Testing Low-Density Polyethylene Membranes for Lithium Isotope Electromigration System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Experimental Design in a System with Crown Ethers
2.3. Ionic-Liquid-LDPEs
2.4. Experimental Procedures
2.5. Sample Digestion
2.6. Chromatography
2.7. Isotope Ratio Measurements
2.8. Analytical Methods
2.9. Statistical Analysis
3. Results and Discussion
3.1. Driving Effects of the Migration Electric Field
3.2. Driving Effects of the Migration Time
3.3. Modeling the Driving Effects of the Voltage and Migration Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ju, H.; Wang, C.; Meng, Q.; Mao, L.; Zhou, X.; Zhang, P.; Xue, Z.; Shao, F.; Jing, Y.; Jia, Y.; et al. Electromigration separation of lithium isotopes: The effect of ionic liquid ratios. J. Mol. Liq. 2024, 393, 123526. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Q.; Han, B.; Zhou, C. Mechanism of lithium ion selectivity through membranes: A brief review. Environ. Sci. Water Res. Technol. 2024, 10, 1305–1318. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Ding, H.; Yuan, S.; Lei, S.; Wang, W.; Wen, G.; Dong, Z. Technology and principle on preferentially selective lithium extraction for spent ternary lithium batteries: A review. Sep. Purif. Technol. 2025, 355, 129691. [Google Scholar] [CrossRef]
- Wang, M.; Tan, Q.; Liu, L.; Li, J. A Facile, Environmentally Friendly, and Low-Temperature Approach for Decomposition of Polyvinylidene Fluoride from the Cathode Electrode of Spent Lithium-ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 12799–12806. [Google Scholar] [CrossRef]
- Chen, X.; Ma, H.; Luo, C.; Zhou, T. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J. Hazard. Mater. 2017, 326, 77–86. [Google Scholar] [CrossRef]
- Man, G.T.; Iordache, A.M.; Zgavarogea, R.; Nechita, C. Recycling Lithium-Ion Batteries—Technologies, Environmental, Human Health, and Economic Issues—Mini-Systematic Literature Review. Membranes 2024, 14, 277. [Google Scholar] [CrossRef]
- Cui, L.; Fan, Y.; Kang, J.; Yin, C.; Ding, W.; He, H.; Cheng, F. Novel class of crown ether functionalized ionic liquids with multiple binding sites for efficient separation of lithium isotopes. J. Mol. Liq. 2023, 376, 121412. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, P.; Meng, Q.; Xue, Z.; Zhou, X.; Ju, H.; Mao, L.; Shao, F.; Jing, Y.; Jia, Y.; et al. Electromigration separation of lithium isotopes: The effect of electrolytes. J. Environ. Chem. Eng. 2023, 11, 109933. [Google Scholar] [CrossRef]
- Chen, S.; Dong, Y.; Sun, J.; Gu, P.; Wang, J.; Zhang, S. Ionic liquids membranes for liquid separation: Status and challenges. Green Chem. 2023, 25, 5813–5835. [Google Scholar] [CrossRef]
- Cui, L.; Gao, R.; Zhang, Q.; Jiang, K.; He, H.; Ding, W.-L.; Cheng, F. Benzo-15-Crown-5 Functionalized Ionic Liquids with Enhanced Stability for Effective Separation of Lithium Isotopes: The Effect of Alkyl Chain Length. ACS Sustain. Chem. Eng. 2024, 12, 1221–1232. [Google Scholar] [CrossRef]
- Xiao, J.; Jia, Y.; Shi, C.; Wang, X.; Wang, S.; Yao, Y.; Jing, Y. Lithium isotopes separation by using benzo-15-crown-5 in eco-friendly extraction system. J. Mol. Liq. 2017, 241, 946–951. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.-M.; Godfrey, L.V. Optimisation of Lithium Chromatography for Isotopic Analysis in Geological Reference Materials by MC-ICP-MS. Geostand. Geoanal. Res. 2019, 43, 261–276. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Hu, Z.; Yang, L.; Chen, K.; Chen, H.; Zong, K.; Gao, S. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method. J. Anal. At. Spectrom. 2016, 31, 390–397. [Google Scholar] [CrossRef]
