Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (183)

Search Parameters:
Keywords = peak signal-to-noise ratio (PSNR) metric

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1577 KiB  
Article
Multidisciplinary, Clinical Assessment of Accelerated Deep-Learning MRI Protocols at 1.5 T and 3 T After Intracranial Tumor Surgery and Their Influence on Residual Tumor Perception
by Christer Ruff, Till-Karsten Hauser, Constantin Roder, Daniel Feucht, Paula Bombach, Leonie Zerweck, Deborah Staber, Frank Paulsen, Ulrike Ernemann and Georg Gohla
Diagnostics 2025, 15(15), 1982; https://doi.org/10.3390/diagnostics15151982 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Postoperative MRI is crucial for detecting residual tumor, identifying complications, and planning subsequent therapy. This study evaluates accelerated deep learning reconstruction (DLR) versus standard clinical protocols for early postoperative MRI following tumor resection. Methods: This study uses a multidisciplinary approach [...] Read more.
Background/Objectives: Postoperative MRI is crucial for detecting residual tumor, identifying complications, and planning subsequent therapy. This study evaluates accelerated deep learning reconstruction (DLR) versus standard clinical protocols for early postoperative MRI following tumor resection. Methods: This study uses a multidisciplinary approach involving a neuroradiologist, neurosurgeon, neuro-oncologist, and radiotherapist to evaluate qualitative aspects using a 5-point Likert scale, the preferred reconstruction variant and potential residual tumor of DLR and conventional reconstruction (CR) of FLAIR, T1-weighted non-contrast and contrast-enhanced (T1), and coronal T2-weighted (T2) sequences for 1.5 and 3 T MRI. Quantitative analysis included the image quality metrics Structural Similarity Index (SSIM), Multi-Scale SSIM (MS-SSIM), Feature Similarity Index (FSIM), Noise Quality Metric (NQM), signal-to-noise ratio (SNR), and Peak SNR (PSNR) with CR as a reference. Results: All raters strongly preferred DLR over CR. This was most pronounced for FLAIR images at 1.5 and 3 T (91% at 1.5 T and 97% at 3 T) and least pronounced for T1 at 1.5 T (79% for non-contrast-enhanced and 84% for contrast-enhanced sequences) and for T2 at 3 T (69%). DLR demonstrated superior qualitative image quality for all sequences and field strengths (p < 0.001), except for T2 at 3 T, which was observed across all raters (p = 0.670). Diagnostic confidence was similar at 3 T with better but non-significant differences for T2 (p = 0.134) and at 1.5 T with better but non-significant differences for non-contrast-enhanced T1 (p = 0.083) and only marginally significant results for FLAIR (p = 0.033). Both the SSIM and MS-SSIM indicated near-perfect similarity between CR and DLR. FSIM performs worse in terms of consistency between CR and DLR. The image quality metrics NQM, SNR, and PSNR showed better results for DLR. Visual assessment of residual tumor was similar at 3 T but differed at 1.5 T, with more residual tumor detected with DLR, especially by the neurosurgeon (n = 4). Conclusions: An accelerated DLR protocol demonstrates clinical feasibility, enabling high-quality reconstructions in challenging postoperative MRIs. DLR sequences received strong multidisciplinary preference, underscoring their potential to improve neuro-oncologic decision making and suitability for clinical implementation. Full article
(This article belongs to the Special Issue Advanced Brain Tumor Imaging)
19 pages, 1217 KiB  
Article
Improving Endodontic Radiograph Interpretation with TV-CLAHE for Enhanced Root Canal Detection
by Barbara Obuchowicz, Joanna Zarzecka, Michał Strzelecki, Marzena Jakubowska, Rafał Obuchowicz, Adam Piórkowski, Elżbieta Zarzecka-Francica and Julia Lasek
J. Clin. Med. 2025, 14(15), 5554; https://doi.org/10.3390/jcm14155554 - 6 Aug 2025
Abstract
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability [...] Read more.
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability of root canal configurations in mandibular incisors, using cone-beam computed tomography (CBCT) as the gold standard. A null hypothesis was tested, assuming that enhancement methods would not significantly improve root canal detection compared to original radiographs. Method: A retrospective analysis was conducted on 60 periapical radiographs of mandibular incisors, resulting in 420 images after applying seven enhancement techniques: Histogram Equalization (HE), Contrast-Limited Adaptive Histogram Equalization (CLAHE), CLAHE optimized with Pelican Optimization Algorithm (CLAHE-POA), Global CLAHE (G-CLAHE), k-Caputo Fractional Differential Operator (KCFDO), and the proposed TV-CLAHE. Four experienced observers (two radiologists and two dentists) independently assessed root canal visibility. Subjective evaluation was performed using an own scale inspired by a 5-point Likert scale, and the detection accuracy was compared to the CBCT findings. Quantitative metrics including Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR), image entropy, and Structural Similarity Index Measure (SSIM) were calculated to objectively assess image quality. Results: Root canal detection accuracy improved across all enhancement methods, with the proposed TV-CLAHE algorithm achieving the highest performance (93–98% accuracy), closely approaching CBCT-level visualization. G-CLAHE also showed substantial improvement (up to 92%). Statistical analysis confirmed significant inter-method differences (p < 0.001). TV-CLAHE outperformed all other techniques in subjective quality ratings and yielded superior SNR and entropy values. Conclusions: Advanced image enhancement methods, particularly TV-CLAHE, significantly improve root canal visibility in 2D radiographs and offer a practical, low-cost alternative to CBCT in routine dental diagnostics. These findings support the integration of optimized contrast enhancement techniques into endodontic imaging workflows to reduce the risk of missed canals and improve treatment outcomes. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

