Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,169)

Search Parameters:
Keywords = peak signal-to-noise ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2693 KiB  
Article
Mitigating the Drawbacks of the L0 Norm and the Total Variation Norm
by Gengsheng L. Zeng
Axioms 2025, 14(8), 605; https://doi.org/10.3390/axioms14080605 - 4 Aug 2025
Abstract
In compressed sensing, it is believed that the L0 norm minimization is the best way to enforce a sparse solution. However, the L0 norm is difficult to implement in a gradient-based iterative image reconstruction algorithm. The total variation (TV) norm minimization [...] Read more.
In compressed sensing, it is believed that the L0 norm minimization is the best way to enforce a sparse solution. However, the L0 norm is difficult to implement in a gradient-based iterative image reconstruction algorithm. The total variation (TV) norm minimization is considered a proper substitute for the L0 norm minimization. This paper points out that the TV norm is not powerful enough to enforce a piecewise-constant image. This paper uses the limited-angle tomography to illustrate the possibility of using the L0 norm to encourage a piecewise-constant image. However, one of the drawbacks of the L0 norm is that its derivative is zero almost everywhere, making a gradient-based algorithm useless. Our novel idea is to replace the zero value of the L0 norm derivative with a zero-mean random variable. Computer simulations show that the proposed L0 norm minimization outperforms the TV minimization. The novelty of this paper is the introduction of some randomness in the gradient of the objective function when the gradient is zero. The quantitative evaluations indicate the improvements of the proposed method in terms of the structural similarity (SSIM) and the peak signal-to-noise ratio (PSNR). Full article
Show Figures

Figure 1

14 pages, 21956 KiB  
Article
Evaluating Image Quality Metrics as Loss Functions for Image Dehazing
by Rareș Dobre-Baron, Adrian Savu-Jivanov and Cosmin Ancuți
Sensors 2025, 25(15), 4755; https://doi.org/10.3390/s25154755 - 1 Aug 2025
Viewed by 171
Abstract
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio [...] Read more.
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Metric (SSIM). However, disparities between rankings given by these metrics and those given by human evaluators have encouraged the development of improved image quality assessment (IQA) metrics that are a better fit for this purpose. These methods have been previously used solely for quality assessments and not as objectives in the training of neural networks for high-level vision tasks, despite the potential improvements that may come about by directly optimizing for desired metrics. This paper examines the adequacy of ten recent IQA metrics, compared with standard loss functions, within two trained dehazing neural networks, with observed broad improvement in their performance. Full article
(This article belongs to the Special Issue Sensing and Imaging in Computer Vision)
21 pages, 97817 KiB  
Article
Compression of 3D Optical Encryption Using Singular Value Decomposition
by Kyungtae Park, Min-Chul Lee and Myungjin Cho
Sensors 2025, 25(15), 4742; https://doi.org/10.3390/s25154742 - 1 Aug 2025
Viewed by 207
Abstract
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same [...] Read more.
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same size as the input data and consists of complex values, a compression technique is required to improve data efficiency. To address this issue, we introduce SVD as a compression method. SVD decomposes any matrix into simpler components, such as a unitary matrix, a rectangular diagonal matrix, and a complex unitary matrix. By leveraging this property, the encrypted data generated by DRPE can be effectively compressed. However, this compression may lead to some loss of information in the decrypted data. To mitigate this loss, we employ volumetric computational reconstruction based on integral imaging. As a result, the proposed method enhances the visual quality, compression ratio, and security of DRPE simultaneously. To validate the effectiveness of the proposed method, we conduct both computer simulations and optical experiments. The performance is evaluated quantitatively using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and peak sidelobe ratio (PSR) as evaluation metrics. Full article
Show Figures

