Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (421)

Search Parameters:
Keywords = peel-off strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 280
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 2377 KiB  
Article
Sustainable Adhesive Formulation and Performance Evaluation of Bacterial Nanocellulose and Aloe Vera for Packaging Applications
by Urška Vrabič-Brodnjak and Aljana Vidmar
Molecules 2025, 30(15), 3136; https://doi.org/10.3390/molecules30153136 - 26 Jul 2025
Viewed by 430
Abstract
The development of bio-based adhesives as sustainable alternatives to synthetic formulations presents a significant opportunity for advancing environmental sustainability in packaging applications. This research aimed to develop and evaluate a bio-based adhesive derived from bacterial nanocellulose (BNC), aloe vera and its mixtures as [...] Read more.
The development of bio-based adhesives as sustainable alternatives to synthetic formulations presents a significant opportunity for advancing environmental sustainability in packaging applications. This research aimed to develop and evaluate a bio-based adhesive derived from bacterial nanocellulose (BNC), aloe vera and its mixtures as a potential replacement for commercial synthetic adhesives. Aloe vera, selected for its polysaccharide-rich composition, served as a natural polymeric matrix, while BNC contributed reinforcing properties. The adhesive formulations, with and without BNC, were compared to a commercial adhesive to assess their mechanical performance. T-peel and shear tests were conducted on smooth and rough paper substrates to evaluate adhesive strength. The bio-based adhesive incorporating BNC demonstrated superior shear and peel strength on rough substrates due to enhanced mechanical interlocking within the fibrous structure of paper, whereas performance on smooth surfaces was hindered by uneven BNC distribution, reducing adhesive-substrate interaction. Although the commercial adhesive achieved higher absolute maximum force values, the bio-based formulation exhibited comparable mechanical stability under specific conditions. These findings underscore the influence of substrate properties and application methods on adhesive performance, highlighting the potential of bio-based adhesives in packaging applications and the need for further formulation optimization to fully realize their advantages over traditional synthetic adhesives. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Figure 1

17 pages, 5365 KiB  
Article
Method for Elucidating the Structural Evolution of a Nanoscale Release Layer in Double Copper Foils Under Thermal Exposure
by Rutuja Bhusari, Julien Bardon, Jérôme Guillot, Adrian-Marie Philippe, Sascha Scholzen, Zainhia Kaidi and Frédéric Addiego
Materials 2025, 18(14), 3316; https://doi.org/10.3390/ma18143316 - 14 Jul 2025
Viewed by 247
Abstract
Double ultrathin copper foils (DTH), widely used for producing conductive tracks in electronics, consist of an ultrathin copper functional foil (FF), a nanometric release layer (RL), and an ultrathin copper carrier foil (CF). Achieving stable release strength of the CF during DTH lamination [...] Read more.
Double ultrathin copper foils (DTH), widely used for producing conductive tracks in electronics, consist of an ultrathin copper functional foil (FF), a nanometric release layer (RL), and an ultrathin copper carrier foil (CF). Achieving stable release strength of the CF during DTH lamination remains a key challenge, largely due to limited knowledge about the structure of the RL. In this study, a comprehensive characterization methodology is proposed to investigate the physico-chemical structure of a chromium-based RL, both before and after thermal exposure at 230 °C. Peel-off testing, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM) were employed. The main structural transformation identified is the oxidation of the RL at the FF–RL interface, resulting in the formation of a chromium oxide layer. This transformation may underlie the significant increase in release strength, which rises from 5.9 N/m before thermal exposure to 163 N/m afterward. Full article
Show Figures

