Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,273)

Search Parameters:
Keywords = peptide modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 2824 KiB  
Review
Assessing Milk Authenticity Using Protein and Peptide Biomarkers: A Decade of Progress in Species Differentiation and Fraud Detection
by Achilleas Karamoutsios, Pelagia Lekka, Chrysoula Chrysa Voidarou, Marilena Dasenaki, Nikolaos S. Thomaidis, Ioannis Skoufos and Athina Tzora
Foods 2025, 14(15), 2588; https://doi.org/10.3390/foods14152588 - 23 Jul 2025
Abstract
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a [...] Read more.
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a focus on the discovery and application of protein and peptide biomarkers for species differentiation and fraud detection. Recent innovations in both top-down and bottom-up proteomics have markedly improved the sensitivity and specificity of detecting key molecular targets, including caseins and whey proteins. Peptide-based methods are especially valuable in processed dairy products due to their thermal stability and resilience to harsh treatment, although their species specificity may be limited when sequences are conserved across related species. Robust chemometric approaches are increasingly integrated with proteomic pipelines to handle high-dimensional datasets and enhance classification performance. Multivariate techniques, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), are frequently employed to extract discriminatory features and model adulteration scenarios. Despite these advances, key challenges persist, including the lack of standardized protocols, variability in sample preparation, and the need for broader validation across breeds, geographies, and production systems. Future progress will depend on the convergence of high-resolution proteomics with multi-omics integration, structured data fusion, and machine learning frameworks, enabling scalable, specific, and robust solutions for milk authentication in increasingly complex food systems. Full article
Show Figures

Figure 1

25 pages, 4499 KiB  
Article
What Is Similar, What Is Different? Characterization of Mitoferrin-like Proteins from Arabidopsis thaliana and Cucumis sativus
by Karolina Małas, Ludmiła Polechońska and Katarzyna Kabała
Int. J. Mol. Sci. 2025, 26(15), 7103; https://doi.org/10.3390/ijms26157103 (registering DOI) - 23 Jul 2025
Abstract
Chloroplasts, as the organelles primarily responsible for photosynthesis, require a substantial supply of iron ions. Conversely, due to Fe toxicity, the homeostasis of these ions is subject to tight regulation. Permease in chloroplast 1 (PIC1) has been identified as the primary iron importer [...] Read more.
Chloroplasts, as the organelles primarily responsible for photosynthesis, require a substantial supply of iron ions. Conversely, due to Fe toxicity, the homeostasis of these ions is subject to tight regulation. Permease in chloroplast 1 (PIC1) has been identified as the primary iron importer into chloroplasts. However, previous studies suggested the existence of a distinct pathway for Fe transfer to chloroplasts, likely involving mitoferrin-like 1 (MFL1) protein. In this work, Arabidopsis MFL1 (AtMFL1) and its cucumber homolog (CsMFL1) were characterized using, among others, Arabidopsis protoplasts as well as both yeast and Arabidopsis mutants. Localization of both proteins in chloroplasts has been shown to be mediated via an N-terminal transit peptide. At the gene level, MFL1 expression profiles differed between the model plant and the crop plant under varying Fe availability. The expression of other genes involved in chloroplast Fe homeostasis, including iron acquisition, trafficking, and storage, was affected to some extent in both AtMFL1 knockout and overexpressing plants. Moreover, root growth and photosynthetic parameters changed unfavorably in the mutant lines. The obtained results imply that AtMFL1 and CsMFL1, as putative chloroplast iron transporters, play a role in both iron management and the proper functioning of the plant. Full article
(This article belongs to the Special Issue New Insights in Plant Cell Biology)
Show Figures