Figure 1

23 pages, 3453 KiB  
Article
Robust Peak Detection Techniques for Harmonic FMCW Radar Systems: Algorithmic Comparison and FPGA Feasibility Under Phase Noise
by Ahmed El-Awamry, Feng Zheng, Thomas Kaiser and Maher Khaliel
Signals 2025, 6(3), 36; https://doi.org/10.3390/signals6030036 - 30 Jul 2025
Viewed by 245
Abstract
Accurate peak detection in the frequency domain is fundamental to reliable range estimation in Frequency-Modulated Continuous-Wave (FMCW) radar systems, particularly in challenging conditions characterized by a low signal-to-noise ratio (SNR) and phase noise impairments. This paper presents a comprehensive comparative analysis of five [...] Read more.
Accurate peak detection in the frequency domain is fundamental to reliable range estimation in Frequency-Modulated Continuous-Wave (FMCW) radar systems, particularly in challenging conditions characterized by a low signal-to-noise ratio (SNR) and phase noise impairments. This paper presents a comprehensive comparative analysis of five peak detection algorithms: FFT thresholding, Cell-Averaging Constant False Alarm Rate (CA-CFAR), a simplified Matrix Pencil Method (MPM), SVD-based detection, and a novel Learned Thresholded Subspace Projection (LTSP) approach. The proposed LTSP method leverages singular value decomposition (SVD) to extract the dominant signal subspace, followed by signal reconstruction and spectral peak analysis, enabling robust detection in noisy and spectrally distorted environments. Each technique was analytically modeled and extensively evaluated through Monte Carlo simulations across a wide range of SNRs and oscillator phase noise levels, from 100 dBc/Hz to 70 dBc/Hz. Additionally, real-world validation was performed using a custom-built harmonic FMCW radar prototype operating in the 2.4–2.5 GHz transmission band and 4.8–5.0 GHz harmonic reception band. Results show that CA-CFAR offers the highest resilience to phase noise, while the proposed LTSP method delivers competitive detection performance with improved robustness over conventional FFT and MPM techniques. Furthermore, the hardware feasibility of each algorithm is assessed for implementation on a Xilinx FPGA platform, highlighting practical trade-offs between detection performance, computational complexity, and resource utilization. These findings provide valuable guidance for the design of real-time, embedded FMCW radar systems operating under adverse conditions. Full article
Show Figures

Graphical abstract

28 pages, 3794 KiB  
Article
A Robust System for Super-Resolution Imaging in Remote Sensing via Attention-Based Residual Learning
by Rogelio Reyes-Reyes, Yeredith G. Mora-Martinez, Beatriz P. Garcia-Salgado, Volodymyr Ponomaryov, Jose A. Almaraz-Damian, Clara Cruz-Ramos and Sergiy Sadovnychiy
Mathematics 2025, 13(15), 2400; https://doi.org/10.3390/math13152400 - 25 Jul 2025
Viewed by 203
Abstract
Deep learning-based super-resolution (SR) frameworks are widely used in remote sensing applications. However, existing SR models still face limitations, particularly in recovering contours, fine features, and textures, as well as in effectively integrating channel information. To address these challenges, this study introduces a [...] Read more.
Deep learning-based super-resolution (SR) frameworks are widely used in remote sensing applications. However, existing SR models still face limitations, particularly in recovering contours, fine features, and textures, as well as in effectively integrating channel information. To address these challenges, this study introduces a novel residual model named OARN (Optimized Attention Residual Network) specifically designed to enhance the visual quality of low-resolution images. The network operates on the Y channel of the YCbCr color space and integrates LKA (Large Kernel Attention) and OCM (Optimized Convolutional Module) blocks. These components can restore large-scale spatial relationships and refine textures and contours, improving feature reconstruction without significantly increasing computational complexity. The performance of OARN was evaluated using satellite images from WorldView-2, GaoFen-2, and Microsoft Virtual Earth. Evaluation was conducted using objective quality metrics, such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Edge Preservation Index (EPI), and Perceptual Image Patch Similarity (LPIPS), demonstrating superior results compared to state-of-the-art methods in both objective measurements and subjective visual perception. Moreover, OARN achieves this performance while maintaining computational efficiency, offering a balanced trade-off between processing time and reconstruction quality. Full article
Show Figures

