Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = pelleting costs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2393 KiB  
Article
Impact of Cu-Site Dopants on Thermoelectric Power Factor for Famatinite (Cu3SbS4) Nanomaterials
by Jacob E. Daniel, Evan Watkins, Mitchel S. Jensen, Allen Benton, Apparao Rao, Sriparna Bhattacharya and Mary E. Anderson
Electron. Mater. 2025, 6(3), 10; https://doi.org/10.3390/electronicmat6030010 - 6 Aug 2025
Abstract
Famatinite (Cu3SbS4) is an earth-abundant, nontoxic material with potential for thermoelectric energy generation applications. Herein, rapid, energy-efficient, and facile one-pot modified polyol synthesis was utilized to produce gram-scale quantities of phase-pure famatinite (Cu2.7M0.3SbS4, [...] Read more.
Famatinite (Cu3SbS4) is an earth-abundant, nontoxic material with potential for thermoelectric energy generation applications. Herein, rapid, energy-efficient, and facile one-pot modified polyol synthesis was utilized to produce gram-scale quantities of phase-pure famatinite (Cu2.7M0.3SbS4, M = Cu, Zn, Mn) nanoparticles (diameter 20–30 nm) with controllable and stoichiometric incorporation of transition metal dopants on the Cu-site. To produce pellets for thermoelectric characterization, the densification process by spark plasma sintering was optimized for individual samples based on thermal stability determined using differential scanning calorimetry and thermogravimetric analysis. Electronic transport properties of undoped and doped famatinite nanoparticles were studied from 225–575 K, and the thermoelectric power factor was calculated. This is the first time electronic transport properties of famatinite doped with Zn or Mn have been studied. All famatinite samples had similar resistivities (>0.8 mΩ·m) in the measured temperature range. However, the Mn-doped famatinite nanomaterials exhibited a thermoelectric power factor of 10.3 mW·m−1·K−1 at 575 K, which represented a significant increase relative to the undoped nanomaterials and Zn-doped nanomaterials engendered by an elevated Seebeck coefficient of ~220 µV·K−1 at 575 K. Future investigations into optimizing the thermoelectric properties of Mn-doped famatinite nanomaterials are promising avenues of research for producing low-cost, environmentally friendly, high-performing thermoelectric materials. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

21 pages, 719 KiB  
Article
Changes in Ruminal Dynamics and Microbial Populations Derived from Supplementation with a Protein Concentrate for Cattle with the Inclusion of Non-Conventional Feeding Sources
by Diana Sofía Torres-Velázquez, Daniel Francisco Ramos-Rosales, Manuel Murillo-Ortiz, Jesús Bernardo Páez-Lerma, Juan Antonio Rojas-Contreras, Karina Aide Araiza-Ponce and Damián Reyes-Jáquez
Fermentation 2025, 11(8), 438; https://doi.org/10.3390/fermentation11080438 - 30 Jul 2025
Viewed by 358
Abstract
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis [...] Read more.
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis bagasse) on rumen fermentation parameters, microbial communities, and gas emissions. Fistulated bullocks received the concentrate daily, and ruminal contents were collected and filtered before and after supplementation to assess in vitro gas and methane production, pH, and microbial composition using high-throughput sequencing of 16S rRNA and mcrA amplicons. In addition, in situ degradability was evaluated during and after the supplementation period. Supplementation led to a significant (p < 0.05) reduction in degradability parameters and methane production, along with a marked decrease in the abundance of Methanobrevibacter and an increase in succinate-producing taxa. These effects were attributed to the enhanced levels of non-fiber carbohydrates, hemicellulose, crude protein, and the presence of bioactive secondary metabolites and methanol. Rumen microbiota composition was consistent with previously described core communities, and mcrA-based sequencing proved to be a valuable tool for targeted methanogen detection. Overall, the inclusion of non-conventional ingredients in protein concentrates may improve ruminal fermentation efficiency and contribute to methane mitigation in ruminants, although further in vivo trials on a larger scale are recommended. Full article
Show Figures