14 pages, 21956 KiB  
Article
Evaluating Image Quality Metrics as Loss Functions for Image Dehazing
by Rareș Dobre-Baron, Adrian Savu-Jivanov and Cosmin Ancuți
Sensors 2025, 25(15), 4755; https://doi.org/10.3390/s25154755 - 1 Aug 2025
Viewed by 209
Abstract
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio [...] Read more.
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Metric (SSIM). However, disparities between rankings given by these metrics and those given by human evaluators have encouraged the development of improved image quality assessment (IQA) metrics that are a better fit for this purpose. These methods have been previously used solely for quality assessments and not as objectives in the training of neural networks for high-level vision tasks, despite the potential improvements that may come about by directly optimizing for desired metrics. This paper examines the adequacy of ten recent IQA metrics, compared with standard loss functions, within two trained dehazing neural networks, with observed broad improvement in their performance. Full article
(This article belongs to the Special Issue Sensing and Imaging in Computer Vision)
21 pages, 97817 KiB  
Article
Compression of 3D Optical Encryption Using Singular Value Decomposition
by Kyungtae Park, Min-Chul Lee and Myungjin Cho
Sensors 2025, 25(15), 4742; https://doi.org/10.3390/s25154742 - 1 Aug 2025
Viewed by 231
Abstract
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same [...] Read more.
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same size as the input data and consists of complex values, a compression technique is required to improve data efficiency. To address this issue, we introduce SVD as a compression method. SVD decomposes any matrix into simpler components, such as a unitary matrix, a rectangular diagonal matrix, and a complex unitary matrix. By leveraging this property, the encrypted data generated by DRPE can be effectively compressed. However, this compression may lead to some loss of information in the decrypted data. To mitigate this loss, we employ volumetric computational reconstruction based on integral imaging. As a result, the proposed method enhances the visual quality, compression ratio, and security of DRPE simultaneously. To validate the effectiveness of the proposed method, we conduct both computer simulations and optical experiments. The performance is evaluated quantitatively using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and peak sidelobe ratio (PSR) as evaluation metrics. Full article
Show Figures

