A Gravity Data Denoising Method Based on Multi-Scale Attention Mechanism and Physical Constraints Using U-Net
Abstract
1. Introduction
- We propose a U-Net architecture integrating multi-scale features and attention mechanisms and introduce a physical consistency constraint for the gravity potential field in the loss function. This achieves an effective combination of physical priors and deep learning, enhancing the modeling and discrimination of complex geological spatial features.
- A physics-driven data augmentation strategy is employed, introducing a large number of random walk-based subsurface material distribution simulations during dataset construction. This approach ensures that the training samples better reflect real-world subsurface environments, thus improving the model’s generalization performance.
- In addition to denoising gravity data, we systematically investigate denoising methods for the three components of gravity gradient data (Txx, Tyy, and Tzz), thereby expanding the practical applications of the proposed model.
2. Network Architecture and Training
2.1. Network Architecture Overview
2.2. Incorporation of Physical Priors
2.3. Dataset Construction
2.4. Model Training and Optimization
2.5. Experimental Procedure
3. Results
3.1. Gravity Data Denoising Results
3.2. Gravity Gradient Data Denoising Results
3.3. Validation with Real Gravity Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, P.; Zhang, C.; Meng, Z.; Zhang, D.; Hou, Z. Three Integrating Methods for Gravity and Gravity Gradient 3-D Inversion and Their Comparison Based on a New Function of Discrete Stability. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4505712. [Google Scholar] [CrossRef]
- Martinez, C.; Li, Y.; Krahenbuhl, R.; Braga, M.A. 3D Inversion of Airborne Gravity Gradiometry Data in Mineral Exploration: A Case Study in the Quadrilátero Ferrífero, Brazil. Geophysics 2013, 78, B1–B11. [Google Scholar] [CrossRef]
- Sandwell, D.; Garcia, E.; Soofi, K.; Wessel, P.; Chandler, M.; Smith, W.H.F. Toward 1-mGal Accuracy in Global Marine Gravity from CryoSat-2, Envisat, and Jason-1. Lead. Edge 2013, 32, 892–899. [Google Scholar] [CrossRef]
- Ebbing, J.; Bouman, J.; Fuchs, M.; Lieb, V.; Haagmans, R.; Meekes, J.A.C.; Fattah, R.A. Advancements in Satellite Gravity Gradient Data for Crustal Studies. Lead. Edge 2013, 32, 900–906. [Google Scholar] [CrossRef]
- Yegorova, T.P.; Starostenko, V.I. Lithosphere Structure of Europe and Northern Atlantic from Regional Three-Dimensional Gravity Modelling. Geophys. J. Int. 2002, 151, 11–31. [Google Scholar] [CrossRef]
- Chen, Q.; Dong, Y.; Tan, X.; Yan, S.; Chen, H.; Wang, J.; Wang, J.; Huang, Z.; Xu, H. Application of Extended Tilt Angle and Its 3D Euler Deconvolution to Gravity Data from the Longmenshan Thrust Belt and Adjacent Areas. J. Appl. Geophy. 2022, 206, 104769. [Google Scholar] [CrossRef]
- Jircitano, A.; White, J.; Dosch, D. Gravity Based Navigation of AUVs. In Proceedings of the Symposium on Autonomous Underwater Vehicle Technology, Washington, DC, USA, 5 June 1990; IEEE: Piscataway, NJ, USA, 1990; pp. 177–180. [Google Scholar]
- Xu, D.-X. Using Gravity Anomaly Matching Techniques to Implement Submarine Navigation. Chin. J. Geophys. 2005, 48, 886–891. [Google Scholar] [CrossRef]
- Affleck, C.A.; Jircitano, A. Passive Gravity Gradiometer Navigation System. In Proceedings of the IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences, Las Vegas, NV, USA, 20 March 1990; IEEE: Piscataway, NJ, USA, 1990; pp. 60–66. [Google Scholar]
- Wu, L.; Ke, X.; Hsu, H.; Fang, J.; Xiong, C.; Wang, Y. Joint Gravity and Gravity Gradient Inversion for Subsurface Object Detection. IEEE Geosci. Remote Sens. Lett. 2013, 10, 865–869. [Google Scholar] [CrossRef]
- Tian, Y.; He, H.; Ye, Q.; Wang, Y. Method for Assessing the Three-Dimensional Density Structure Based on Gravity Gradient Inversion and Gravity Gradient Curvature. J. Geophys. Eng. 2022, 19, 1064–1081. [Google Scholar] [CrossRef]