Figure A1

16 pages, 1443 KiB  
Article
Organomineral Fertilizer in Planting of Potato Cultivars Ágata and Atlantic
by Mara Lúcia Martins Magela, José Magno Queiroz Luz, Regina Maria Quintão Lana, Rayssa Camargo de Oliveira, Luciana Nunes Gontijo, Rafael Resende Finzi, Gabriel Mascarenhas Maciel and Ana Carolina Silva Siquieroli
Agronomy 2025, 15(8), 1833; https://doi.org/10.3390/agronomy15081833 - 29 Jul 2025
Viewed by 334
Abstract
Given the importance of potatoes in Brazilian agribusiness and the need to establish sustainable production systems, interest has increased in the implementation of more efficient fertilization methods for the cultivation. Thus, the objective of this study was to evaluate the response of the [...] Read more.
Given the importance of potatoes in Brazilian agribusiness and the need to establish sustainable production systems, interest has increased in the implementation of more efficient fertilization methods for the cultivation. Thus, the objective of this study was to evaluate the response of the cultivars Ágata and Atlantic to fertilization with a pelleted organomineral source in comparison to conventional fertilization performed with a mineral source. A causal block design was used with five treatments [100% of the recommendation for fertilization with mineral sources 03-35-06; and 100%, 80%, 60%, and 40% of the recommended dose with organomineral fertilizer (02-20-05)] in four replications, totaling 20 plots. The application of the organomineral in plant fertilization can be an interesting source of fertilizer for the cultivation of Ágata and Atlantic potatoes and can be applied with dose adjustments. For the cultivar Ágata, the doses of 100% and 80% organomineral fertilizer together with mineral fertilization resulted in the highest total yields. The lower doses (60% and 40%) made it possible to obtain a higher percentage of special potatoes, considered to be of the highest commercial value, than 80% of the organomineral fertilizers and 100% mineral standard. For the Atlantic cultivar, the total yield responses to organomineral were like those obtained with exclusively mineral fertilization. These findings indicate that organomineral fertilizers can be used efficiently with adjusted doses, maintaining productivity and tuber quality while potentially reducing fertilizer input costs and environmental impacts, contributing to more sustainable potato cropping systems. Full article
Show Figures

Figure 1

17 pages, 4950 KiB  
Article
Optimization of Biochar Pellet Production from Corn Straw Char and Waste Soybean Powder Using Ultrasonic Vibration-Assisted Pelleting
by Wentao Li, Shengxu Yin, Jianning Sui and Lina Luo
Processes 2025, 13(8), 2376; https://doi.org/10.3390/pr13082376 - 26 Jul 2025
Viewed by 296
Abstract
To address the challenges of low density, loose structure, high utilization costs, and inadequate molding effects of corn straw char under ambient temperature and pressure conditions, this study investigated the utilization of waste soybean powder (WSP) as a binder to produce biochar pellets [...] Read more.
To address the challenges of low density, loose structure, high utilization costs, and inadequate molding effects of corn straw char under ambient temperature and pressure conditions, this study investigated the utilization of waste soybean powder (WSP) as a binder to produce biochar pellets via ultrasonic-assisted processing. A single-factor experiment was initially conducted to assess the effects of key variables. Subsequently, a Central Composite Rotatable Design (CCRD) was employed to evaluate the individual and interactive effects of these variables, in which pellet density and durability served as response indicators. Regression models for both responses were developed and validated using analysis of variance (ANOVA). The results indicated that, at a 0.05 significance level, the mixing ratio of corn straw char to WSP and molding pressure had highly significant effects on pellet density, while pelleting time had a significant effect and ultrasonic power had no significant influence. All four factors significantly affected pellet durability, and their interactions were further analyzed. The optimal conditions were a mixing ratio of 45%, pelleting time of 33 s, an ultrasonic power of 150 W, and a molding pressure of 5 MPa, yielding pellets with a density of 1140.41 kg/m3 and a durability of 98.54%. These results demonstrate that WSP is an effective binder for the ultrasonic-assisted fabrication of biochar pellets. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