Figure 1

28 pages, 3794 KiB  
Article
A Robust System for Super-Resolution Imaging in Remote Sensing via Attention-Based Residual Learning
by Rogelio Reyes-Reyes, Yeredith G. Mora-Martinez, Beatriz P. Garcia-Salgado, Volodymyr Ponomaryov, Jose A. Almaraz-Damian, Clara Cruz-Ramos and Sergiy Sadovnychiy
Mathematics 2025, 13(15), 2400; https://doi.org/10.3390/math13152400 - 25 Jul 2025
Viewed by 221
Abstract
Deep learning-based super-resolution (SR) frameworks are widely used in remote sensing applications. However, existing SR models still face limitations, particularly in recovering contours, fine features, and textures, as well as in effectively integrating channel information. To address these challenges, this study introduces a [...] Read more.
Deep learning-based super-resolution (SR) frameworks are widely used in remote sensing applications. However, existing SR models still face limitations, particularly in recovering contours, fine features, and textures, as well as in effectively integrating channel information. To address these challenges, this study introduces a novel residual model named OARN (Optimized Attention Residual Network) specifically designed to enhance the visual quality of low-resolution images. The network operates on the Y channel of the YCbCr color space and integrates LKA (Large Kernel Attention) and OCM (Optimized Convolutional Module) blocks. These components can restore large-scale spatial relationships and refine textures and contours, improving feature reconstruction without significantly increasing computational complexity. The performance of OARN was evaluated using satellite images from WorldView-2, GaoFen-2, and Microsoft Virtual Earth. Evaluation was conducted using objective quality metrics, such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Edge Preservation Index (EPI), and Perceptual Image Patch Similarity (LPIPS), demonstrating superior results compared to state-of-the-art methods in both objective measurements and subjective visual perception. Moreover, OARN achieves this performance while maintaining computational efficiency, offering a balanced trade-off between processing time and reconstruction quality. Full article
Show Figures

Figure 1

31 pages, 11068 KiB  
Article
Airport-FOD3S: A Three-Stage Detection-Driven Framework for Realistic Foreign Object Debris Synthesis
by Hanglin Cheng, Yihao Li, Ruiheng Zhang and Weiguang Zhang
Sensors 2025, 25(15), 4565; https://doi.org/10.3390/s25154565 - 23 Jul 2025
Viewed by 242
Abstract
Traditional Foreign Object Debris (FOD) detection methods face challenges such as difficulties in large-size data acquisition and the ineffective application of detection algorithms with high accuracy. In this paper, image data augmentation was performed using generative adversarial networks and diffusion models, generating images [...] Read more.
Traditional Foreign Object Debris (FOD) detection methods face challenges such as difficulties in large-size data acquisition and the ineffective application of detection algorithms with high accuracy. In this paper, image data augmentation was performed using generative adversarial networks and diffusion models, generating images of monitoring areas under different environmental conditions and FOD images of varied types. Additionally, a three-stage image blending method considering size transformation, a seamless process, and style transfer was proposed. The image quality of different blending methods was quantitatively evaluated using metrics such as structural similarity index and peak signal-to-noise ratio, as well as Depthanything. Finally, object detection models with a similarity distance strategy (SimD), including Faster R-CNN, YOLOv8, and YOLOv11, were tested on the dataset. The experimental results demonstrated that realistic FOD data were effectively generated. The Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) of the synthesized image by the proposed three-stage image blending method outperformed the other methods, reaching 0.99 and 45 dB. YOLOv11 with SimD trained on the augmented dataset achieved the mAP of 86.95%. Based on the results, it could be concluded that both data augmentation and SimD significantly improved the accuracy of FOD detection. Full article
Show Figures

