–167. [Google Scholar] [CrossRef]
- Jayaraman, K.; Chakravarthy, S.R.; Sarathi, R. Quench Collection of Nano-Aluminium Agglomerates from Combustion of Sandwiches and Propellants. Proc. Combust. Inst. 2011, 33, 1941–1947. [Google Scholar] [CrossRef]
- Arkhipov, V.A.; Korotkikh, A.G. The Influence of Aluminum Powder Dispersity on Composite Solid Propellants Ignitability by Laser Radiation. Combust. Flame 2012, 159, 409–415. [Google Scholar] [CrossRef]
- Dokhan, A.; Price, E.W.; Seitzman, J.M.; Sigman, R.K. The Effects of Bimodal Aluminum with Ultrafine Aluminum on the Burning Rates of Solid Propellants. Proc. Combust. Inst. 2002, 29, 2939–2946. [Google Scholar] [CrossRef]
- Jacob, R.J.; Jian, G.; Guerieri, P.M.; Zachariah, M.R. Energy Release Pathways in Nanothermites Follow through the Condensed State. Combust. Flame 2015, 162, 258–264. [Google Scholar] [CrossRef]
- Saint Petersburg Mining University; Bondarenko, A.; Islamov, S.; Ignatyev, K.; Mardashov, D. Laboratory Studies of Polymer Compositions for Well-Kill under Increased Fracturing. Perm J. Pet. Min. Eng. 2020, 20, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Thiruvengadathan, R.; Wang, A. Nanoenergetic Materials: From Materials to Applications. Nanomaterials 2024, 14, 1574. [Google Scholar] [CrossRef] [PubMed]
- Muthiah, R.; Krishnamurthy, V.N.; Gupta, B.R. Rheology of HTPB Propellant. I. Effect of Solid Loading, Oxidizer Particle Size, and Aluminum Content. J. Appl. Polym. Sci. 1992, 44, 2043–2052. [Google Scholar] [CrossRef]
- Lyu, J.-Y.; Xu, G.; Zhang, H.; Yang, W.; Yan, Q.-L. Thermal Decomposition and Combustion Behavior of the Core-Shell Al@AP Composite Embedded with CuO as a Catalyst. Fuel 2024, 356, 129587. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Xu, J.; Shen, Y.; Wang, C.; Li, F.; Zhang, Z.; Chen, J.; Ye, Y.; Shen, R. Fabrication and Characterization of Al–CuO Nanocomposites Prepared by Sol-Gel Method. Def. Technol. 2021, 17, 1307–1312. [Google Scholar] [CrossRef]
- Slocik, J.M.; Crouse, C.A.; Spowart, J.E.; Naik, R.R. Biologically Tunable Reactivity of Energetic Nanomaterials Using Protein Cages. Nano Lett. 2013, 13, 2535–2540. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Guo, T.; Yao, M.; Chen, J.; Ding, W.; Bei, F.; Mao, Y.; Yu, Z.; Huang, J.; Zhang, X.; et al. A Comparative Study of Thermal Kinetics and Combustion Performance of Al/CuO, Al/Fe2O3 and Al/MnO2 Nanothermites. Vacuum 2020, 176, 109339. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Dai, J.; Wang, Y.; Shen, Y.; Zhang, Z.; Shen, R.; Ye, Y. Probing the Reaction Mechanism of Al/CuO Nanocomposites Doped with Ammonium Perchlorate. Nanotechnology 2020, 31, 255401. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.G.; Abazari, R. A Facile One-Step Route for Production of CuO, NiO, and CuO–NiO Nanoparticles and Comparison of Their Catalytic Activity for Ammonium Perchlorate Decomposition. RSC Adv. 2015, 5, 96777–96784. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, R.; Nie, H.; Yan, Q.; Liu, J.; Sun, Y. Insight into the Precise Catalytic Mechanism of CuO on the Decomposition and Combustion of Core–Shell Al@AP Particles. Fuel 2023, 346, 128294. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, S.; Tao, B.; Liu, X.; Lin, K.; Yang, Y.; Fan, R.; Xia, D.; Hao, D. Catalytic Decomposition of Ammonium Perchlorate on Hollow Mesoporous CuO Microspheres. Vacuum 2019, 159, 105–111. [Google Scholar] [CrossRef]
- Shim, H.-M.; Kim, J.-K.; Kim, H.-S.; Koo, K.-K. Production of the Spherical Nano-Al/AP Composites by Drowning-Out/Agglomeration and Their Solid-Reaction Kinetics. Ind. Eng. Chem. Res. 2016, 55, 10227–10234. [Google Scholar] [CrossRef]
- Han, K.; Li, S.; Tan, K.; Xie, Z.; Shi, H.; Liu, Y.; An, C.; Wang, J. In Situ Self-Crosslinking Binder System—Enhances the Mechanical Performance Gain of Composite Energetic Materials. Chem. Eng. J. 2024, 494, 152812. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [PubMed]