- Arienzo, I.; Liotta, M.; Brusca, L.; D’Antonio, M.; Lupone, F.; Cucciniello, C. Analytical Method for Lithium Isotopes Determination by Thermal Ionization Mass Spectrometry: A Useful Tool for Hydrogeochemical Applications. Water 2020, 12, 2182. [Google Scholar] [CrossRef]
- Zeger, S.L.; Karim, M.R. Generalized Linear Models with Random Effects; a Gibbs Sampling Approach. J. Am. Stat. Assoc. 1991, 86, 79–86. [Google Scholar] [CrossRef]
- Xu, S.; Ferreira, M.A.R.; Porter, E.M.; Franck, C.T. Bayesian model selection for generalized linear mixed models. Biometrics 2023, 79, 3266–3278. [Google Scholar] [CrossRef]
- Verrall, R.J. A Bayesian Generalized Linear Model for the Bornhuetter-Ferguson Method of Claims Reserving. N. Am. Actuar. J. 2004, 8, 67–89. [Google Scholar] [CrossRef]
- Iordache, A.M.; Nasture, A.M.; Zgavarogea, R.; Andrei, R.; Mandoc, R.; Feizula, E.; Santos, R.; Nechita, C. Lithium Isotope Separation Using the 15-Crown-5 Ether System and Laboratory-Made Membranes. Materials 2025, 18, 2016. [Google Scholar] [CrossRef]
- Zeng, Y.; Pei, H.; Wang, Z.; Yan, F.; Li, J.; Cui, Z.; He, B. Chitosan-graft-benzo-15-crown-5-ether/PVA Blend Membrane with Sponge-Like Pores for Lithium Isotope Adsorptive Separation. ACS Omega 2018, 3, 554–561. [Google Scholar] [CrossRef]
- Otake, K.; Suzuki, T.; Kim, H.-J.; Nomura, M.; Fujii, Y. Novel syntheses method of phenol type benzo-15-crown-5 ether resin and its application for lithium isotope separation. J. Nucl. Sci. Technol. 2006, 43, 419–422. [Google Scholar] [CrossRef]
- Yan, F.; Liu, H.; Pei, H.; Li, J.; Cui, Z.; He, B. Polyvinyl alcohol-graft-benzo-15-crown-5 ether for lithium isotopes separation by liquid–solid extraction. J. Radioanal. Nucl. Chem. 2017, 311, 2061–2068. [Google Scholar] [CrossRef]
- Ting, Z.; Feng, Y.; Jianxin, L.; He, B.; Wei, L.; Dongfa, G.; Jianyong, C. Preparation and characterization of chitosan graft 4′-ormoxylbenzo-15-crown-5-ether for lithium isotopes separation. Chin. J. Colloid. Polym 2015, 33, 3–6. [Google Scholar]
- Sun, H.; Jia, Y.; Liu, B.; Jing, Y.; Zhang, Q.; Shao, F.; Yao, Y. Separation of lithium isotopes by using solvent extraction system of crown ether-ionic liquid. Fusion Eng. Des. 2019, 149, 111338. [Google Scholar] [CrossRef]
- Wang, M.; Sun, J.; Zhang, P.; Huang, C.; Zhang, Q.; Shao, F.; Jing, Y.; Jia, Y. Lithium isotope separation by electromigration. Chem. Phys. Lett. 2020, 746, 137290. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, X.; Meng, Q.; Zhang, P.; Shao, F.; Li, X.; Li, H.; Mao, L.; Zheng, T.; Jing, Y.; et al. Electromigration separation of lithium isotopes with B12C4, B15C5 and B18C6 systems. New J. Chem. 2024, 48, 6676–6687. [Google Scholar] [CrossRef]
- Hoshino, T.; Terai, T. Basic technology for 6Li enrichment using an ionic-liquid impregnated organic membrane. J. Nucl. Mater. 2011, 417, 696–699. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes. J. Membr. Sci. 2019, 580, 62–76. [Google Scholar] [CrossRef]
- Zavahir, S.; Riyaz, N.S.; Elmakki, T.; Tariq, H.; Ahmad, Z.; Chen, Y.; Park, H.; Ho, Y.-C.; Shon, H.K.; Han, D.S. Ion-imprinted membranes for lithium recovery: A review. Chemosphere 2024, 354, 141674. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, P.; Ju, H.; Xue, Z.; Zhou, X.; Mao, L.; Shao, F.; Zou, X.; Jing, Y.; Jia, Y.; et al. Electromigration separation of lithium isotopes: The multiple roles of crown ethers. Chem. Phys. Lett. 2022, 787, 139265. [Google Scholar] [CrossRef]
- Phougat, M.; Sahni, N.S.; Choudhury, D. Multiway Analysis Reveals Hydrophobicity as the Sole Determinant of Dynamic Peptide–Acetonitrile–Water Association Behavior. J. Phys. Chem. B 2023, 127, 6144–6153. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Shigehara, S.; Alavi, S.; Ohmura, R. Surface tension of aqueous solutions of large organic salts: Tetrabutylammonium acetate solutions. J. Mol. Liq. 2024, 404, 124969. [Google Scholar] [CrossRef]