Figure 1

37 pages, 5564 KiB  
Article
Improved Weighted Chimp Optimization Algorithm Based on Fitness–Distance Balance for Multilevel Thresholding Image Segmentation
by Asuman Günay Yılmaz and Samoua Alsamoua
Symmetry 2025, 17(7), 1066; https://doi.org/10.3390/sym17071066 - 4 Jul 2025
Viewed by 290
Abstract
Multilevel thresholding image segmentation plays a crucial role in various image processing applications. However, achieving optimal segmentation results often poses challenges due to the intricate nature of images. In this study, a novel metaheuristic search algorithm named Weighted Chimp Optimization Algorithm with Fitness–Distance [...] Read more.
Multilevel thresholding image segmentation plays a crucial role in various image processing applications. However, achieving optimal segmentation results often poses challenges due to the intricate nature of images. In this study, a novel metaheuristic search algorithm named Weighted Chimp Optimization Algorithm with Fitness–Distance Balance (WChOA-FDB) is developed. The algorithm integrates the concept of Fitness–Distance Balance (FDB) to ensure balanced exploration and exploitation of the solution space, thus enhancing convergence speed and solution quality. Moreover, WChOA-FDB incorporates weighted Chimp Optimization Algorithm techniques to further improve its performance in handling multilevel thresholding challenges. Experimental studies were conducted to test and verify the developed method. The algorithm’s performance was evaluated using 10 benchmark functions (IEEE_CEC_2020) of different types and complexity levels. The search performance of the algorithm was analyzed using the Friedman and Wilcoxon statistical test methods. According to the analysis results, the WChOA-FDB variants consistently outperform the base algorithm across all tested dimensions, with Friedman score improvements ranging from 17.3% (Case-6) to 25.2% (Case-4), indicating that the FDB methodology provides significant optimization enhancement regardless of problem complexity. Additionally, experimental evaluations conducted on color image segmentation tasks demonstrate the effectiveness of the proposed algorithm in achieving accurate and efficient segmentation results. The WChOA-FDB method demonstrates significant improvements in Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM) metrics with average enhancements of 0.121348 dB, 0.012688, and 0.003676, respectively, across different threshold levels (m = 2 to 12), objective functions, and termination criteria. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

24 pages, 2324 KiB  
Article
FUSE-Net: Multi-Scale CNN for NIR Band Prediction from RGB Using GNDVI-Guided Green Channel Enhancement
by Gwanghyeong Lee, Deepak Ghimire, Donghoon Kim, Sewoon Cho, Byoungjun Kim and Sunghwan Jeong
Sensors 2025, 25(13), 4076; https://doi.org/10.3390/s25134076 - 30 Jun 2025
Viewed by 434
Abstract
Hyperspectral imaging (HSI) is a powerful tool for precision imaging tasks such as vegetation analysis, but its widespread use remains limited due to the high cost of equipment and challenges in data acquisition. To explore a more accessible alternative, we propose a Green [...] Read more.
Hyperspectral imaging (HSI) is a powerful tool for precision imaging tasks such as vegetation analysis, but its widespread use remains limited due to the high cost of equipment and challenges in data acquisition. To explore a more accessible alternative, we propose a Green Normalized Difference Vegetation Index (GNDVI)-guided green channel adjustment method, termed G-RGB, which enables the estimation of near-infrared (NIR) reflectance from standard RGB image inputs. The G-RGB method enhances the green channel to encode NIR-like information, generating a spectrally enriched representation. Building on this, we introduce FUSE-Net, a novel deep learning model that combines multi-scale convolutional layers and MLP-Mixer-based channel learning to effectively model spatial and spectral dependencies. For evaluation, we constructed a high-resolution RGB-HSI paired dataset by capturing basil leaves under controlled conditions. Through ablation studies and band combination analysis, we assessed the model’s ability to recover spectral information. The experimental results showed that the G-RGB input consistently outperformed unmodified RGB across multiple metrics, including mean squared error (MSE), peak signal-to-noise ratio (PSNR), spectral correlation coefficient (SCC), and structural similarity (SSIM), with the best performance observed when paired with FUSE-Net. While our method does not replace true NIR data, it offers a viable approximation during inference when only RGB images are available, supporting cost-effective analysis in scenarios where HSI systems are inaccessible. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 4478 KiB  
Article
Welding Image Data Augmentation Method Based on LRGAN Model
by Ying Wang, Zhe Dai, Qiang Zhang and Zihao Han
Appl. Sci. 2025, 15(12), 6923; https://doi.org/10.3390/app15126923 - 19 Jun 2025
Viewed by 373
Abstract
This study focuses on the data bottleneck issue in the training of deep learning models during the intelligent welding control process and proposes an improved model called LRGAN (loss reconstruction generative adversarial networks). First, a five-layer spectral normalization neural network was designed as [...] Read more.
This study focuses on the data bottleneck issue in the training of deep learning models during the intelligent welding control process and proposes an improved model called LRGAN (loss reconstruction generative adversarial networks). First, a five-layer spectral normalization neural network was designed as the discriminator of the model. By incorporating the least squares loss function, the gradients of the model parameters were constrained within a reasonable range, which not only accelerated the convergence process but also effectively limited drastic changes in model parameters, alleviating the vanishing gradient problem. Next, a nine-layer residual structure was introduced in the generator to optimize the training of deep networks, preventing the mode collapse issue caused by the increase in the number of layers. The final experimental results show that the proposed LRGAN model outperforms other generative models in terms of evaluation metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and Fréchet inception distance (FID). It provides an effective solution to the small sample problem in the intelligent welding control process. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