Graphical abstract

22 pages, 6497 KiB  
Article
Experimental Study and Application of TPO Waterproofing Membrane Lapping Process Parameters
by Keyong Wang, Zhenhua Zang, Jie Li, Zhenyue Shi, Mingcai Liu, Zhipeng Li, Qingbiao Wang, Yandong Shang, Chenglin Tian, Zifan Jia and Hui Wang
Materials 2025, 18(14), 3313; https://doi.org/10.3390/ma18143313 - 14 Jul 2025
Viewed by 290
Abstract
Taking the TPO waterproofing membrane as an example, this paper studies the influence of temperature, speed and welding pressure on the welding quality of a TPO waterproofing membrane lap area through a peel test and a water impermeability test, determines the optimal construction [...] Read more.
Taking the TPO waterproofing membrane as an example, this paper studies the influence of temperature, speed and welding pressure on the welding quality of a TPO waterproofing membrane lap area through a peel test and a water impermeability test, determines the optimal construction process, and observes and compares the permeable path through laser confocal microscope. Finally, it is applied to the actual effect test in the project. The results show that the welding pressure test tool for the lap area of the waterproofing membrane is designed to meet the welding work test requirements of various lap areas of the waterproofing membrane. The peel strength increases first and then decreases with the increase in welding temperature, and the optimal construction temperature is 400 °C. The optimal construction speed is 4 m/min; at 400 °C welding temperature, the peel strength increases first and then decreases slightly with the increase in welding pressure. The optimal construction pressure is 14.97 N; under the condition of 0.2 MPa, 30 min to 0.6 MPa, 120 min, the water impermeability test of the overlapping area was qualified. In this paper, the optimal construction technology of a TPO waterproofing membrane is determined, which provides guidance for its application and promotion in engineering. Full article
Show Figures

Figure 1

52 pages, 3535 KiB  
Review
Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects
by Thivya Selvam, Nor Mas Mira Abd Rahman, Fabrizio Olivito, Zul Ilham, Rahayu Ahmad and Wan Abd Al Qadr Imad Wan-Mohtar
Polymers 2025, 17(14), 1897; https://doi.org/10.3390/polym17141897 - 9 Jul 2025
Cited by 1 | Viewed by 1178
Abstract
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. [...] Read more.
The widespread use of conventional plastic in food packaging has raised serious environmental issues due to its persistence and poor biodegradability. With growing concerns over plastic pollution and its long-term ecological impact, researchers are increasingly turning to natural, renewable sources for sustainable alternatives. Agricultural waste, often discarded in large quantities, offers a valuable resource for producing biodegradable polymers. This review discusses the environmental burden caused by traditional plastics and explores how agricultural residues such as rice husks, corn cobs, and fruit peels can be converted into eco-friendly packaging materials. Various types of biopolymers sourced from agricultural waste, including cellulose, starch, plant and animal-based proteins, polyhydroxyalkanoates (PHA), and polylactic acid (PLA), are examined for their properties, benefits, and limitations in food packaging applications. Each material presents unique characteristics in terms of biodegradability, mechanical strength, and barrier performance. While significant progress has been made, several challenges remain, including cost-effective production, material performance, and compliance with food safety regulations. Looking ahead, innovations in material processing, waste management integration, and biopolymer formulation could pave the way for widespread adoption. This review aims to provide a comprehensive overview of current developments and future directions in the use of agricultural waste for sustainable packaging solutions, comparing their biodegradability and performance to conventional plastics. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Figure 1