16 pages, 5637 KiB  
Article
Optimizing High-Al2O3 Limonite Pellet Performance: The Critical Role of Basicity in Consolidation and Reduction
by Yufeng Guo, Yixi Zhang, Feng Chen, Shuai Wang, Lingzhi Yang, Yanqin Xie and Xinyao Xia
Metals 2025, 15(7), 801; https://doi.org/10.3390/met15070801 - 16 Jul 2025
Viewed by 264
Abstract
With the gradual depletion of high-quality iron ore resources, global steel enterprises have shifted their focus to low-grade, high-impurity iron ores. Using low-grade iron ore to produce pellets for blast furnaces is crucial for companies to control production costs and diversify raw material [...] Read more.
With the gradual depletion of high-quality iron ore resources, global steel enterprises have shifted their focus to low-grade, high-impurity iron ores. Using low-grade iron ore to produce pellets for blast furnaces is crucial for companies to control production costs and diversify raw material sources. However, producing qualified pellets from limonite and other low-grade iron ores remains highly challenging. This study investigates the mechanism by which basicity affects the consolidation and reduction behavior of high-Al2O3 limonite pellets from a thermodynamic perspective. As the binary basicity of the pellets increased from 0.01 under natural conditions to 1.2, the compressive strength of the roasted pellets increased from 1100 N/P to 5200 N/P. The enhancement in basicity led to an increase in the amount of low-melting-point calcium ferrite in the binding phase, which increased the liquid phase in the pellets, thereby strengthening the consolidation. CaO infiltrated into large-sized iron particles and reacted with Al and Si elements, segregating the contiguous large-sized iron particles and encapsulating them with liquid-phase calcium ferrite. Calcium oxide reacts with the Al and Si elements in large hematite particles, segmenting them and forming liquid calcium ferrite that encapsulates the particles. Additionally, this study used thermodynamic analysis to characterize the influence of CaO on aluminum elements in high-aluminum iron ore pellets. Adding CaO boosted the liquid phase’s ability to incorporate aluminum, lessening the inhibition by high-melting-point aluminum elements of hematite recrystallization. During the reduction process, pellets with high basicity exhibited superior reduction performance. Full article
Show Figures

Graphical abstract

20 pages, 3062 KiB  
Article
Optimal Horseshoe Crab Blood Collection Solution That Inhibits Cellular Exocytosis and Improves Production Yield of Limulus Amoebocyte Lysate for Use in Endotoxin Tests
by Mengmeng Zhang, Sophia Zhang and Jessica Zhang
Int. J. Mol. Sci. 2025, 26(14), 6642; https://doi.org/10.3390/ijms26146642 - 11 Jul 2025
Viewed by 264
Abstract
Limulus amoebocyte lysate (LAL) assays have emerged as among the most effective approaches for detecting endotoxins and fungi in vitro since they were first tested 50 years ago. Although detailed protocols are publicly available, conventional LAL collection methods (3% sodium chloride) waste as [...] Read more.
Limulus amoebocyte lysate (LAL) assays have emerged as among the most effective approaches for detecting endotoxins and fungi in vitro since they were first tested 50 years ago. Although detailed protocols are publicly available, conventional LAL collection methods (3% sodium chloride) waste as much as 80% of the total LAL during blood accumulation, confirming the incompatibility of these methods with the lasting survival of the American horseshoe crab. For this reason, new implementations of blood collection–suspension buffer combinations are critical. Here, we evaluated the ability of different blood collection solutions to inhibit exocytosis and subsequently treated the cells with CaCl2 to stimulate exocytosis and improve the yield of LAL. Two test methods, chromogenic and turbidimetric tests for LAL activity, were evaluated. Crabs were bled during the bleeding season. The crab blood samples were collected with the following blood collection solutions: citric acid buffer, malic acid buffer, PBS buffer, and PBS–caffeine buffer. The cell pellets were washed with 3% NaCl and subsequently resuspended in LRW or CaCl2 to facilitate degranulation. Both the chromogenic test and the turbidimetric assay were used to evaluate the LAL enzyme activity. Citric acid buffer, malic acid buffer, PBS buffer, and PBS–caffeine buffer blocked exocytosis, resulting in the high yields of LAL. There was no observable effect on the activity output of crab size via a chromogenic test with PBS–caffeine buffer during the bleeding season. This protocol substantially benefited prior processes, as the PBS–caffeine collection mixture decreased amoebocyte aggregation/clot formation during processing. Furthermore, we evaluated the specific biochemical parameters of PBS–caffeine-derived LAL. We developed an accessible, promising phosphate–caffeine-based blood collection buffer that prevents amoebocyte degranulation during blood collection, maximizing the LAL yield. Moreover, our analysis revealed that phosphate–caffeine-derived LAL is uniquely adaptable to compatibility with chromogenic and turbidimetric assay techniques. By employing this method for LAL blood extraction, our same-cost approach fostered significantly greater LAL yields, simultaneously ensuring a healthy limulus polyphemus population. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 5941 KiB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 301
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