Figure 1

17 pages, 15835 KiB  
Article
Gut Microbial Metabolites of Tryptophan Augment Enteroendocrine Cell Differentiation in Human Colonic Organoids: Therapeutic Potential for Dysregulated GLP1 Secretion in Obesity
by James Hart, Hassan Mansour, Harshal Sawant, Morrison Chicko, Subha Arthur, Jennifer Haynes and Alip Borthakur
Int. J. Mol. Sci. 2025, 26(15), 7080; https://doi.org/10.3390/ijms26157080 - 23 Jul 2025
Abstract
Enteroendocrine cells (EECs) are specialized secretory cells in the gut epithelium that differentiate from intestinal stem cells (ISCs). Mature EECs secrete incretin hormones that stimulate pancreatic insulin secretion and regulate appetite. Decreased EEC numbers and impaired secretion of the incretin glucagon-like peptide-1 (GLP1) [...] Read more.
Enteroendocrine cells (EECs) are specialized secretory cells in the gut epithelium that differentiate from intestinal stem cells (ISCs). Mature EECs secrete incretin hormones that stimulate pancreatic insulin secretion and regulate appetite. Decreased EEC numbers and impaired secretion of the incretin glucagon-like peptide-1 (GLP1) have been implicated in obesity-associated metabolic complications. Gut microbial metabolites of dietary tryptophan (TRP) were recently shown to modulate ISC proliferation and differentiation. However, their specific effects on EEC differentiation are not known. We hypothesized that the gut microbial metabolites of dietary tryptophan counteract impaired GLP1 production and function in obesity by stimulating EEC differentiation from ISCs. We utilized complementary models of human and rat intestines to determine the effects of obesity or TRP metabolites on EEC differentiation. EEC differentiation was assessed by the EEC marker chromogranin A (CHGA) levels in the intestinal mucosa of normal versus obese rats. The effects of TRP metabolites on EEC differentiation were determined in human intestinal organoids treated with indole, a primary TRP metabolite, or the culture supernatant of Lactobacillus acidophilus grown in TRP media (LA-CS-TRP). Our results showed that the mRNA and protein levels of CHGA, the EEC marker, were significantly decreased (~60%) in the intestinal mucosa of high-fat-diet-induced obese rat intestines. The expression of the transcription factors that direct the ISC differentiation towards the EEC lineage was also decreased in obesity. In human organoids, treatment with indole or LA-CS-TRP significantly increased (more than 2-fold) CHGA levels, which were blocked by the aryl hydrocarbon receptor (AhR) antagonist CH-223191. Thus, the stimulation of EEC differentiation by colonic microbial metabolites highlights a novel therapeutic role of TRP metabolites in obesity and associated metabolic disorders. Full article
Show Figures

Figure 1

18 pages, 46227 KiB  
Article
Hydroxyapatite Scaffold and Bioactive Factor Combination as a Tool to Improve Osteogenesis, In Vitro and In Vivo Experiments Using Phage Display Technology
by Debora Lo Furno, Ivana R. Romano, Vincenzo Russo, Maria G. Rizzo, Giuliana Mannino, Giovanna Calabrese, Rosario Giuffrida, Simona D’Aprile, Lucia Salvatorelli, Gaetano Magro, Riccardo Bendoni, Laura Dolcini, Agata Zappalà, Salvatore P. P. Guglielmino, Sabrina Conoci and Rosalba Parenti
Int. J. Mol. Sci. 2025, 26(15), 7040; https://doi.org/10.3390/ijms26157040 - 22 Jul 2025
Viewed by 30
Abstract
Mesenchymal stem cells have been widely investigated in the field of regenerative medicine and also used as a model to study the differentiation-induction properties of a variety of biomaterials. This study evaluates the osteoinductive potential of novel hydroxyapatite scaffolds functionalized with a phage-displayed [...] Read more.
Mesenchymal stem cells have been widely investigated in the field of regenerative medicine and also used as a model to study the differentiation-induction properties of a variety of biomaterials. This study evaluates the osteoinductive potential of novel hydroxyapatite scaffolds functionalized with a phage-displayed peptide (SC1) selected via biopanning for its similarity to bone matrix proteins. The peptide, identified through sequence alignment as a mimotope of osteonectin (SPARC), was used to functionalize scaffolds. Results from SC1 were gathered at different time points (14, 28 and 46 days) and compared with those from nonfunctionalized hydroxyapatite (HA) scaffolds. In vitro experiments, by seeding human adipose-derived stem cells (hASCs), indicated satisfactory biocompatibility for both types of scaffolds. Histochemical observations showed that SC1, better than HA scaffolds, was able to improve hASC osteogenic differentiation, as evaluated through Alizarin Red staining (showing on average a darker staining of 100%). An increase was also observed, especially at early stages (14 days), for osterix (up to 60% increase) and osteonectin immunoexpression (up to 50% increase). In in vivo experiments, cell-free scaffolds of both types were subcutaneously implanted into the backs of mice and analyzed after 2, 4, 8 and 16 weeks. Also, in this case, SC1 more effectively promoted the osteogenic differentiation of infiltrated resident cells. In particular, increased immunoexpression of osterix and osteonectin (+30% and 35%, respectively) was found already at 2 weeks. It can be concluded that SC1 scaffolds may represent a valuable tool to address critical-sized bone defects. Full article
(This article belongs to the Special Issue Biomedical Applications of Mesenchymal Stem Cells)
Show Figures