16 pages, 2440 KiB  
Article
Optimization of Cassava Starch/Onion Peel Powder-Based Bioplastics: Influence of Composition on Mechanical Properties and Biodegradability Using Central Composite Design
by Assala Torche, Chouana Toufik, Fairouz Djeghim, Ibtissem Sanah, Rabah Arhab, Maria D’Elia and Luca Rastrelli
Foods 2025, 14(14), 2414; https://doi.org/10.3390/foods14142414 - 8 Jul 2025
Viewed by 482
Abstract
Synthetic plastic pollution represents a major global concern, driving the search for sustainable and biodegradable packaging alternatives. However, many biodegradable plastics suffer from inadequate mechanical performance. This study aimed to develop a biodegradable film based on cassava starch, incorporating onion peel powder (OPP), [...] Read more.
Synthetic plastic pollution represents a major global concern, driving the search for sustainable and biodegradable packaging alternatives. However, many biodegradable plastics suffer from inadequate mechanical performance. This study aimed to develop a biodegradable film based on cassava starch, incorporating onion peel powder (OPP), a byproduct rich in quercetin derivatives, as a reinforcing agent and plasticized with crude glycerol. A Central Composite Design (CCD), implemented using Minitab 19, was employed to investigate the effects of starch (60–80%) and OPP (0–40%) content on the mechanical properties and biodegradability of the resulting bioplastics. Three optimized formulations were identified according to specific performance criteria. The first formulation, containing 72.07% starch and 21.06% OPP, was optimized for maximum tensile strength while maintaining target values for elongation and biodegradability. The second, composed of 77.28% starch and 37.69% OPP, was optimized to enhance tensile strength and biodegradability while minimizing elongation. The third formulation, with 84.56% starch and 27.74% OPP, aimed to achieve a balanced optimization of tensile strength, elongation, and biodegradability. After a 30-day soil burial test, these formulations exhibited weight loss percentages of 31.86%, 29.12%, and 29.02%, respectively, confirming their biodegradability. This study optimized the mechanical and biodegradability properties of cassava starch-based bioplastics using statistical modeling. The optimized formulations show potential for application in sustainable food packaging. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

47 pages, 13613 KiB  
Article
Colorless Polyimides with Low Linear Coefficients of Thermal Expansion and Their Controlled Soft Adhesion/Easy Removability on Glass Substrates: Role of Modified One-Pot Polymerization Method
by Masatoshi Hasegawa, Takehiro Shinoda, Kanata Nakadai, Junichi Ishii, Tetsuo Okuyama, Kaya Tokuda, Hiroyuki Wakui, Naoki Watanabe and Kota Kitamura
Polymers 2025, 17(13), 1887; https://doi.org/10.3390/polym17131887 - 7 Jul 2025
Viewed by 562
Abstract
This study presents colorless polyimides (PIs) suitable for use as plastic substrates in flexible displays, designed to be compatible with controlled soft adhesion and easy delamination (temporary adhesion) processes. For this purpose, we focused on a PI system derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) [...] Read more.
This study presents colorless polyimides (PIs) suitable for use as plastic substrates in flexible displays, designed to be compatible with controlled soft adhesion and easy delamination (temporary adhesion) processes. For this purpose, we focused on a PI system derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB). This system was selected with the aim of exhibiting excellent optical transparency and low linear coefficient of thermal expansion (CTE) properties. However, fabricating this PI film via the conventional two-step process was challenging because of crack formation. In contrast, modified one-pot polymerization at 200 °C using a combined catalyst resulted in a homogeneous solution of PI with an exceptionally high molecular weight, yielding a flexible cast film. The solubility of PI plays a crucial role in its success. This study delves into the mechanism behind the significant catalytic effect on enhancing molecular weight. The CpODA/TFMB PI cast film simultaneously achieved very high optical transparency, an extremely high glass transition temperature (Tg = 411 °C), a significantly low linear coefficient of thermal expansion (CTE = 16.7 ppm/K), and sufficient film toughness, despite the trade-off between low CTE and high film toughness. The CpODA/TFMB system was modified by copolymerization with minor contents of another cycloaliphatic tetracarboxylic dianhydride, 5,5′-(1,4-phenylene)-exo-bis(hexahydro-4,7-methanoisobenzofuran-cis-exo-1,3-dione) (BzDAxx). This approach was effective in improving the film toughness without sacrificing the low CTE and other target properties. The peel strengths (σpeel) of laminates comprising surface-modified glass substrates and various colorless PI films were measured to evaluate the compatibility with the temporary adhesion process. Most colorless PI films studied were found to be incompatible. Additionally, no correlation between σpeel and PI structure was observed, making it challenging to identify the structural factors influencing σpeel control. Surprisingly, a strong correlation was observed between σpeel and CTE of the PI films, suggesting that the observed solid–solid lamination is closely linked to the unexpectedly high surface mobility of the PI films. The laminate using CpODA(90);BzDAxx(10)/TFMB copolymer exhibited suitable adhesion strength for the temporary adhesion process, while meeting other target properties. The modified one-pot polymerization method significantly contributed to the development of colorless PIs suitable for plastic substrates. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 3303 KiB  
Article
Research on High-Performance Underwater-Curing Polymer Composites for Offshore Oil Riser Pipes
by Xuan Zhao, Jun Wan, Xuefeng Qv, Yajun Yu and Huiyan Zhao
Polymers 2025, 17(13), 1827; https://doi.org/10.3390/polym17131827 - 30 Jun 2025
Viewed by 466
Abstract
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical [...] Read more.
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical corrosion and poor adhesion of existing coatings, this study developed an underwater-curing composite material based on a polyisobutylene (PIB) and butyl rubber (IIR) blend system. The material simultaneously exhibits high peel strength, low water absorption, and stability across a wide temperature range. First, the contradiction between material elasticity and strength was overcome through the synergistic effect of medium molecular weight PIB internal plasticization and IIR crosslinking networks. Second, stable peel strength across a wide temperature range (−45 °C to 80 °C) was achieved by utilizing the interfacial effects of nano-fillers. Subsequently, an innovative solvent-free two-component epoxy system was developed, combining medium molecular weight PIB internal plasticization, nano-silica hydrogen bond reinforcement, and latent curing agent regulation. This system achieves rapid surface drying within 30 min underwater and pull-off strength exceeding 3.5 MPa. Through systematic laboratory testing and field application experiments on offshore oil and gas well risers, the material’s fundamental properties and operational performance were determined. Results indicate that the material exhibits a peel strength of 5 N/cm on offshore oil risers, significantly extending the service life of the riser pipes. This research provides theoretical foundation and technical support for improving the efficiency and reliability of repair processes for offshore oil riser pipes. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites: 2nd Edition)
Show Figures