23 pages, 3747 KiB  
Article
Design Optimization and Performance Evaluation of an Automated Pelleted Feed Trough for Sheep Feeding Management
by Xinyu Gao, Chuanzhong Xuan, Jianxin Zhao, Yanhua Ma, Tao Zhang and Suhui Liu
Agriculture 2025, 15(14), 1487; https://doi.org/10.3390/agriculture15141487 - 10 Jul 2025
Viewed by 321
Abstract
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. [...] Read more.
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. The uniformity of pellet flow is a critical factor in the study of automatic feeding troughs, and optimizing the movement characteristics of the pellets contributes to enhanced operational efficiency of the equipment. However, existing research often lacks a systematic analysis of the pellet size characteristics (such as diameter and length) and flow behavior differences in pellet feed, which limits the practical application of feed troughs. This study optimized the angle of repose and structural parameters of the feeding trough using Matlab simulations and discrete element modeling. It explored how the stock bin slope and baffle opening height influence pellet feed flow characteristics. A programmable logic controller (PLC) and human–machine interface (HMI) were used for precise timing and quantitative feeding, validating the design’s practicality. The results indicated that the Matlab method could calibrate the Johnson–Kendall–Roberts (JKR) model’s surface energy. The optimal slope was found to be 63°, with optimal baffle heights of 28 mm for fine and medium pellets and 30 mm for coarse pellets. The experimental metrics showed relative errors of 3.5%, 2.8%, and 4.2% (for average feed rate) and 8.2%, 7.3%, and 1.2% (for flow time). The automatic feeding trough showed a feeding error of 0.3% with PLC-HMI. This study’s optimization of the automatic feeding trough offers a strong foundation and guidance for efficient, accurate pellet feed distribution. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 5139 KiB  
Article
Geopolymer CLSM with Off-Specification Fly Ash and Bottom Ash: A Sustainable Approach to Hazardous Waste Utilization
by Alexis K. VanDomelen, Ahmed A. Gheni, Eslam Gomaa and Mohamed A. ElGawady
Materials 2025, 18(13), 3105; https://doi.org/10.3390/ma18133105 - 1 Jul 2025
Viewed by 733
Abstract
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with [...] Read more.
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with potential environmental hazards, to develop eco-friendly geopolymer CLSM as an alternative to conventional CLSM. Sodium hydroxide (NaOH) was used as an alkali activator to stabilize and solidify both two-part (liquid NaOH) and one-part (solid NaOH pellets) geopolymer CLSM mixtures. These mixtures were evaluated based on flowability (ASTM D6103-17) and compressive strength (<300 psi per ACI Committee 229 guidelines for excavatability). A cost analysis was also conducted. The results demonstrated that incorporating OSFA as a cement replacement increased water demand by 15% to meet flowability requirements, while BA substitution for sand led to segregation challenges requiring mixture adjustments. For two-part mixtures, higher carbon content in OSFA necessitated an increased water-to-fly ash ratio. All self-consolidating mixtures exhibited 1-day compressive strengths ranging from 5 psi (0.03 MPa) to 87 psi (0.6 MPa). One-part mixtures showed a 1% to 34% reduction in 7-day compressive strength compared to two-part mixtures, improving excavatability. Increasing the BA-to-OSFA ratio from 1:1 to 3:1 reduced water demand due to lower surface area but increased the NaOH/OSFA ratio. This study highlights the potential of geopolymer CLSM to reduce costs by up to 94% at current NaOH prices (USD 6 per cubic yard) while repurposing hazardous industrial by-products, offering a cost-efficient, sustainable, and environmentally responsible solution for CLSM production. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 4635 KiB  
Article
Assessing Flight Angle and Rotor Speed Effects on Drying Efficiency and Power Consumption of the Centrifugal Dryer of Pelletizing Systems
by Mohammadreza Aali, Bernhard Löw-Baselli, Jovan Zecevic and Gerald Berger-Weber
Polymers 2025, 17(13), 1829; https://doi.org/10.3390/polym17131829 - 30 Jun 2025
Viewed by 285
Abstract
This study used the Discrete Element Method (DEM) coupled with the Moving Particle Semi-implicit (MPS) method to investigate the process of drying in the centrifugal unit of a pelletizing system in polymer processing. The effects of various flight angles (10°, 45°, and 70°) [...] Read more.
This study used the Discrete Element Method (DEM) coupled with the Moving Particle Semi-implicit (MPS) method to investigate the process of drying in the centrifugal unit of a pelletizing system in polymer processing. The effects of various flight angles (10°, 45°, and 70°) and rotor speeds (1280, 1600, and 1920 rpm) on drying efficiency, polymer pellet transport, polymer pellet accumulation, and power consumption were examined. The results showed that the flight angle significantly influenced drying performance. At 1600 rpm, the 10° flight angle configuration required the least power (10.94 kW) but resulted in inefficient water separation, which led to an increase in water droplets (i.e., higher moisture content) in the upper part of the centrifugal unit and near the outlet. With a 70° flight angle, water removal was most effective, but polymer pellet transport efficiency was lower due to centrifugal forces becoming dominant. A 45° flight angle provided the best balance between drying efficiency and power consumption, requiring 16.42 kW while achieving the most efficient polymer pellet transport. Rotor speed also played a crucial role: lower speeds enhanced water removal and reduced power demand but limited throughput, whereas higher speeds facilitated centrifugal separation at the cost of increased power consumption. The optimal combination of the rotor speed and flight angle was found to be 45° at 1280 rpm, which offered an effective trade-off between drying performance and power efficiency. Full article
Show Figures