Figure 1

20 pages, 8740 KiB  
Article
Agomelatine Ameliorates Cognitive and Behavioral Deficits in Aβ-Induced Alzheimer’s Disease-like Rat Model
by Raviye Ozen Koca, Z. Isik Solak Gormus, Hatice Solak, Burcu Gultekin, Ayse Ozdemir, Canan Eroglu Gunes, Ercan Kurar and Selim Kutlu
Medicina 2025, 61(8), 1315; https://doi.org/10.3390/medicina61081315 - 22 Jul 2025
Viewed by 32
Abstract
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four [...] Read more.
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four groups: Control (C), Alzheimer’s disease-like model (AD), Alzheimer’s disease-like model treated with Ago (ADAgo), and Ago alone (Ago). Physiological saline was injected intrahippocampally in C and Ago animals, whereas Aβ peptide was delivered similarly in AD and ADAgo rats. On day 15, 0.9% NaCl was administered to the C and AD groups, and Agomelatine (1 mg/kg/day) was infused into ADAgo and Ago rats via osmotic pumps for 30 days. Behavioral functions were evaluated using Open Field (OF), Forced Swim (FST), and Morris Water Maze (MWM) tests. Brain tissues were examined histopathologically. Neuritin, Nestin, DCX, NeuN, BDNF, MASH1, MT1, and MT2 transcripts were quantified by real-time PCR. Statistical analyses were performed in R 4.3.1, with p < 0.05 deemed significant. Results: In the FST, swimming, climbing, immobility time, and mobility percentage differed significantly among groups (p < 0.05). In the MWM, AD rats exhibited impaired learning and memory that was ameliorated by Ago treatment (p < 0.05). DCX expression decreased in AD rats but was elevated by Ago (p < 0.05). Nestin levels differed significantly between control and AD animals; MT1 expression varied between control and AD cohorts; and MT2 transcript levels were significantly lower in AD, ADAgo, and Ago groups compared to C (all p < 0.05). Conclusions: Ago exhibits antidepressant-like activity in this experimental AD model and may enhance cognitive function via mechanisms beyond synaptic plasticity and neurogenesis. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

17 pages, 615 KiB  
Article
Effects of 4:3 Intermittent Fasting on Eating Behaviors and Appetite Hormones: A Secondary Analysis of a 12-Month Behavioral Weight Loss Intervention
by Matthew J. Breit, Ann E. Caldwell, Danielle M. Ostendorf, Zhaoxing Pan, Seth A. Creasy, Bryan Swanson, Kevin Clark, Emily B. Hill, Paul S. MacLean, Daniel H. Bessesen, Edward L. Melanson and Victoria A. Catenacci
Nutrients 2025, 17(14), 2385; https://doi.org/10.3390/nu17142385 - 21 Jul 2025
Viewed by 133
Abstract
Background/Objectives: Daily caloric restriction (DCR) is a common dietary weight loss strategy, but leads to metabolic and behavioral adaptations, including maladaptive eating behaviors and dysregulated appetite. Intermittent fasting (IMF) may mitigate these effects by offering diet flexibility during energy restriction. This secondary analysis [...] Read more.
Background/Objectives: Daily caloric restriction (DCR) is a common dietary weight loss strategy, but leads to metabolic and behavioral adaptations, including maladaptive eating behaviors and dysregulated appetite. Intermittent fasting (IMF) may mitigate these effects by offering diet flexibility during energy restriction. This secondary analysis compared changes in eating behaviors and appetite-related hormones between 4:3 intermittent fasting (4:3 IMF) and DCR and examined their association with weight loss over 12 months. Methods: Adults with overweight or obesity were randomized to 4:3 IMF or DCR for 12 months. Both randomized groups received a matched targeted weekly dietary energy deficit (34%), comprehensive group-based behavioral support, and a prescription to increase moderate-intensity aerobic activity to 300 min/week. Eating behaviors were assessed using validated questionnaires at baseline and months 3, 6, and 12. Fasting levels of leptin, ghrelin, peptide YY, brain-derived neurotrophic factor, and adiponectin were measured at baseline and months 6 and 12. Linear mixed models and Pearson correlations were used to evaluate outcomes. Results: Included in this analysis were 165 adults (mean ± SD; age 42 ± 9 years, BMI 34.2 ± 4.3 kg/m2, 74% female) randomized to 4:3 IMF (n = 84) or DCR (n = 81). At 12 months, binge eating and uncontrolled eating scores decreased in 4:3 IMF but increased in DCR (p < 0.01 for between-group differences). Among 4:3 IMF, greater weight loss was associated with decreased uncontrolled eating (r = −0.27, p = 0.03), emotional eating (r = −0.37, p < 0.01), and increased cognitive restraint (r = 0.35, p < 0.01) at 12 months. There were no between-group differences in changes in fasting appetite-related hormones at any time point. Conclusions: Compared to DCR, 4:3 IMF exhibited improved binge eating and uncontrolled eating behaviors at 12 months. This may, in part, explain the greater weight loss achieved by 4:3 IMF versus DCR. Future studies should examine mechanisms underlying eating behavior changes with 4:3 IMF and their long-term sustainability. Full article
(This article belongs to the Special Issue Intermittent Fasting: Health Impacts and Therapeutic Potential)
Show Figures