Figure 1

11 pages, 2369 KiB  
Article
The Effect of a Carbon Fiber Layer Between the Cathode and the Current Collector on Battery Cell Performance
by Jaswinder Sharma, Runming Tao, Georgios Polizos, Ruhul Amin, Yue Feng, Junbin Choi, M. Shahriar and Jianlin Li
Fibers 2025, 13(7), 85; https://doi.org/10.3390/fib13070085 - 27 Jun 2025
Viewed by 366
Abstract
Contact resistance between the cathode active material (CAM) and the Al current collector can be reduced by applying carbon coatings to the Al current collector surface. However, this process requires an additional step of carbon layer coating on the current collector, which increases [...] Read more.
Contact resistance between the cathode active material (CAM) and the Al current collector can be reduced by applying carbon coatings to the Al current collector surface. However, this process requires an additional step of carbon layer coating on the current collector, which increases both manufacturing costs and processing time. In the present work, an interlayer of continuous unsized carbon fibers aligned in one direction (CF interlayer), is introduced between the Al current collector and the NMC811 cathode during cathode deposition on the Al current collector. This single-step approach eliminates the need for the additional carbon layer coating on the current collector. Additionally, this approach removes the use of toxic solvents and insulative polymers used for making the carbon coating. The CF interlayer improves the rate capability at higher C-rates. The CF interlayer lowers the contact resistance between the cathode particles and the current collector while improving the activation energy of charge transfer. The peel test showed that the CF interlayer does not affect the adhesion strength of the cathode layer with the current collector. Full article
Show Figures