Figure 1

22 pages, 4126 KiB  
Article
Investigation of Toy Parts Produced Using Injection Molding and FDM and Selection of the Best Manufacturing Method: A Multi-Criteria Approach
by Şeyda Değirmenci and Ali Osman Er
Appl. Sci. 2025, 15(12), 6725; https://doi.org/10.3390/app15126725 - 16 Jun 2025
Viewed by 363
Abstract
Three-dimensional (3D) printing has become a promising alternative to conventional methods in plastic part production, particularly for customized or low-volume applications such as toys. This study compares toy components produced by Fused Deposition Modeling (FDM) using polylactic acid (PLA) and acrylonitrile butadiene styrene [...] Read more.
Three-dimensional (3D) printing has become a promising alternative to conventional methods in plastic part production, particularly for customized or low-volume applications such as toys. This study compares toy components produced by Fused Deposition Modeling (FDM) using polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) filaments and those produced by traditional injection molding using ABS pellets. Unlike in many previous studies based on standardized test samples, a real toy part was evaluated in terms of compressive strength, dimensional accuracy, surface quality, and cost. Experimental results revealed that ABS parts produced by injection molding exhibited the highest compressive strength (3.93 kN), followed by PLA-FDM (2.97 kN) and ABS-FDM (0.95 kN). Similarly, injection-molded parts showed superior surface smoothness and dimensional accuracy. Cost analysis indicated that injection molding is economically viable only when production exceeds 735 pieces, while FDM becomes more attractive for smaller batches due to its low initial cost. A multi-criteria decision-making analysis using the TOPSIS method was conducted to integrate technical and economic factors. Results showed that injection molding is preferable for mass production, whereas PLA-FDM is more suitable for low-quantity, cost-sensitive scenarios. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