Graphical abstract

29 pages, 15117 KiB  
Article
Reduction in SH-SY5Y Cell Stress Induced by Corticosterone and Attenuation of the Inflammatory Response in RAW 264.7 Cells Using Endomorphin Analogs
by Renata Perlikowska, Angelika Długosz-Pokorska, Małgorzata Domowicz, Sylwia Grabowicz, Mariusz Stasiołek and Małgorzata Zakłos-Szyda
Biomedicines 2025, 13(7), 1774; https://doi.org/10.3390/biomedicines13071774 - 20 Jul 2025
Viewed by 209
Abstract
Background: To identify drug candidates that reduce cellular stress, linear peptides known as endomorphin (EM) analogs containing proline surrogates in position 2 were tested in in vitro injury models induced by corticosterone (CORT). Methods: In this study, neuroblastoma (SH-SY5Y) cells were treated with [...] Read more.
Background: To identify drug candidates that reduce cellular stress, linear peptides known as endomorphin (EM) analogs containing proline surrogates in position 2 were tested in in vitro injury models induced by corticosterone (CORT). Methods: In this study, neuroblastoma (SH-SY5Y) cells were treated with CORT and synthesized peptides, and then the cell viability and morphology, reactive oxygen species production (ROS), mitochondrial membrane potential (ΔΨm), adenosine triphosphate (ATP), and intracellular calcium ion [Ca2+]i levels were evaluated. We also conducted an in-depth analysis of the apoptosis markers using quantitative real-time PCR (qPCR). Finally, we explore the brain-derived neurotrophic factor (BDNF) expression (qPCR) and protein levels (ELI-SA and Western blot). Results: The strongest neuroprotective effect in the CORT-induced stress model was shown by peptide 3 and peptide 7 (in the following sequence Tyr-Inp-Trp-Phe-NH2 and Tyr-Inp-Phe-Phe-NH2, respectively). These peptides significantly improved cell viability and reduced oxidative stress in CORT-treated cells. Conclusions: Their neuroprotective potential appears linked to anti-apoptotic effects, along with in-creased BDNF expression. Moreover, in the lipopolysaccharide (LPS)- and interferon-γ (IFN-γ)-induced damage model in macrophage RAW 264.7 cells, these two peptides reduced the secretion of inflammatory mediators nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Peptides exhibiting both neuroprotective and anti-inflammatory properties warrant further investigation as potential therapeutic agents. Full article
Show Figures