Graphical abstract

21 pages, 3955 KiB  
Article
Mechanical Characteristics of Tara Gum/Orange Peel Films Influenced by the Synergistic Effect on the Rheological Properties of the Film-Forming Solutions
by Nedelka Juana Ortiz Cabrera, Luis Felipe Miranda Zanardi and Martin Alberto Massuelli
Polymers 2025, 17(13), 1767; https://doi.org/10.3390/polym17131767 - 26 Jun 2025
Viewed by 444
Abstract
Film-forming solutions were prepared using Tara gum (TG), with glycerol (GL) as a plasticizer and orange peel powder (OP) as a filler. A TG stock solution (10 g/L) was initially prepared to facilitate homogenization, from which appropriate dilutions were made to obtain final [...] Read more.
Film-forming solutions were prepared using Tara gum (TG), with glycerol (GL) as a plasticizer and orange peel powder (OP) as a filler. A TG stock solution (10 g/L) was initially prepared to facilitate homogenization, from which appropriate dilutions were made to obtain final concentrations of 0.6%, 0.8%, and 1.0% (w/v). GL (30% and 50%) and OP (0%, 20%, and 50%) were incorporated based on the dry weight of TG, meaning their amounts were calculated relative to TG content to ensure consistent formulation ratios. Rheological parameters, including the flow behavior index, consistency coefficient, storage modulus (G′), and loss modulus (G″), were characterized via steady shear and oscillatory rheometry. Mechanical properties, such as the Young’s modulus, tensile strength, and elongation at break, were also evaluated. A strong positive correlation (R2 = 0.840) was observed between G′ and the Young’s modulus, indicating that solutions with higher internal network strength yield films with greater stiffness. The synergistic interaction between TG and OP was critical: TG primarily enhanced stiffness and mechanical reinforcement, whereas OP improved structural cohesion and stability. GL functioned as a plasticizer, increasing film flexibility while reducing stiffness. These interactions led to a reduction in film solubility by up to 62.43%, particularly in formulations without orange peel powder. In contrast, mechanical strength increased by up to 50.21% in films containing orange peel powder, as those without it exhibited significantly lower tensile strength. Flexibility, expressed as elongation at break, was enhanced by up to 78.86% in formulations with higher glycerol content. Barrier properties were also improved, demonstrated by decreased water vapor permeability and increased hydrophobicity, attributed to the TG–OP synergy. A regression model (R2 = 0.928) substantiated the contributions of TG to stiffness, OP to matrix reinforcement, and GL to flexibility modulation. This study underscores the pivotal role of rheological behavior in defining film performance and presents a novel analytical framework applicable to the design of sustainable, high-performance biopolymeric materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

16 pages, 1484 KiB  
Article
Effect of Pectin Extracted from Lemon Peels on the Stability of Buffalo Milk Liqueurs
by Salvatore Velotto, Ignazio Maria Gugino, Miriam La Barbera, Vincenzo Alfeo, Ilaria Proetto, Lucia Parafati, Rosa Palmeri, Biagio Fallico, Elena Arena, Alfio Daniele Romano, Gianluca Tripodi, Lucia Coppola and Aldo Todaro
Beverages 2025, 11(4), 94; https://doi.org/10.3390/beverages11040094 - 24 Jun 2025
Viewed by 740
Abstract
This study aimed to explore innovative process technologies for producing milk liqueurs with balanced and stable formulations. Milk liqueurs are known to pose significant technological challenges due to phase separation, which compromises product stability and reduces shelf-life. Interactions between milk proteins, alcohol, carbohydrates, [...] Read more.
This study aimed to explore innovative process technologies for producing milk liqueurs with balanced and stable formulations. Milk liqueurs are known to pose significant technological challenges due to phase separation, which compromises product stability and reduces shelf-life. Interactions between milk proteins, alcohol, carbohydrates, temperature, and ionic strength play a crucial role in such destabilization. Pectin, known for its stabilizing effect, can mitigate phase separation, enhancing both shelf-life and sensory quality. This research focused on developing stable formulations of liqueur milk based on fresh buffalo milk by incorporating the pectin extracted from lemon peels. Rheological properties, particularly viscosity, were assessed in formulations containing varying percentages of pectin. The most stable formulation was identified as the one containing 0.10% pectin. Accelerated shelf-life testing, modelled using the Arrhenius equation, predicted a shelf-life of 15 months at 25 °C under standard lighting. The findings demonstrate that lemon peel-derived pectin, obtained from agri-food waste, sustainably improves product stability. Further studies are needed to characterize the pectin structure and optimize extraction methods for industrial-scale applications. Full article
Show Figures