Figure 1

11 pages, 1428 KiB  
Article
High-Precision Time Delay Estimation Algorithm Based on Generalized Quadratic Cross-Correlation
by Menghao Sun, Ziang Niu, Xuzhen Zhu and Zijia Huang
Mathematics 2025, 13(15), 2397; https://doi.org/10.3390/math13152397 - 25 Jul 2025
Viewed by 200
Abstract
In UAV target localization, the accuracy of time delay estimation is the key to high-precision positioning. However, under low signal-to-noise ratio (SNR), time delay estimation suffers from serious secondary peak interference and low accuracy, which degrades the positioning accuracy. This paper proposes an [...] Read more.
In UAV target localization, the accuracy of time delay estimation is the key to high-precision positioning. However, under low signal-to-noise ratio (SNR), time delay estimation suffers from serious secondary peak interference and low accuracy, which degrades the positioning accuracy. This paper proposes an improved time delay estimation algorithm based on generalized quadratic cross-correlation. By introducing exponential operations and Hilbert difference operation, suppressing noise interference, and sharpening the peaks of the signal correlation function, the algorithm improves the estimation accuracy. Through simulation experiments comparing with the generalized cross-correlation and quadratic correlation algorithms, the results show that the improved algorithm enhances the peak of the cross-correlation function, improves the accuracy of estimation, and exhibits better anti-noise performance in low SNR environments, providing a new approach for high-precision time delay estimation in complex signal environments. Full article
Show Figures

Figure 1

21 pages, 4388 KiB  
Article
An Omni-Dimensional Dynamic Convolutional Network for Single-Image Super-Resolution Tasks
by Xi Chen, Ziang Wu, Weiping Zhang, Tingting Bi and Chunwei Tian
Mathematics 2025, 13(15), 2388; https://doi.org/10.3390/math13152388 - 25 Jul 2025
Viewed by 271
Abstract
The goal of single-image super-resolution (SISR) tasks is to generate high-definition images from low-quality inputs, with practical uses spanning healthcare diagnostics, aerial imaging, and surveillance systems. Although cnns have considerably improved image reconstruction quality, existing methods still face limitations, including inadequate restoration of [...] Read more.
The goal of single-image super-resolution (SISR) tasks is to generate high-definition images from low-quality inputs, with practical uses spanning healthcare diagnostics, aerial imaging, and surveillance systems. Although cnns have considerably improved image reconstruction quality, existing methods still face limitations, including inadequate restoration of high-frequency details, high computational complexity, and insufficient adaptability to complex scenes. To address these challenges, we propose an Omni-dimensional Dynamic Convolutional Network (ODConvNet) tailored for SISR tasks. Specifically, ODConvNet comprises four key components: a Feature Extraction Block (FEB) that captures low-level spatial features; an Omni-dimensional Dynamic Convolution Block (DCB), which utilizes a multidimensional attention mechanism to dynamically reweight convolution kernels across spatial, channel, and kernel dimensions, thereby enhancing feature expressiveness and context modeling; a Deep Feature Extraction Block (DFEB) that stacks multiple convolutional layers with residual connections to progressively extract and fuse high-level features; and a Reconstruction Block (RB) that employs subpixel convolution to upscale features and refine the final HR output. This mechanism significantly enhances feature extraction and effectively captures rich contextual information. Additionally, we employ an improved residual network structure combined with a refined Charbonnier loss function to alleviate gradient vanishing and exploding to enhance the robustness of model training. Extensive experiments conducted on widely used benchmark datasets, including DIV2K, Set5, Set14, B100, and Urban100, demonstrate that, compared with existing deep learning-based SR methods, our ODConvNet method improves Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the visual quality of SR images is also improved. Ablation studies further validate the effectiveness and contribution of each component in our network. The proposed ODConvNet offers an effective, flexible, and efficient solution for the SISR task and provides promising directions for future research. Full article
Show Figures