Figure 1

15 pages, 1609 KiB  
Article
Expanding the Antiviral Spectrum of Scorpion-Derived Peptides Against Toscana Virus and Schmallenberg Virus
by Rosa Giugliano, Carla Zannella, Roberta Della Marca, Annalisa Chianese, Laura Di Clemente, Alessandra Monti, Nunzianna Doti, Federica Cacioppo, Valentina Iovane, Serena Montagnaro, Simona De Grazia, Massimiliano Galdiero and Anna De Filippis
Pathogens 2025, 14(7), 713; https://doi.org/10.3390/pathogens14070713 - 19 Jul 2025
Viewed by 219
Abstract
Toscana virus (TOSV) and Schmallenberg virus (SBV) are arthropod-borne viruses from the Bunyaviricetes class, posing significant human and animal health threats. TOSV, endemic to the Mediterranean region, is a notable human pathogen detected in various animals, suggesting potential zoonotic reservoirs. SBV emerged in [...] Read more.
Toscana virus (TOSV) and Schmallenberg virus (SBV) are arthropod-borne viruses from the Bunyaviricetes class, posing significant human and animal health threats. TOSV, endemic to the Mediterranean region, is a notable human pathogen detected in various animals, suggesting potential zoonotic reservoirs. SBV emerged in Europe in 2011, affecting ruminants and causing reproductive issues, with substantial economic implications. The rapid spread of both viruses underscores the need for novel antiviral strategies. Host defense peptides (HDPs), particularly those derived from scorpion venom, are gaining attention for their antiviral potential. This study investigated pantinin-1 and pantinin-2 for their inhibitory activity against TOSV and SBV by plaque reduction assay, tissue culture infective dose (TCID50) determination, and the analysis of M gene expression via qPCR. Both peptides exhibited potent virucidal activity, with IC50 values of approximately 10 µM, depending on the specific in vitro cell model used. Additionally, the selectivity index (SI) values were favorable across all virus/cell line combinations, with particularly optimal results observed for pantinin-2. In human U87-MG neuronal cells, both peptides effectively blocked TOSV infection, a critical finding given the virus’s association with neurological conditions like encephalitis. The strong efficacy of these peptides against these viruses underscores the broader applicability of venom-derived peptides as promising antiviral agents, particularly in the context of emerging viral pathogens and increasing resistance to conventional therapeutics. Further studies are needed to optimize their antiviral potency and to assess their safety in vivo using animal models. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

25 pages, 1330 KiB  
Review
Cardioprotection Reloaded: Reflections on 40 Years of Research
by Pasquale Pagliaro, Giuseppe Alloatti and Claudia Penna
Antioxidants 2025, 14(7), 889; https://doi.org/10.3390/antiox14070889 - 18 Jul 2025
Viewed by 457
Abstract
Over the past four decades, cardioprotective research has revealed an extraordinary complexity of cellular and molecular mechanisms capable of mitigating ischemia/reperfusion injury (IRI). Among these, ischemic conditioning has emerged as one of the most influential discoveries: brief episodes of ischemia followed by reperfusion [...] Read more.
Over the past four decades, cardioprotective research has revealed an extraordinary complexity of cellular and molecular mechanisms capable of mitigating ischemia/reperfusion injury (IRI). Among these, ischemic conditioning has emerged as one of the most influential discoveries: brief episodes of ischemia followed by reperfusion activate protective programs that reduce myocardial damage. These effects can be elicited locally (pre- or postconditioning) or remotely (remote conditioning), acting mainly through paracrine signaling and mitochondria-linked kinase pathways, with both early and delayed windows of protection. We have contributed to clarifying the roles of mitochondria, oxidative stress, prosurvival kinases, connexins, extracellular vesicles, and sterile inflammation, particularly via activation of the NLRP3 inflammasome. Despite robust preclinical evidence, clinical translation of these approaches has remained disappointing. The challenges largely stem from experimental models that poorly reflect real-world clinical settings—such as advanced age, comorbidities, and multidrug therapy—as well as the reliance on surrogate endpoints that do not reliably predict clinical outcomes. Nevertheless, interest in multi-target protective strategies remains strong. New lines of investigation are focusing on emerging mediators—such as gasotransmitters, extracellular vesicles, and endogenous peptides—as well as targeted modulation of inflammatory responses. Future perspectives point toward personalized cardioprotection tailored to patient metabolic and immune profiles, with special attention to high-risk populations in whom IRI continues to represent a major clinical challenge. Full article
Show Figures