28 pages, 4199 KiB  
Article
Dose Reduction in Scintigraphic Imaging Through Enhanced Convolutional Autoencoder-Based Denoising
by Nikolaos Bouzianis, Ioannis Stathopoulos, Pipitsa Valsamaki, Efthymia Rapti, Ekaterini Trikopani, Vasiliki Apostolidou, Athanasia Kotini, Athanasios Zissimopoulos, Adam Adamopoulos and Efstratios Karavasilis
J. Imaging 2025, 11(6), 197; https://doi.org/10.3390/jimaging11060197 - 14 Jun 2025
Viewed by 573
Abstract
Objective: This study proposes a novel deep learning approach for enhancing low-dose bone scintigraphy images using an Enhanced Convolutional Autoencoder (ECAE), aiming to reduce patient radiation exposure while preserving diagnostic quality, as assessed by both expert-based quantitative image metrics and qualitative evaluation. Methods: [...] Read more.
Objective: This study proposes a novel deep learning approach for enhancing low-dose bone scintigraphy images using an Enhanced Convolutional Autoencoder (ECAE), aiming to reduce patient radiation exposure while preserving diagnostic quality, as assessed by both expert-based quantitative image metrics and qualitative evaluation. Methods: A supervised learning framework was developed using real-world paired low- and full-dose images from 105 patients. Data were acquired using standard clinical gamma cameras at the Nuclear Medicine Department of the University General Hospital of Alexandroupolis. The ECAE architecture integrates multiscale feature extraction, channel attention mechanisms, and efficient residual blocks to reconstruct high-quality images from low-dose inputs. The model was trained and validated using quantitative metrics—Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)—alongside qualitative assessments by nuclear medicine experts. Results: The model achieved significant improvements in both PSNR and SSIM across all tested dose levels, particularly between 30% and 70% of the full dose. Expert evaluation confirmed enhanced visibility of anatomical structures, noise reduction, and preservation of diagnostic detail in denoised images. In blinded evaluations, denoised images were preferred over the original full-dose scans in 66% of all cases, and in 61% of cases within the 30–70% dose range. Conclusion: The proposed ECAE model effectively reconstructs high-quality bone scintigraphy images from substantially reduced-dose acquisitions. This approach supports dose reduction in nuclear medicine imaging while maintaining—or even enhancing—diagnostic confidence, offering practical benefits in patient safety, workflow efficiency, and environmental impact. Full article
Show Figures

Figure 1

26 pages, 6803 KiB  
Article
Capacity Enhancement in Free-Space Optics Networks via Optimized Optical Code Division Multiple Access Image Transmission
by Somia A. Abd El-Mottaleb, Mehtab Singh, Hassan Yousif Ahmed, Median Zeghid and Maisara Mohyeldin Gasim Mohamed
Photonics 2025, 12(6), 571; https://doi.org/10.3390/photonics12060571 - 5 Jun 2025
Viewed by 427
Abstract
This paper presents a new high-speed RGB image transmission system over Free-Space Optics (FSO) channel employing Optical Code Division Multiple Access (OCDMA) with Permutation Vector (PV) codes. Four RGB images are transmitted simultaneously at 10 Gbps per image, achieving a total capacity of [...] Read more.
This paper presents a new high-speed RGB image transmission system over Free-Space Optics (FSO) channel employing Optical Code Division Multiple Access (OCDMA) with Permutation Vector (PV) codes. Four RGB images are transmitted simultaneously at 10 Gbps per image, achieving a total capacity of 40 Gbps. The system’s performance is evaluated under various atmospheric conditions, including three fog levels and real-world visibility data from Alexandria city, Egypt. Image Quality Assessment (IQA) metrics, including Signal-to-Noise Ratio (SNR), Root Mean Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), correlation coefficients, and Structural Similarity Index Measure (SSIM), are evaluated for both unfiltered and median-filtered images. The results show significant degradation in image quality due to transmission distance and atmospheric attenuation. In Alexandria’s clear atmospheric conditions, the system achieves a maximum transmission range of 15 km with acceptable visual quality, while the range is reduced to 2.6 km, 1.6 km, and 1 km for Low Fog (LF), Medium Fog (MF), and Heavy Fog (HF), respectively. At these distances, the RGB images achieve minimum SNR, RMSE, and SSIM values of 7.27 dB, 47.66, and 0.20, respectively, with further improvements when applying median filtering. Full article
(This article belongs to the Special Issue Optical Wireless Communication in 5G and Beyond)
Show Figures