Figure 1

31 pages, 11068 KiB  
Article
Airport-FOD3S: A Three-Stage Detection-Driven Framework for Realistic Foreign Object Debris Synthesis
by Hanglin Cheng, Yihao Li, Ruiheng Zhang and Weiguang Zhang
Sensors 2025, 25(15), 4565; https://doi.org/10.3390/s25154565 - 23 Jul 2025
Viewed by 232
Abstract
Traditional Foreign Object Debris (FOD) detection methods face challenges such as difficulties in large-size data acquisition and the ineffective application of detection algorithms with high accuracy. In this paper, image data augmentation was performed using generative adversarial networks and diffusion models, generating images [...] Read more.
Traditional Foreign Object Debris (FOD) detection methods face challenges such as difficulties in large-size data acquisition and the ineffective application of detection algorithms with high accuracy. In this paper, image data augmentation was performed using generative adversarial networks and diffusion models, generating images of monitoring areas under different environmental conditions and FOD images of varied types. Additionally, a three-stage image blending method considering size transformation, a seamless process, and style transfer was proposed. The image quality of different blending methods was quantitatively evaluated using metrics such as structural similarity index and peak signal-to-noise ratio, as well as Depthanything. Finally, object detection models with a similarity distance strategy (SimD), including Faster R-CNN, YOLOv8, and YOLOv11, were tested on the dataset. The experimental results demonstrated that realistic FOD data were effectively generated. The Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) of the synthesized image by the proposed three-stage image blending method outperformed the other methods, reaching 0.99 and 45 dB. YOLOv11 with SimD trained on the augmented dataset achieved the mAP of 86.95%. Based on the results, it could be concluded that both data augmentation and SimD significantly improved the accuracy of FOD detection. Full article
Show Figures

Figure 1

21 pages, 1383 KiB  
Article
Enhancing Underwater Images with LITM: A Dual-Domain Lightweight Transformer Framework
by Wang Hu, Zhuojing Rong, Lijun Zhang, Zhixiang Liu, Zhenhua Chu, Lu Zhang, Liping Zhou and Jingxiang Xu
J. Mar. Sci. Eng. 2025, 13(8), 1403; https://doi.org/10.3390/jmse13081403 - 23 Jul 2025
Viewed by 259
Abstract
Underwater image enhancement (UIE) technology plays a vital role in marine resource exploration, environmental monitoring, and underwater archaeology. However, due to the absorption and scattering of light in underwater environments, images often suffer from blurred details, color distortion, and low contrast, which seriously [...] Read more.
Underwater image enhancement (UIE) technology plays a vital role in marine resource exploration, environmental monitoring, and underwater archaeology. However, due to the absorption and scattering of light in underwater environments, images often suffer from blurred details, color distortion, and low contrast, which seriously affect the usability of underwater images. To address the above limitations, a lightweight transformer-based model (LITM) is proposed for improving underwater degraded images. Firstly, our proposed method utilizes a lightweight RGB transformer enhancer (LRTE) that uses efficient channel attention blocks to capture local detail features in the RGB domain. Subsequently, a lightweight HSV transformer encoder (LHTE) is utilized to extract global brightness, color, and saturation from the hue–saturation–value (HSV) domain. Finally, we propose a multi-modal integration block (MMIB) to effectively fuse enhanced information from the RGB and HSV pathways, as well as the input image. Our proposed LITM method significantly outperforms state-of-the-art methods, achieving a peak signal-to-noise ratio (PSNR) of 26.70 and a structural similarity index (SSIM) of 0.9405 on the LSUI dataset. Furthermore, the designed method also exhibits good generality and adaptability on unpaired datasets. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 7178 KiB  
Article
Super-Resolution Reconstruction of Formation MicroScanner Images Based on the SRGAN Algorithm
by Changqiang Ma, Xinghua Qi, Liangyu Chen, Yonggui Li, Jianwei Fu and Zejun Liu
Processes 2025, 13(7), 2284; https://doi.org/10.3390/pr13072284 - 17 Jul 2025
Viewed by 329
Abstract
Formation MicroScanner Image (FMI) technology is a key method for identifying fractured reservoirs and optimizing oil and gas exploration, but its inherent insufficient resolution severely constrains the fine characterization of geological features. This study innovatively applies a Super-Resolution Generative Adversarial Network (SRGAN) to [...] Read more.
Formation MicroScanner Image (FMI) technology is a key method for identifying fractured reservoirs and optimizing oil and gas exploration, but its inherent insufficient resolution severely constrains the fine characterization of geological features. This study innovatively applies a Super-Resolution Generative Adversarial Network (SRGAN) to the super-resolution reconstruction of FMI logging image to address this bottleneck problem. By collecting FMI logging image of glutenite from a well in Xinjiang, a training set containing 24,275 images was constructed, and preprocessing strategies such as grayscale conversion and binarization were employed to optimize input features. Leveraging SRGAN’s generator-discriminator adversarial mechanism and perceptual loss function, high-quality mapping from low-resolution FMI logging image to high-resolution images was achieved. This study yields significant results: in RGB image reconstruction, SRGAN achieved a Peak Signal-to-Noise Ratio (PSNR) of 41.39 dB, surpassing the optimal traditional method (bicubic interpolation) by 61.6%; its Structural Similarity Index (SSIM) reached 0.992, representing a 34.1% improvement; in grayscale image processing, SRGAN effectively eliminated edge blurring, with the PSNR (40.15 dB) and SSIM (0.990) exceeding the suboptimal method (bilinear interpolation) by 36.6% and 9.9%, respectively. These results fully confirm that SRGAN can significantly restore edge contours and structural details in FMI logging image, with performance far exceeding traditional interpolation methods. This study not only systematically verifies, for the first time, SRGAN’s exceptional capability in enhancing FMI resolution, but also provides a high-precision data foundation for reservoir parameter inversion and geological modeling, holding significant application value for advancing the intelligent exploration of complex hydrocarbon reservoirs. Full article
Show Figures