11 pages, 635 KiB  
Article
Energy Production and Process Costing for Biomass Obtained from Underutilized Plant Species in México and Colombia
by Julio César Ríos-Saucedo, Rigoberto Rosales-Serna, Artemio Carrillo-Parra, Cynthia Adriana Nava-Berumen, Antonio Cano-Pineda, Martín Aquino-Ramírez and Jesús Manuel Martínez-Villela
Processes 2025, 13(6), 1878; https://doi.org/10.3390/pr13061878 - 13 Jun 2025
Viewed by 495
Abstract
The objectives were to evaluate the energy potential of biomass and pellets produced from five underutilized herbaceous and woody plant species in México and Colombia; characterize pellet quality parameters; and calculate the preliminary production costs and energy requirement during the densification process. Harvest [...] Read more.
The objectives were to evaluate the energy potential of biomass and pellets produced from five underutilized herbaceous and woody plant species in México and Colombia; characterize pellet quality parameters; and calculate the preliminary production costs and energy requirement during the densification process. Harvest and sawmill residues were obtained for five non-timber and woody plant species. The volatile compounds, ash, and fixed carbon were evaluated, as well as the higher heating value (HHV) and pellet impact resistance (PIR); in addition, lignin, hemicellulose, and cellulose were quantified. The data were analyzed using descriptive statistics, including mean and standard deviation. The volatile compounds ranged from 65.9–77.5%, ash 2.5–17.2%, fixed carbon 5.4–19.9%, HHV 16.4–21.9 MJ kg1, and PIR (0.6–99.1%). Considerable intra- and inter-specific differences were observed for all the variables, which expanded the options for the selection of biomass sources used in bioenergy production. Biomass processing costs ranged from 675.9 to 679.3 EUR t1. Optimization of these processes is required to implement more efficient technologies that significantly reduce operating costs in biomass use in biofuel industry. The systematic study of different plant species, both introduced and native, will provide new sources of biomass to produce bioenergy, fertilizers, and other organic inputs. Full article
(This article belongs to the Special Issue Biomass Energy Conversion for Efficient and Sustainable Utilization)
Show Figures

Figure 1

14 pages, 4258 KiB  
Article
Implementation of Modular Depot Concept for Switchgrass Pellet Production in the Piedmont
by Jonathan P. Resop, John S. Cundiff and Shahabaddine Sokhansanj
AgriEngineering 2025, 7(6), 188; https://doi.org/10.3390/agriengineering7060188 - 12 Jun 2025
Viewed by 769
Abstract
In the bioenergy industry, highway hauling cost is typically 30%, or more, of the average cost of feedstock delivered to a biorefinery. Thus, truck productivity, in terms of Mg/d/truck, is a key issue in the design of a logistics system. One possible solution [...] Read more.
In the bioenergy industry, highway hauling cost is typically 30%, or more, of the average cost of feedstock delivered to a biorefinery. Thus, truck productivity, in terms of Mg/d/truck, is a key issue in the design of a logistics system. One possible solution to this problem that is being explored is the utilization of modular pellet depots. In such a logistics system, raw biomass (i.e., low-bulk-density product) is converted into pellets (i.e., high-bulk-density product) by several smaller-scale modular pellet depots instead of by a single larger-capacity pellet depot. A truckload of raw biomass (e.g., round bales) is 16 Mg and a load of pellets is 34 Mg. The distribution of depots across a feedstock production area can potentially have an impact on the total truck operating hours (i.e., raw biomass hauling to a depot + pellet hauling from the depot to the biorefinery) required to deliver feedstock for annual operation of a biorefinery. This study examined three different distributions of depots across five feedstock production areas. The numbers of depots were one, two, and four per production area for totals of five, ten, and twenty depots. Increasing the number of depots from five to ten reduced raw biomass hauling hours by 12%, and increasing from five to twenty reduced these hours by 30%. Total hauling hours (raw biomass + pellets) were reduced by less than 1% with an increase from five to ten and by about 11% with an increase from five to twenty. The modular pellet depot concept demonstrated potential for providing improvements to biorefinery logistics systems, but more research is needed to optimize this balance. Full article
Show Figures