Figure 1

29 pages, 6716 KiB  
Article
Mitigating Transmission Errors: A Forward Error Correction-Based Framework for Enhancing Objective Video Quality
by Muhammad Babar Imtiaz and Rabia Kamran
Sensors 2025, 25(11), 3503; https://doi.org/10.3390/s25113503 - 1 Jun 2025
Viewed by 776
Abstract
In video transmission, maintaining high visual quality under variable network conditions, including bandwidth and efficiency, is essential for optimal viewer experience. Channel errors or malicious attacks during transmission can cause degradation in video quality, affecting its secure transmission and putting its confidentiality and [...] Read more.
In video transmission, maintaining high visual quality under variable network conditions, including bandwidth and efficiency, is essential for optimal viewer experience. Channel errors or malicious attacks during transmission can cause degradation in video quality, affecting its secure transmission and putting its confidentiality and integrity at risk. This paper presents a novel approach to enhancing objective video quality by integrating an energy-efficient forward error correction (FEC) technique into video encoding and transmission processes. Moreover, it ensures that the video contents remain secure and unintelligible to unauthorized parties. This is achieved by combining H.264/AVC syntax-based encryption and decryption algorithms with error correction during the video coding process to provide end-to-end confidentiality. Unlike traditional error correction strategies, our approach dynamically adjusts redundancy levels based on real-time network conditions, optimizing bandwidth utilization without compromising quality. The proposed framework is evaluated across full reference objective video quality metrics, demonstrating significant improvements in the peak signal-to-noise ratio (PSNR) and PSNR611 of the recovered videos. Experiments are carried out on multiple test video sequences with different video resolutions having various characteristics, i.e., colors, motions, and structures, and confirm that the FEC-based solution effectively detects and corrects packet loss and transmission errors without the need for retransmission, reducing the impact of channel noise and accidental disruptions on visual quality in challenging network environments. This study contributes to the development of resilient video transmission systems with reduced computational complexity of the codec and provides insights into the role of FEC in addressing quality degradation in modern multimedia applications where low latency is crucial. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