Figure 1

23 pages, 6440 KiB  
Article
A Gravity Data Denoising Method Based on Multi-Scale Attention Mechanism and Physical Constraints Using U-Net
by Bing Liu, Houpu Li, Shaofeng Bian, Chaoliang Zhang, Bing Ji and Yujie Zhang
Appl. Sci. 2025, 15(14), 7956; https://doi.org/10.3390/app15147956 - 17 Jul 2025
Viewed by 269
Abstract
Gravity and gravity gradient data serve as fundamental inputs for geophysical resource exploration and geological structure analysis. However, traditional denoising methods—including wavelet transforms, moving averages, and low-pass filtering—exhibit signal loss and limited adaptability under complex, non-stationary noise conditions. To address these challenges, this [...] Read more.
Gravity and gravity gradient data serve as fundamental inputs for geophysical resource exploration and geological structure analysis. However, traditional denoising methods—including wavelet transforms, moving averages, and low-pass filtering—exhibit signal loss and limited adaptability under complex, non-stationary noise conditions. To address these challenges, this study proposes an improved U-Net deep learning framework that integrates multi-scale feature extraction and attention mechanisms. Furthermore, a Laplace consistency constraint is introduced into the loss function to enhance denoising performance and physical interpretability. Notably, the datasets used in this study are generated by the authors, involving simulations of subsurface prism distributions with realistic density perturbations (±20% of typical rock densities) and the addition of controlled Gaussian noise (5%, 10%, 15%, and 30%) to simulate field-like conditions, ensuring the diversity and physical relevance of training samples. Experimental validation on these synthetic datasets and real field datasets demonstrates the superiority of the proposed method over conventional techniques. For noise levels of 5%, 10%, 15%, and 30% in test sets, the improved U-Net achieves Peak Signal-to-Noise Ratios (PSNR) of 59.13 dB, 52.03 dB, 48.62 dB, and 48.81 dB, respectively, outperforming wavelet transforms, moving averages, and low-pass filtering by 10–30 dB. In multi-component gravity gradient denoising, our method excels in detail preservation and noise suppression, improving Structural Similarity Index (SSIM) by 15–25%. Field data tests further confirm enhanced identification of key geological anomalies and overall data quality improvement. In summary, the improved U-Net not only delivers quantitative advancements in gravity data denoising but also provides a novel approach for high-precision geophysical data preprocessing. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Earth Sciences—2nd Edition)
Show Figures