Figure 1

13 pages, 916 KiB  
Article
Environment Friendly Biodegradable Sprayable Shrimp Waste Fertilizer and Low-Cost Crab Waste Carbon Fixer
by Viral Sagar and Joan G. Lynam
Environments 2025, 12(6), 181; https://doi.org/10.3390/environments12060181 - 29 May 2025
Viewed by 1249
Abstract
Seafood waste is often landfilled and/or discarded into water, raising microbiological pollution and environment policy concerns. Repurposing this low-cost biomass collected at point-source processing centers can help reduce greenhouse gas emissions and support industrial progress in developing economies. Safe alternative methods to utilize [...] Read more.
Seafood waste is often landfilled and/or discarded into water, raising microbiological pollution and environment policy concerns. Repurposing this low-cost biomass collected at point-source processing centers can help reduce greenhouse gas emissions and support industrial progress in developing economies. Safe alternative methods to utilize seafood waste were investigated. Hydrothermal carbonization-enriched shrimp shell waste was converted into higher-value products, such as sprayable fertilizer and dry biochar fertilizer pellets. Environment friendly sprayable fertilizer from shrimp and crab shell waste as an inexpensive carbon fixer is a potential solution. An average spray coverage area of 0.12 m2 from only 300 mL of 1:10 shrimp shell waste to water mixture is reported. Characterization using N:P:K ratios from elemental analysis showed crustacean shell waste to comprise long-term organic carbon fixers in the soil with minor mineral enrichment, demonstrating potential for long-term soil care. Additionally, hydrothermally carbonized mineral rich shrimp shell and untreated crab shell waste were pelletized to test their friability and feasibility in transportation. Such a bio-investigation to promote economic goals for sustainability can improve biomass waste handling locally. Full article
(This article belongs to the Special Issue Preparation and Application of Biochar (Second Edition))
Show Figures

Graphical abstract

25 pages, 2417 KiB  
Article
Life-Cycle Economics and GHG Emissions of Forest Biomass Harvesting and Utilization for Alternative Value-Added Bioproducts: An Integrated Modeling Framework
by Xufeng Zhang, Jingxin Wang, Jialin Li and John Vance
Forests 2025, 16(6), 871; https://doi.org/10.3390/f16060871 - 22 May 2025
Viewed by 402
Abstract
The life-cycle economics and greenhouse-gas (GHG) emissions of forest biomass harvesting and utilization for value-added bioproducts were comprehensively evaluated via the development of an integrated modeling framework. Taking the eastern U.S. as the case region, the model innovatively integrated field studies, a Bayesian-based [...] Read more.
The life-cycle economics and greenhouse-gas (GHG) emissions of forest biomass harvesting and utilization for value-added bioproducts were comprehensively evaluated via the development of an integrated modeling framework. Taking the eastern U.S. as the case region, the model innovatively integrated field studies, a Bayesian-based statistical learning model, techno-economic analysis, and life-cycle assessment. In specific, by investigating and summarizing the typical forest biomass harvesting systems across the region, the forest biomass harvesting costs were spatially grouped and mapped for four classified subregions across the eastern US. Overall, with 95% confidence the forest biomass harvesting cost is between USD 21.99 and USD 44.33/dry Mg, while the GHG emissions are between 14.79 and 98.80 kg CO2 eq./dry Mg. Furthermore, for the forest biomass utilization for four alternative value-added bioproducts, the minimum selling price (MSP) is USD 177.82/Mg for pellet fuel, USD 110.24/MWh for biopower, USD 1059.4/Mg for biochar, and USD 4.98/gallon for aviation fuel. The life-cycle GHG emissions are 149.80 kg CO2 eq./Mg pellet fuel, 52.22 kg CO2 eq./MWh biopower, 792.12 kg CO2 eq./Mg biochar, and 2.13 kg CO2 eq./gallon aviation fuel, respectively. Considering the uncertainties, 95% confidence intervals of MSPs range from USD 164.77 to USD 190.97/Mg for pellet fuel with an 81.85% probability to be profitable, from USD 100.20 to USD 120.21/MWh for biopower with a 49.38% probability to be profitable, from USD 1000.91 to USD 1109.25/Mg for biochar with a 79.51% probability to be profitable, from USD 4.86 to USD 5.54/gallon for aviation fuel with an 0.03% probability to be profitable. Moreover, the MSPs of pellet fuel and biochar are much less affected by the market changes than those of biopower and aviation fuel. However, the production of biopower and aviation fuel has lower carbon intensities than that of pellet fuel and biochar. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

Back to TopTop