Figure 1

22 pages, 9724 KiB  
Article
Study on the Mechanical Properties and Degradation Mechanisms of Damaged Rock Under the Influence of Liquid Saturation
by Bowen Wu, Jucai Chang, Jianbiao Bai, Chao Qi and Dingchao Chen
Appl. Sci. 2025, 15(13), 7054; https://doi.org/10.3390/app15137054 - 23 Jun 2025
Viewed by 289
Abstract
To investigate the degradation mechanisms of the surrounding rock in abandoned mine roadways used for oil storage, this study combined uniaxial compression tests with digital image correlation (DIC), scanning electron microscopy (SEM), and other techniques to analyze the evolution of the rock mechanical [...] Read more.
To investigate the degradation mechanisms of the surrounding rock in abandoned mine roadways used for oil storage, this study combined uniaxial compression tests with digital image correlation (DIC), scanning electron microscopy (SEM), and other techniques to analyze the evolution of the rock mechanical properties under the coupled effects of oil–water soaking and initial damage. The results indicate that oil–water soaking induces the loss of silicon elements and the deterioration of microstructure, leading to surface peeling, crack propagation, and increased porosity of the sample. The compressive strength decreases linearly with the soaking time. Acoustic emission (AE) monitoring showed that after 24 h of soaking, the maximum ringing count rate and cumulative count decreased by 81.7% and 80.4%, respectively, compared to the dry state. As the liquid saturation increases, the failure mode transitions from tension dominated to shear failure. The synergistic effect of initial damage and oil–water erosion weakens the rock’s energy storage capacity, with the energy storage limit decreasing by 45.6%, leading to reduced resistance to external forces. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