20 pages, 9959 KiB  
Article
Compensation of Speckle Noise in 2D Images from Triangulation Laser Profile Sensors Using Local Column Median Vectors with an Application in a Quality Control System
by Paweł Rotter, Dawid Knapik, Maciej Klemiato, Maciej Rosół and Grzegorz Putynkowski
Sensors 2025, 25(11), 3426; https://doi.org/10.3390/s25113426 - 29 May 2025
Viewed by 443
Abstract
The main function of triangulation-based laser profile sensors—also referred to as laser profilometers or profilers—is the three-dimensional scanning of moving objects using laser triangulation. In addition to capturing 3D data, these profilometers simultaneously generate grayscale images of the scanned objects. However, the quality [...] Read more.
The main function of triangulation-based laser profile sensors—also referred to as laser profilometers or profilers—is the three-dimensional scanning of moving objects using laser triangulation. In addition to capturing 3D data, these profilometers simultaneously generate grayscale images of the scanned objects. However, the quality of these images is often degraded due to interference of the laser light, manifesting as speckle noise. In profilometer images, this noise typically appears as vertical stripes. Unlike the column fixed pattern noise commonly observed in TDI CMOS cameras, the positions of these stripes are not stationary. Consequently, conventional algorithms for removing fixed pattern noise yield unsatisfactory results when applied to profilometer images. In this article, we propose an effective method for suppressing speckle noise in profilometer images of flat surfaces, based on local column median vectors. The method was evaluated across a variety of surface types and compared against existing approaches using several metrics, including the standard deviation of the column mean vector (SDCMV), frequency spectrum analysis, and standard image quality assessment measures. Our results demonstrate a substantial improvement in reducing column speckle noise: the SDCMV value achieved with our method is 2.5 to 5 times lower than that obtained using global column median values, and the root mean square (RMS) of the frequency spectrum in the noise-relevant region is reduced by nearly an order of magnitude. General image quality metrics also indicate moderate enhancement: peak signal-to-noise ratio (PSNR) increased by 2.12 dB, and the structural similarity index (SSIM) improved from 0.929 to 0.953. The primary limitation of the proposed method is its applicability only to flat surfaces. Nonetheless, we successfully implemented it in an optical inspection system for the furniture industry, where the post-processed image quality was sufficient to detect surface defects as small as 0.1 mm. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 8877 KiB  
Article
Noise Impact Analysis in Computer-Generated Holography Based on Dual Metrics Evaluation via Peak Signal-to-Noise Ratio and Structural Similarity Index Measure
by Yucheng Li, Yang Zhang, Deyu Jia, Song Gao and Muqun Zhang
Appl. Sci. 2025, 15(11), 6047; https://doi.org/10.3390/app15116047 - 28 May 2025
Viewed by 393
Abstract
This study investigates the noise impact on reconstructed images in computer-generated holography (CGH) through theoretical analysis and Matlab 2015b simulations. By quantitatively injecting noise to mimic practical interference environments, we systematically analyze the degradation mechanisms of four CGH types: detour-phase, modified off-axis beam [...] Read more.
This study investigates the noise impact on reconstructed images in computer-generated holography (CGH) through theoretical analysis and Matlab 2015b simulations. By quantitatively injecting noise to mimic practical interference environments, we systematically analyze the degradation mechanisms of four CGH types: detour-phase, modified off-axis beam reference, kinoform, and interference type. A dual-metric evaluation framework combining peak signal-to-noise ratio (PSNR) and the Structural Similarity Index Measure (SSIM) is proposed. Results demonstrate that increasing noise intensity induces progressive declines in reconstruction quality, manifested as PSNR reduction and SSIM-based structural fidelity loss. The findings provide theoretical guidance for noise suppression, parameter optimization, and algorithm selection in CGH systems, advancing its applications in optical encryption and high-precision imaging. Full article
Show Figures

Figure 1

39 pages, 14011 KiB  
Article
Comparing Geodesic Filtering to State-of-the-Art Algorithms: A Comprehensive Study and CUDA Implementation
by Pierre Boulanger and Sadid Bin Hasan
J. Imaging 2025, 11(5), 167; https://doi.org/10.3390/jimaging11050167 - 20 May 2025
Viewed by 564
Abstract
This paper presents a comprehensive investigation into advanced image processing using geodesic filtering within a Riemannian manifold framework. We introduce a novel geodesic filtering formulation that uniquely integrates spatial and intensity relationships through minimal path computation, demonstrating significant improvements in edge preservation and [...] Read more.
This paper presents a comprehensive investigation into advanced image processing using geodesic filtering within a Riemannian manifold framework. We introduce a novel geodesic filtering formulation that uniquely integrates spatial and intensity relationships through minimal path computation, demonstrating significant improvements in edge preservation and noise reduction compared to conventional methods. Our quantitative analysis using peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) metrics across diverse image types reveals that our approach outperforms traditional techniques in preserving fine details while effectively suppressing both Gaussian and non-Gaussian noise. We developed an automatic parameter optimization methodology that eliminates manual tuning by identifying optimal filtering parameters based on image characteristics. Additionally, we present a highly optimized GPU implementation featuring innovative wave-propagation algorithms and memory access optimization techniques that achieve a 200× speedup, making geodesic filtering practical for real-time applications. Our work bridges the gap between theoretical elegance and computational practicality, establishing geodesic filtering as a superior solution for challenging image processing tasks in fields ranging from medical imaging to remote sensing. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

Back to TopTop