Figure 1

16 pages, 2133 KiB  
Article
Effects of Chromatic Dispersion on BOTDA Sensor
by Qingwen Hou, Mingjun Kuang, Jindong Wang, Jianping Guo and Zhengjun Wei
Photonics 2025, 12(7), 726; https://doi.org/10.3390/photonics12070726 - 17 Jul 2025
Viewed by 212
Abstract
This study investigates the influence of chromatic dispersion on the performance of Brillouin optical time-domain analysis (BOTDA) sensors, particularly under high-pump-power conditions, where nonlinear effects become significant. By incorporating dispersion terms into the coupled amplitude equations of stimulated Brillouin scattering (SBS), we theoretically [...] Read more.
This study investigates the influence of chromatic dispersion on the performance of Brillouin optical time-domain analysis (BOTDA) sensors, particularly under high-pump-power conditions, where nonlinear effects become significant. By incorporating dispersion terms into the coupled amplitude equations of stimulated Brillouin scattering (SBS), we theoretically analyzed the dispersion-induced pulse broadening effect and its impact on the Brillouin gain spectrum (BGS). Numerical simulations revealed that dispersion leads to a moderate broadening of pump pulses, resulting in slight changes to BGS characteristics, including increased peak power and reduced linewidth. To explore the interplay between dispersion and nonlinearity, we built a gain-based BOTDA experimental system and tested two types of fibers, namely standard single-mode fiber (SMF) with anomalous dispersion and dispersion-compensating fiber (DCF) with normal dispersion. Experimental results show that SMF is more prone to modulation instability (MI), which significantly degrades the signal-to-noise ratio (SNR) of the BGS. In contrast, DCF effectively suppresses MI and provides a more stable Brillouin signal. Despite SMF exhibiting narrower BGS linewidths, DCF achieves a higher SNR, aligning with theoretical predictions. These findings highlight the importance of fiber dispersion properties in BOTDA design and suggest that using normally dispersive fibers like DCF can improve sensing performance in long-range, high-power applications. Full article
Show Figures

Figure 1

23 pages, 1187 KiB  
Article
Transmit and Receive Diversity in MIMO Quantum Communication for High-Fidelity Video Transmission
by Udara Jayasinghe, Prabhath Samarathunga, Thanuj Fernando and Anil Fernando
Algorithms 2025, 18(7), 436; https://doi.org/10.3390/a18070436 - 16 Jul 2025
Viewed by 218
Abstract
Reliable transmission of high-quality video over wireless channels is challenged by fading and noise, which degrade visual quality and disrupt temporal continuity. To address these issues, this paper proposes a quantum communication framework that integrates quantum superposition with multi-input multi-output (MIMO) spatial diversity [...] Read more.
Reliable transmission of high-quality video over wireless channels is challenged by fading and noise, which degrade visual quality and disrupt temporal continuity. To address these issues, this paper proposes a quantum communication framework that integrates quantum superposition with multi-input multi-output (MIMO) spatial diversity techniques to enhance robustness and efficiency in dynamic video transmission. The proposed method converts compressed videos into classical bitstreams, which are then channel-encoded and quantum-encoded into qubit superposition states. These states are transmitted over a 2×2 MIMO system employing varied diversity schemes to mitigate the effects of multipath fading and noise. At the receiver, a quantum decoder reconstructs the classical information, followed by channel decoding to retrieve the video data, and the source decoder reconstructs the final video. Simulation results demonstrate that the quantum MIMO system significantly outperforms equivalent-bandwidth classical MIMO frameworks across diverse signal-to-noise ratio (SNR) conditions, achieving a peak signal-to-noise ratio (PSNR) up to 39.12 dB, structural similarity index (SSIM) up to 0.9471, and video multi-method assessment fusion (VMAF) up to 92.47, with improved error resilience across various group of picture (GOP) formats, highlighting the potential of quantum MIMO communication for enhancing the reliability and quality of video delivery in next-generation wireless networks. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