Figure 1

15 pages, 1526 KiB  
Systematic Review
Weight Loss Effects of Once-Weekly Semaglutide 2.4 mg in Adults with and Without Type 2 Diabetes: A Systematic Review and Meta-Analysis
by Boram Hong, Haesoo Kim, Daeun Lee and Kisok Kim
Pharmaceuticals 2025, 18(7), 1058; https://doi.org/10.3390/ph18071058 - 18 Jul 2025
Viewed by 370
Abstract
Background/Objectives: Semaglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, is a well-established pharmacologic agent for inducing weight loss in individuals with obesity and is prescribed regardless of type 2 diabetes mellitus (DM) status. However, it remains unclear whether the weight-lowering efficacy of semaglutide [...] Read more.
Background/Objectives: Semaglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, is a well-established pharmacologic agent for inducing weight loss in individuals with obesity and is prescribed regardless of type 2 diabetes mellitus (DM) status. However, it remains unclear whether the weight-lowering efficacy of semaglutide differs significantly between individuals with and without DM. To address this question, we conducted a systematic review and meta-analysis comparing the effects of once-weekly subcutaneous semaglutide at 2.4 mg on weight loss in adults with and without DM. Methods: A comprehensive literature search was performed using the PubMed database to identify randomized controlled trials (RCTs) involving overweight or obese adults receiving semaglutide at 2.4 mg weekly for 40 to 70 weeks. Using a random-effects model, we estimated the weighted mean differences in body weight reduction between the two groups. Nine RCTs met the inclusion criteria, among which two provided subgroup data for participants with and without DM within the same trial population. Registration number in PROSPERO: CRD420251077610. Results: In participants with DM (n = 4 studies), semaglutide was associated with a weighted mean body weight reduction of −6.34% (95% confidence interval: −6.98 to −5.69), with negligible heterogeneity across studies (I2 = 0.0%). By contrast, among participants without DM (n = 7 studies), the weighted estimate of weight loss was −11.57% (95% confidence interval: −12.94 to −10.19), with moderate heterogeneity observed (I2 = 63.6%). Conclusions: The observed difference in weight loss efficacy between the groups was clinically meaningful. While once-weekly semaglutide at 2.4 mg elicited significant weight loss in both populations, the magnitude of effect was notably greater in those without DM. This disparity may be explained by metabolic characteristics frequently present in individuals with DM, such as insulin resistance, hyperinsulinemia, and compensatory mechanisms related to glycemic control. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

16 pages, 711 KiB  
Article
Factors Associated with Clinically Important Changes in Quality of Life of Heart Failure Patients: The QUALIFIER Prospective Cohort Study
by Irene Marques, Milton Severo, António Gomes Pinto, Cândida Fonseca and Henrique Cyrne Carvalho
J. Clin. Med. 2025, 14(14), 5079; https://doi.org/10.3390/jcm14145079 - 17 Jul 2025
Viewed by 157
Abstract
Background/Objectives: We aimed to identify the factors associated with clinically important changes in quality of life (QoL) of real-world heart failure (HF) patients. Methods: This is a single-centre, prospective cohort study including 419 patients at an HF clinic between January 2013 [...] Read more.
Background/Objectives: We aimed to identify the factors associated with clinically important changes in quality of life (QoL) of real-world heart failure (HF) patients. Methods: This is a single-centre, prospective cohort study including 419 patients at an HF clinic between January 2013 and February 2020. QoL was assessed regularly using Minnesota Living with Heart Failure Questionnaire (MLHFQ). We used five nested linear mixed-effects models to account for QoL measurements between patients and within-patient. Models were adjusted for time, sociodemographic factors, comorbidities, self-care adherence, and HF severity factors. Results: Median age was 78 years, 54.4% of patients were female, and 49.6% had left ventricle ejection fraction ≥ 50%. At baseline, 62.5% of patients were New York Heart Association (NYHA) class II. Median N-terminal-pro-B type natriuretic peptide level was 1454 pg/mL. Mean MLHFQ total score at baseline was 25 points (95%CI: 22.97–27.60). Having an implanted cardiac resynchronization therapy-pacemaker (CRT-P) was associated with moderate to large improvement in QoL (−13.55 points, 95%CI: −22.45–−4.65). NYHA class II and estimated glomerular filtration rate < 30 mL/min/1.73 m2 were associated with small to moderate QoL deterioration (9.74 points, 95%CI: 6.74–12.75 and 5.82 points, 95%CI: 1.17–10.47, respectively). NYHA classes III or IV and a recent HF hospitalization were associated with large to very large QoL deterioration (28.39 points, 95%CI: 23.82–32.96; 60.59 points, 95%CI: 34.46–86.72; and 26.91 points, 95%CI: 21.80–32.03, respectively). Conclusions: CRT-P implantation, NYHA class and HF hospitalization are associated with the most clinically important QoL changes. Full article
(This article belongs to the Special Issue Clinical Challenges in Heart Failure Management)
Show Figures