- Shi, C.; Jia, Y.; Xiao, J.; Wang, X.; Yao, Y.; Jing, Y. Lithium isotope separation by liquid-liquid extraction using ionic liquid system containing dibenzo-14-crown-4. J. Mol. Liq. 2016, 224, 662–667. [Google Scholar] [CrossRef]
- Cui, L.; Li, S.; Kang, J.; Yin, C.; Guo, Y.; He, H.; Cheng, F. A novel ion-pair strategy for efficient separation of lithium isotopes using crown ethers. Sep. Purif. Technol. 2021, 274, 118989. [Google Scholar] [CrossRef]
No. Exp. | Impregnation Before EMP | Membrane | C[M]Li | E [V] | Crown Ether |
---|---|---|---|---|---|
1 | non-impregnated | M1 (LDPE-low-density polyethylene commercial membrane) | 1 mol/L Li[NTf2] in organic solution | 5–15 | 4Nitrobenzo-15-crown-5 |
2 | M5 (LDPE-low-density polyethylene commercial membrane) | 0.5 mol/L Li[NTf2] in 0.1 M TBAP/CH3CN | 5–15 | 15-crown-5 | |
3 | M7 (LDPE-low-density polyethylene commercial membrane) | 1 mol/L Li[NTf2] in 0.1 M TBAP/CH3CN | 5–15 | 15-crown-5 | |
4 | impregnated | M2 (soaked for 2.5 h in 1 mol/L LiNTf2 in organic solution (NTf2: anisol, 7:3, v/v)) | 1 mol/L Li[NTf2] in organic solution | 5–15 | 15-crown-5 |
5 | M3 ((soaked for 2.5 h in 1 mol/L LiNTf2 in organic solution (NTf2: anisol, 7:3, v/v)) | 1 mol/L Li[NTf2] in organic solution | 5–15 | 4Nitrobenzo-15-crown-5 | |
6 | M4 ((soaked for 2.5 h in 1 mol/L LiNTf2 in organic solution (NTf2: anisol, 7:3, v/v)) | 1 mol/L Li[NTf2] in organic solution | 5–15 | 4Nitrobenzo-15-crown-5 | |
7 | M6 (activation with H2SO4 for 2 h, soaked for 24 h in 0.5 mol/L LiNTf2 in organic solution (NTf2: anisol, 7:3, v/v)) | 0.5 mol/L Li[NTf2] in 0.1 M TBAP/CH3CN | 5–15 | 15-crown-5 |
Parameter (ICP-MS) | Specification | Column Characteristics | Specification |
---|---|---|---|
Plasma gas flow | 9.0 L/min | Column material | Polypropylene (Econo-Pac®, Bio Rad, Hercules, CA, USA) |
Auxiliary gas flow | 1.5 L/min | Internal diameter | 1.5 mm |
Sheath gas flow | 0.0 L/min | Resin type | AG 50W-X8 (200–400 mesh size) |
Nebulizer gas flow | 1.00 L/min (MicroMistTM) | Resin volume | 14 mL (wet) |
Sampling depth | 5.0 mm | Resin capacity | 24.4 meq (1.74 meq/mL wet capacity) |
Plasma RF power | 0.90 kW | Resin height | 80 mm |
Cones | Ni cones | Flow rate | 0.28 mL/min |
Pump rate | 10 rpm | Load sample | 1 mL in 0.7 mol/L HNO3 |
Stabilization delay | 30 s | Load | 14–23 meq/mL |
Dwell time | 6Li—130,000 μs 7Li—10,000 μs | Pre-wash | 6 N/L HCl (three column volume) |
Scan | 999 | Conditioning | 0.7 mol/L HNO3 (three column volume) |
Replicates | 6 | Elution matrix | 0.7 mol/L HNO3 (three column volume) |
Total acquisition time | 15 min | Lithium fraction | 32 to 57 g |
Recovery | 45 mL | Lithium fraction | 85–109% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iordache, A.M.; Zgavarogea, R.; Nasture, A.M.; Feizula, E.; Ionete, R.E.; Santos, R.; Nechita, C. Testing Low-Density Polyethylene Membranes for Lithium Isotope Electromigration System. Materials 2025, 18, 2519. https://doi.org/10.3390/ma18112519
Iordache AM, Zgavarogea R, Nasture AM, Feizula E, Ionete RE, Santos R, Nechita C. Testing Low-Density Polyethylene Membranes for Lithium Isotope Electromigration System. Materials. 2025; 18(11):2519. https://doi.org/10.3390/ma18112519
Chicago/Turabian StyleIordache, Andreea Maria, Ramona Zgavarogea, Ana Maria Nasture, Erdin Feizula, Roxana Elena Ionete, Rui Santos, and Constantin Nechita. 2025. "Testing Low-Density Polyethylene Membranes for Lithium Isotope Electromigration System" Materials 18, no. 11: 2519. https://doi.org/10.3390/ma18112519
APA StyleIordache, A. M., Zgavarogea, R., Nasture, A. M., Feizula, E., Ionete, R. E., Santos, R., & Nechita, C. (2025). Testing Low-Density Polyethylene Membranes for Lithium Isotope Electromigration System. Materials, 18(11), 2519. https://doi.org/10.3390/ma18112519