24 pages, 5976 KiB  
Article
Spatial Downscaling of Sea Level Anomaly Using a Deep Separable Distillation Network
by Senmin Shi, Yineng Li, Yuhang Zhu, Tao Song and Shiqiu Peng
Remote Sens. 2025, 17(14), 2428; https://doi.org/10.3390/rs17142428 - 13 Jul 2025
Viewed by 417
Abstract
The use of high-resolution sea level anomaly (SLA) data in climate change research and ocean forecasting has become increasingly important. However, existing datasets often lack the fine spatial resolution required for capturing mesoscale ocean processes accurately. This has led to the development of [...] Read more.
The use of high-resolution sea level anomaly (SLA) data in climate change research and ocean forecasting has become increasingly important. However, existing datasets often lack the fine spatial resolution required for capturing mesoscale ocean processes accurately. This has led to the development of conventional deep learning models for SLA spatial downscaling, but these models often overlook spatial disparities between land and ocean regions and do not adequately address the spatial structures of SLA data. As a result, their accuracy and structural consistency are suboptimal. To address these issues, we propose a Deep Separable Distillation Network (DSDN) that integrates Depthwise Separable Distillation Blocks (DSDB) and a Landmask Contextual Attention Mechanism (M_CAMB) to achieve efficient and accurate spatial downscaling. The M_CAMB employs geographically-informed land masks to enhance the attention mechanism, prioritizing ocean regions. Additionally, we introduce a novel Pixel-Structure Loss (PSLoss) to enforce spatial structure constraints, significantly improving the structural fidelity of the SLA downscaling results. Experimental results demonstrate that DSDN achieves a root mean square error (RMSE) of 0.062 cm, a peak signal-to-noise ratio (PSNR) of 42.22 dB, and a structural similarity index (SSIM) of 0.976 in SLA downscaling. These results surpass those of baseline models and highlight the superior precision and structural consistency of DSDN. Full article
Show Figures

Figure 1

16 pages, 5262 KiB  
Article
A Hybrid Framework for Metal Artifact Suppression in CT Imaging of Metal Lattice Structures via Radon Transform and Attention-Based Super-Resolution Reconstruction
by Bingyang Wang, Zhiwei Zhang, Heng Li and Ronghai Wu
Appl. Sci. 2025, 15(14), 7819; https://doi.org/10.3390/app15147819 - 11 Jul 2025
Viewed by 260
Abstract
High-density component-induced metal artifacts in industrial computed tomography (CT) severely impair image quality and make further analysis more difficult. To suppress artifacts and improve image quality, this research suggests a practical approach that combines lightweight attention-enhanced super-resolution networks with Radon-domain artifact elimination. First, [...] Read more.
High-density component-induced metal artifacts in industrial computed tomography (CT) severely impair image quality and make further analysis more difficult. To suppress artifacts and improve image quality, this research suggests a practical approach that combines lightweight attention-enhanced super-resolution networks with Radon-domain artifact elimination. First, the original CT slices are subjected to bicubic interpolation, which enhances resolution and reduces sampling errors during transformation. The Radon transform, which detects and suppresses metal artifacts in the Radon domain, is then used to convert the interpolated pictures into sinograms. The artifact-suppressed sinograms are then reconstructed at better resolution using a lightweight Enhanced Deep Super-Resolution (EDSR) network with a channel attention mechanism, which consists of only one residual block. The inverse Radon transform is used to recreate the final CT images. An average peak signal-to-noise ratio (PSNR) of 40.39 dB and an average signal-to-noise ratio (SNR) of 29.75 dB, with an SNR improvement of 15.48 dB over the original artifact-laden images, show the success of the suggested strategy in experiments. This method offers a workable and effective way to improve image quality in industrial CT applications that involve intricate structures that incorporate metal. Full article
Show Figures

Figure 1

Back to TopTop