Figure 1

12 pages, 706 KiB  
Article
Long-Term Hemostatic and Endothelial Dysregulation Associated with Cardiovascular Events in Survivors of COVID-19 Previously Admitted to the ICU
by Raquel Behar-Lagares, Ana Virseda-Berdices, Óscar Martínez-González, Rafael Blancas, Óscar Brochado-Kith, Eva Manteiga, Paula Muñoz-García, María Jose Mallol Poyato, Jorge Molina del Pozo, Marcela Homez-Guzmán, María A. Alonso Fernández, Salvador Resino, María Á. Jiménez-Sousa and Amanda Fernández-Rodríguez
Int. J. Mol. Sci. 2025, 26(14), 6854; https://doi.org/10.3390/ijms26146854 - 17 Jul 2025
Viewed by 176
Abstract
Post-acute sequelae of COVID-19 have been associated with an elevated risk of thromboembolism and adverse cardiovascular events (CVEs). We aim to evaluate whether alterations in poorly studied hemostatic and endothelial proteins are associated with CVEs in patients previously admitted to the ICU and [...] Read more.
Post-acute sequelae of COVID-19 have been associated with an elevated risk of thromboembolism and adverse cardiovascular events (CVEs). We aim to evaluate whether alterations in poorly studied hemostatic and endothelial proteins are associated with CVEs in patients previously admitted to the ICU and evaluated one year post-discharge. We carried out a cross-sectional study involving 63 COVID-19 patients previously admitted to the ICU one year post-discharge. Plasma levels of factor IX (coagulation factor), protein C, protein S (natural anticoagulant), and von Willebrand factor (VWF, an endothelial marker) were measured using a Luminex 200™ analyzer. Generalized linear models (GLMs) were used to assess the association of these coagulation proteins with CVEs and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We found that lower levels of factor IX (p = 0.011), protein C (p = 0.028), and protein S (p = 0.008) were associated with CVEs one year after ICU discharge. Additionally, at the one-year follow-up, we found lower levels of factor IX (p = 0.002) and higher levels of VWF (p = 0.006) associated with higher levels of NT-proBNP, underscoring the involvement of both hemostatic imbalance and persistent endothelial dysfunction. Our findings revealed a gender-specific pattern of associations with NT-proBNP levels. These findings highlight the significant role of persistent hemostatic imbalance and endothelial dysfunction in the development of cardiovascular abnormalities among COVID-19 survivors discharged from the ICU. Full article
Show Figures

Graphical abstract

21 pages, 4209 KiB  
Article
The Upregulation of L1CAM by SVHRSP Mitigates Neuron Damage, Spontaneous Seizures, and Cognitive Dysfunction in a Kainic Acid-Induced Rat Model of Epilepsy
by Zhen Li, Biying Ge, Haoqi Li, Chunyao Huang, Yunhan Ji, Melitta Schachner, Shengming Yin, Sheng Li and Jie Zhao
Biomolecules 2025, 15(7), 1032; https://doi.org/10.3390/biom15071032 - 17 Jul 2025
Viewed by 287
Abstract
Temporal lobe epilepsy (TLE) is a common drug-resistant form of epilepsy, often accompanied by cognitive and emotional disturbances, highlighting the urgent need for novel therapies. Scorpion Venom Heat-Resistant Synthetic Peptide (SVHRSP), isolated and synthetically derived from scorpion venom, has shown anti-epileptic and neuroprotective [...] Read more.
Temporal lobe epilepsy (TLE) is a common drug-resistant form of epilepsy, often accompanied by cognitive and emotional disturbances, highlighting the urgent need for novel therapies. Scorpion Venom Heat-Resistant Synthetic Peptide (SVHRSP), isolated and synthetically derived from scorpion venom, has shown anti-epileptic and neuroprotective potential. This study evaluated the anti-epileptic effects of SVHRSP in a kainic acid (KA)-induced TLE rat model. Our results demonstrated that SVHRSP (0.81 mg/kg/day) reduced the frequency and severity of spontaneous seizures. Behavioral tests showed improved cognitive performance in the novel object recognition, object location, and T-maze tasks, as well as reduced anxiety-like behavior in the open-field test. Moreover, SVHRSP mitigated hippocampal neuronal loss and glial activation. Transcriptomic analysis indicated that SVHRSP upregulates genes involved in adhesion molecule-triggered and axon guidance pathways. Western blotting and immunofluorescence further confirmed that SVHRSP restored dendritic (MAP2), axonal (NFL), and synaptic (PSD95) marker expression, elevated the functionally important L1CAM fragment (L1-70), and increased myelin basic protein-induced serine protease activity responsible for L1-70 generation. Blockade of L1CAM expression diminished the neuroprotective effects of SVHRSP, suggesting a critical role for L1CAM-mediated synapse functions. This study is the first to reveal the therapeutic potential of SVHRSP in TLE via L1CAM-associated mechanisms. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