16 pages, 3162 KiB  
Article
A Study of the Influence of Sodium Alginate Molecular Weight and Its Crosslinking on the Properties of Potato Peel Waste-Based Films
by Mohsen Sadeghi-Shapourabadi, Mathieu Robert and Said Elkoun
Appl. Sci. 2025, 15(12), 6385; https://doi.org/10.3390/app15126385 - 6 Jun 2025
Viewed by 591
Abstract
This study develops a sustainable biopolymer film derived from potato peel waste (PW), enhanced with low- and high-viscosity sodium alginate (SA) through a solution casting method. The effect of calcium chloride crosslinking on the PW/SA composites was also evaluated. Scanning electron microscopy (SEM) [...] Read more.
This study develops a sustainable biopolymer film derived from potato peel waste (PW), enhanced with low- and high-viscosity sodium alginate (SA) through a solution casting method. The effect of calcium chloride crosslinking on the PW/SA composites was also evaluated. Scanning electron microscopy (SEM) analysis revealed that SA incorporation improved the film’s cohesion and uniformity, with both low- and high-viscosity SA showing nearly similar effects. Both the addition of SA and crosslinking led to enhanced tensile strength, as well as improved moisture barrier properties, by lowering the water vapor permeability (WVP) factor. The inclusion of high-viscosity SA (hvSA) resulted in superior mechanical and moisture barrier properties compared to the low-viscosity SA (lvSA), achieving a tensile strength of 5.34 MPa, with a 68% improvement compared to the pure PW film. The WVP analysis showed that hvSA had a superior impact, leading to a 32% reduction in WVP compared to the pure film. Crosslinking further boosted the tensile strength and moisture barrier properties. The crosslinked hvSA/PW composite shows the highest tensile strength among all samples, measuring 6.47 MPa, which accounts for a 104% enhancement compared to the pure film. It also led to a 34% reduction in WVP, reaching a value of 1.58 × 10−12 g/(Pa·cm·s). The findings demonstrate that PW/SA composites, especially the crosslinked hvSA/PW, offer the highest mechanical and barrier properties, making them suitable for biodegradable packaging and biomedical applications. Full article
(This article belongs to the Special Issue Design, Characterization, and Applications of Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 4117 KiB  
Article
Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma
by Xiaoshan Yan, Zuohui Ji, Xiaopeng Li, Yue Zhao, Zhen Li, Zhai Chen and Heguo Li
Polymers 2025, 17(11), 1519; https://doi.org/10.3390/polym17111519 - 29 May 2025
Viewed by 507
Abstract
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a [...] Read more.
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a poly(ethylene-alt-tetrafluoroethylene) (ETFE) membrane by the atmospheric pressure dielectric barrier discharge (DBD) of plasma under different working voltages, processing times, and concentrations of acrylic acid (AA) in a helium (He) atmosphere. The increase in the hydrophilicity of the ETFE membrane is confirmed by the wettability test, which shows a significant decrease in the water contact angle, from 96° to 50°, after plasma modification. The interfacial T-peel strength of an ETFE membrane composited with polyester fabric increased from 0.53 N/cm to 13.64 N/cm after plasma modification. Significantly, the T-peel strength of the composite using a modified ETFE membrane with ultrasonic washing could still reach 11.75 N/cm. Various characterization methods clearly disclosed the physical and chemical changes on the ETFE membrane surface, such as introducing the polar -COOH group at a nano-level, improving the roughness, decreasing the ratios of the F/C element, and increasing the ratios of the O/C element, suggesting using nano-level grafted polyacrylic acid (g-PAA) on the surface of the membrane by DBD. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 5168 KiB  
Article
Pyrolyzed Biomass Filler for PLA-Based Food Packaging
by Andreea-Cătălina Joe, Maria Tănase, Catalina Călin, Elena-Emilia Sîrbu, Ionuț Banu, Dorin Bomboș and Stanca Cuc
Polymers 2025, 17(10), 1327; https://doi.org/10.3390/polym17101327 - 13 May 2025
Cited by 2 | Viewed by 671
Abstract
Poly(lactic acid) (PLA) is a biodegradable thermoplastic polymer used in various applications, including food packaging, 3D printing, textiles, and biomedical devices. Nevertheless, it presents several limitations, such as high hydrophobicity, low gas barrier properties, UV sensitivity, and brittleness. To overcome this issue, in [...] Read more.
Poly(lactic acid) (PLA) is a biodegradable thermoplastic polymer used in various applications, including food packaging, 3D printing, textiles, and biomedical devices. Nevertheless, it presents several limitations, such as high hydrophobicity, low gas barrier properties, UV sensitivity, and brittleness. To overcome this issue, in this study, biochar (BC) produced through pyrolysis of bio-mass waste was incorporated (1 wt.%, 2wt.%, and 3 wt.%—PLA 1, PLA 2, and PLA 3) to enhance thermal and mechanical properties of PLA composites. The impact of pyrolysis temperature on the kinetic parameters, physicochemical characteristics, and structural properties of banana and orange peels for use as biochar added to PLA was investigated. The biomass waste such as banana and orange peels were characterized by proximal analysis and thermogravimetric analysis (TGA); meanwhile, the PLA composites were characterized by tensile straight, TGA, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results indicated that the presence of biochar improved hygroscopic characteristics and Tg temperature from 62.98 °C for 1 wt.% to 80.29 °C for 3 wt.%. Additionally, it was found that the tensile strength of the composites increased by almost 30% for PLA 3 compared with PLA 1. The Young’s modulus also increased from 194.334 MPa for PLA1 to 388.314 MPa for PLA3. However, the elongation decreased from 14.179 (PLA 1) to 7.240 mm (PLA3), and the maximum thermal degradation temperature shifted to lower temperatures ranging from 366 °C for PLA-1 to 345 °C for PLA-3 samples, respectively. From surface analysis, it was observed that the surface of these samples was relatively smooth, but small microcluster BC aggregates were visible, especially for the PLA 3 composite. In conclusion, the incorporation of biochar into PLA is a promising method for enhancing material performance while maintaining environmental sustainability by recycling biomass waste. Full article
Show Figures

Figure 1

Back to TopTop