- Premalatha, M.; Vijaya, N.; Selvasekarapandian, S.; Selvalakshmi, S. Characterization of Blend Polymer PVA-PVP Complexed with Ammonium Thiocyanate. Ionics 2016, 22, 1299–1310. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Yao, X.; Liu, J.; Yan, B. Thioctic Acid-Based Solvent-Free and Recoverable Adhesive for Dry/Wet Environments. ACS Appl. Mater. Interfaces 2024, 16, 54685–54692. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Deng, Z.; Wang, Q.; Xiong, J.; Liu, X.; Huang, L.; Zhu, Y.; Zhang, J. Polymer Lewis Base for Improving the Charge Transfer in Tin–Lead Mixed Perovskite Solar Cells. Nanomaterials 2024, 14, 437. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Leng, J.; Deng, L.; Xing, L.; Feng, R. Recording the Self-Assembly Behavior of Nanomaterials Directed by Hydrogen Bonding. Cryst. Growth Des. 2021, 21, 2187–2195. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhao, L.; Zhang, Y.; Li, Z.-T.; Huang, F. Multiple Hydrogen Bonding Driven Supramolecular Architectures and Their Biomedical Applications. Chem. Soc. Rev. 2024, 53, 1592–1623. [Google Scholar] [CrossRef] [PubMed]
- Pantoya, M.L.; Levitas, V.I.; Granier, J.J.; Henderson, J.B. Effect of Bulk Density on Reaction Propagation in Nanothermites and Micron Thermites. J. Propuls. Power 2009, 25, 465–470. [Google Scholar] [CrossRef]
- Subashini, C.; Sivasubramanian, R.; Sundaram, M.M.; Priyadharsini, N. The Evolution of Allotropic Forms of Na2CoP2O7 Electrode and Its Role in Future Hybrid Energy Storage. J. Energy Storage 2025, 130, 117390. [Google Scholar] [CrossRef]
- Dharmalingam, S.T.; Dar, M.A.; Gul, R.; Minakshi Sundaram, M.; Alnaser, I.A.; Sivasubramanian, R. Nano-Octahedron Cobalt Oxide Decorated Graphene Nanocomposites for the Selective/Simultaneous Detection of Dopamine. Adv. Mater. Inter. 2025, 12, 2400981. [Google Scholar] [CrossRef]
- Zhi, J.; Tian-Fang, W.; Shu-Fen, L.; Feng-Qi, Z.; Zi-Ru, L.; Cui-Mei, Y.; Yang, L.; Shang-Wen, L.; Gang-Zhui, Z. Thermal Behavior of Ammonium Perchlorate and Metal Powders of Different Grades. J. Therm. Anal. Calorim. 2006, 85, 315–320. [Google Scholar] [CrossRef]
- Gottapu, S.; Padhi, S.K.; Krishna, M.G.; Muralidharan, K. Poly(Vinylpyrrolidone) Stabilized Aluminum Nanoparticles Obtained by the Reaction of SiCl4 with LiAlH4. New J. Chem. 2015, 39, 5203–5207. [Google Scholar] [CrossRef]
- Zhou, L.; Tsai, H.-W.; Kuo, T.-W.; Kao, J.-C.; Lo, Y.-C.; Chang, J.-M.; Chiang, T.-H.; Dai, S.; Wang, K.-W.; Chen, T.-Y. Atomic Layered ZnO Between Cu Nanoparticles and a PVP Polymer Layer Enable Exceptional Selectivity and Stability in Electrocatalytic CO2 Reduction to C2H4. Adv. Sci. 2025, 12, 2501642. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.U.; Tariq, M.; Shah, M.; Iqbal, M.; Jan, M.T. Inquest of Highly Sensitive, Selective and Stable Ammonia (NH3) Gas Sensor: Structural, Morphological and Gas Sensing Properties of Polyvinylpyrrolidone (PVP)/CuO Nanocomposite. Synth. Met. 2020, 268, 116482. [Google Scholar] [CrossRef]
- Javed, R.; Ahmed, M.; Haq, I.U.; Nisa, S.; Zia, M. PVP and PEG Doped CuO Nanoparticles Are More Biologically Active: Antibacterial, Antioxidant, Antidiabetic and Cytotoxic Perspective. Mater. Sci. Eng. C 2017, 79, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.U.; Tariq, M.; Shah, M.; Jan, M.T.; Iqbal, M.; Khan, J.; Ahsan, A.R.; Rahim, A. The Efficacy of Polyvinylpyrrolidone (PVP)/CuO Nanocomposite as an Appropriate Room Temperature Humidity Sensing Material: Fabrication of Highly Sensitive Capacitive Resistive Type Humidity Sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 7698–7707. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, J.; Hu, Z.; Wang, L. Enhancement of Adsorption and Visible Light Photocatalytic Activity of the Zn2+-Doped BiOBr/PVP Modified Microspheres for RhB. Mater. Sci. Semicond. Process. 2019, 90, 112–119. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Z.; Li, W. Preparation and Self-Healing Properties of Clinker/PVP Microsphere in Cement Paste. Materials 2020, 13, 589. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kim, H.S. In Situ Synthesis and Stabilization of PVP-Coated Aluminum Nanoparticles by One-Step Pulsed Laser Ablation in Liquid: Investigation and Quantification of PVP Coverage Effects. Surf. Interfaces 2023, 43, 103594. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, S.; Zhang, L.; Xiang, G.; Wang, J.; Zeng, X.; Chen, J. Facet Effect of Co3O4 Nanocatalysts on the Catalytic Decomposition of Ammonium Perchlorate. J. Hazard. Mater. 2020, 392, 122358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Meng, C. Facile Fabrication of Fe3O4 and Co3O4 Microspheres and Their Influence on the Thermal Decomposition of Ammonium Perchlorate. J. Alloys Compd. 2016, 674, 259–265. [Google Scholar] [CrossRef]
- Cao, S.; Han, X.; Zhang, L.; Wang, J.; Luo, Y.; Zou, H.; Chen, J. Facile and Scalable Preparation of α-Fe2O3 Nanoparticle by High-Gravity Reactive Precipitation Method for Catalysis of Solid Propellants Combustion. Powder Technol. 2019, 353, 444–449. [Google Scholar] [CrossRef]
- Hao, G.; Liu, J.; Liu, H.; Xiao, L.; Qiao, Y.; Gao, H.; Jiang, W.; Zhao, F. Cu–Cr–Pb Nanocomposites: Synthesis, Characterization and Their Catalytic Effect on Thermal Decomposition of Ammonium Perchlorate. J. Therm. Anal. Calorim. 2016, 123, 263–272. [Google Scholar] [CrossRef]
- Boldyrev, V.V. Thermal Decomposition of Ammonium Perchlorate. Thermochim. Acta 2006, 443, 1–36. [Google Scholar] [CrossRef]
- Ma, G.; Ma, Z.; Zhang, Z.; Yang, Z.; Lei, Z. Synthesis and Catalytic Properties of Mesoporous Alumina Supported Aluminium Chloride with Controllable Morphology, Structure and Component. J. Porous Mater. 2012, 19, 597–604. [Google Scholar] [CrossRef]
- Liu, W.; Xie, Y.; Xie, Q.; Fang, K.; Zhang, X.; Chen, H. In Situ Synthesis of Hydrophobic Coatings: An Effective Strategy to Reduce Hygroscopicity and Catalyze Decomposition of Ammonium Perchlorate. CrystEngComm 2019, 21, 5633–5640. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, X.; Wang, J.; Zhong, K.; Chen, Y.; Li, C.; Jia, P. Bioinspired Fabrication of an Insensitive Ammonium Perchlorate Core–Shell Composite with Polydopamine Coating. Polymers 2024, 16, 1069. [Google Scholar] [CrossRef] [PubMed]
- Shahmiri, M.; Bayat, S.; Kharrazi, S. Catalytic Performance of PVP-Coated CuO Nanosheets under Environmentally Friendly Conditions. RSC Adv. 2023, 13, 13213–13223. [Google Scholar] [CrossRef] [PubMed]
Sample | Polymer Matrix | x (%) |
---|---|---|
(a) Al/AP | - | - |
(b) Al/AP | PVP | 1% |
(c) Al/AP | PVP | 3% |
(d) Al/AP | PVP | 5% |
(e) Al/CuO/AP | - | - |
(f) Al/CuO/AP | PVP | 5% |
Samples | Stage | (Tm/°C) |
---|---|---|
Al/AP | LTD | 320.5 |
HTD | 393.6 | |
Al/AP/5%PVP | HTD | 396.4 |
Al/CuO/AP | LTD | 270.6 |
HTD | 335.3 | |
Al/CuO/AP/5%PVP | LTD | 273.9 |
HTD | 315.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Wang, H.; Jiao, C.; Zhao, B.; Sun, S.; Luo, Y. PVP-Regulated Self-Assembly of High-Strength Micrometer-Scale Al/CuO/AP Energetic Microspheres with Enhanced Reactivity. Polymers 2025, 17, 1994. https://doi.org/10.3390/polym17141994
Wu X, Wang H, Jiao C, Zhao B, Sun S, Luo Y. PVP-Regulated Self-Assembly of High-Strength Micrometer-Scale Al/CuO/AP Energetic Microspheres with Enhanced Reactivity. Polymers. 2025; 17(14):1994. https://doi.org/10.3390/polym17141994
Chicago/Turabian StyleWu, Xuyang, Hongbao Wang, Chenglong Jiao, Benbo Zhao, Shixiong Sun, and Yunjun Luo. 2025. "PVP-Regulated Self-Assembly of High-Strength Micrometer-Scale Al/CuO/AP Energetic Microspheres with Enhanced Reactivity" Polymers 17, no. 14: 1994. https://doi.org/10.3390/polym17141994
APA StyleWu, X., Wang, H., Jiao, C., Zhao, B., Sun, S., & Luo, Y. (2025). PVP-Regulated Self-Assembly of High-Strength Micrometer-Scale Al/CuO/AP Energetic Microspheres with Enhanced Reactivity. Polymers, 17(14), 1994. https://doi.org/10.3390/polym17141994