21 pages, 830 KiB  
Review
A Review of Chemical and Physical Analysis, Processing, and Repurposing of Brewers’ Spent Grain
by Joshua M. Henkin, Kalidas Mainali, Brajendra K. Sharma, Madhav P. Yadav, Helen Ngo and Majher I. Sarker
Biomass 2025, 5(3), 42; https://doi.org/10.3390/biomass5030042 - 16 Jul 2025
Viewed by 554
Abstract
Beer production produces significant amounts of brewers’ spent grain (BSG), a lignocellulosic by-product with important environmental and economic impacts. Despite its high moisture content and rapid microbial breakdown, BSG has a stable, nutrient-rich composition, especially high in protein, fiber, and polyphenolic compounds. While [...] Read more.
Beer production produces significant amounts of brewers’ spent grain (BSG), a lignocellulosic by-product with important environmental and economic impacts. Despite its high moisture content and rapid microbial breakdown, BSG has a stable, nutrient-rich composition, especially high in protein, fiber, and polyphenolic compounds. While its perishability limits direct use in food systems, BSG is often repurposed as livestock feed. Recent advances in bioprocessing and extraction technologies have expanded their use across different sectors. This review explores the composition of crude BSG and evaluates innovative valorization methods, including recovering bioactive compounds with pharmaceutical and nutraceutical value, and converting them into biofuels such as biogas, biodiesel, and bioethanol. Special focus is given to methods involving enzymatic hydrolysis, fermentation, and chemical extraction to isolate proteins, peptides, amino acids, sugars, and polyphenols. By analyzing emerging applications and industrial scalability challenges, this review highlights BSG’s growing role within circular economy models and its potential to promote sustainable innovations in both the brewing industry and the wider bioeconomy. Full article
Show Figures

Figure 1

25 pages, 24158 KiB  
Communication
Generation of Novel Monoclonal Antibodies Recognizing Rabbit CD34 Antigen
by Jaromír Vašíček, Miroslav Bauer, Eva Kontseková, Andrej Baláži, Andrea Svoradová, Linda Dujíčková, Eva Tvrdá, Jakub Vozaf, Peter Supuka and Peter Chrenek
Biomolecules 2025, 15(7), 1021; https://doi.org/10.3390/biom15071021 - 15 Jul 2025
Viewed by 301
Abstract
The rabbit is a widely used experimental model for human translational research and stem cell therapy. Many studies have focused on rabbit mesenchymal stem cells from different biological sources for their possible application in regenerative medicine. However, a minimal number of studies have [...] Read more.
The rabbit is a widely used experimental model for human translational research and stem cell therapy. Many studies have focused on rabbit mesenchymal stem cells from different biological sources for their possible application in regenerative medicine. However, a minimal number of studies have been published aimed at rabbit hematopoietic stem/progenitor cells, mainly due to the lack of specific anti-rabbit CD34 antibodies. In general, CD34 antigen is commonly used to identify and isolate hematopoietic stem/progenitor cells in humans and other animal species. The aim of this study was to develop novel monoclonal antibodies highly specific to rabbit CD34 antigen. We used hybridoma technology, two synthetic peptides derived from predicted rabbit CD34 protein, and a recombinant rabbit CD34 protein as immunogens to produce monoclonal antibodies (mAbs) specific to rabbit CD34. The produced antibodies were screened for their binding activity and specificity using ELISA, flow cytometry, and Western blot analysis. Finally, four mAbs (58/47/26, 58/47/34, 182/7/80, and 575/36/8) were selected for the final purification process. The purified mAbs recognized up to 2–3% of total rabbit bone marrow cells, while about 2% of those cells exhibited CD45 expression, which are likely rabbit primitive hematopoietic stem cells and their hematopoietic progenitors, respectively. The newly generated and purified mAbs specifically recognize CD34 antigen in rabbit bone marrow or peripheral blood and can be therefore used for further immunological applications, to study rabbit hematopoiesis or to establish a new animal model for hematopoietic stem cell transplantation studies. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

Back to TopTop