- Pham, L.T. A Stable Method for Detecting the Edges of Potential Field Sources. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5912107. [Google Scholar] [CrossRef]
- Li, J.; Chao, N.; Li, H.; Chen, G.; Bian, S.; Wang, Z.; Ma, A. Enhancing Bathymetric Prediction by Integrating Gravity and Gravity Gradient Data with Deep Learning. Front. Mar. Sci. 2024, 11, 1520401. [Google Scholar] [CrossRef]
- Jekeli, C. Airborne Gradiometry Error Analysis. Surv. Geophys. 2006, 27, 257–275. [Google Scholar] [CrossRef]
- Brzezowski, S.J.; Heller, W.G. Gravity Gradiometer Survey Errors. Geophysics 1988, 53, 1355–1361. [Google Scholar] [CrossRef]
- Barnes, G.J.; Lumley, J.M.; Houghton, P.I.; Gleave, R.J. Comparing Gravity and Gravity Gradient Surveys. Geophys. Prospect. 2010, 59, 176–187. [Google Scholar] [CrossRef]
- Dransfield, M.H.; Christensen, A.N. Performance of Airborne Gravity Gradiometers. Lead. Edge 2013, 32, 908–922. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, J.; Wu, Z.; Shen, Z.; Wu, G. Performance Estimate of Some Prototypes of Inertial Platform and Strapdown Marine Gravimeters. Earth Planets Space 2020, 72, 89. [Google Scholar] [CrossRef]
- Liu, B.; Bian, S.; Ji, B.; Wu, S.; Xian, P.; Chen, C.; Zhang, R. Application of the Fourier Series Expansion Method for the Inversion of Gravity Gradients Using Gravity Anomalies. Remote Sens. 2022, 15, 230. [Google Scholar] [CrossRef]
- Yuan, Y.; Qin, G.; Li, D.; Zhong, M.; Shen, Y.; Ouyang, Y. Real-Time Joint Filtering of Gravity and Gravity Gradient Data Based on Improved Kalman Filter. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5925512. [Google Scholar] [CrossRef]
- Pereira, T.; Santos, V.; Gameiro, T.; Viegas, C.; Ferreira, N. Evaluation of Different Filtering Methods Devoted to Magnetometer Data Denoising. Electronics 2024, 13, 2006. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, K.; Zhou, W. FPWT: Filter Pruning via Wavelet Transform for CNNs. Neural Netw. 2024, 179, 106577. [Google Scholar] [CrossRef] [PubMed]
- While, J.; Jackson, A.; Smit, D.; Biegert, E. Spectral Analysis of Gravity Gradiometry Profiles. Geophysics 2006, 71, J11–J22. [Google Scholar] [CrossRef]
- Hu, S.; Gao, F.; Zhou, X.; Dong, J.; Du, Q. Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5504005. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, J.; Meng, X.; Fang, Y. High-Precision Intelligence Denoising of Potential Field Data Based on RevU-Net. IEEE Geosci. Remote Sens. Lett. 2023, 20, 7501105. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Li, W.; Li, F.; Fang, Y.; Meng, X. A Stable Method for Estimating the Derivatives of Potential Field Data Based on Deep Learning. IEEE Geosci. Remote Sens. Lett. 2024, 22, 7501205. [Google Scholar] [CrossRef]
- Novák, P.; Pitoňák, M.; Šprlák, M.; Tenzer, R. Higher-Order Gravitational Potential Gradients for Geoscientific Applications. Earth-Sci. Rev. 2019, 198, 102937. [Google Scholar] [CrossRef]
- Jiao, W.; Persello, C.; Vosselman, G. PolyR-CNN: R-CNN for End-to-End Polygonal Building Outline Extraction. ISPRS J. Photogramm. Remote Sens. 2024, 218, 33–43. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 770–778. [Google Scholar]
- Mao, X.-J.; Shen, C.; Yang, Y.-B. Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Bello, I.; Zoph, B.; Le, Q.; Vaswani, A.; Shlens, J. Attention Augmented Convolutional Networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3285–3294. [Google Scholar]
- Andreoli, J. Convolution, Attention and Structure Embedding. arXiv 2019, arXiv:1905.01289. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
Prism ID | Density (kg/m3) | Length (km) | Width (km) | Burial Depth (km) | Depth Extent (km) | Center X (km) | Center Y (km) |
---|---|---|---|---|---|---|---|
1 | 2437.96 | 3.8 | 1.83 | 2.7 | 2.81 | 4.18 | 5.14 |
2 | 2314.86 | 4.09 | 2.19 | 4.16 | 1.12 | 7.39 | 15.97 |
3 | 4510.36 | 2.93 | 4.81 | 4.03 | 1.57 | 13.3 | 5.23 |
Noise Level | PSNR (Noisy) | PSNR (Denoised) | PSNR (Wavelet) | PSNR (Moving Avg) | PSNR (Low-Pass) |
---|---|---|---|---|---|
0.05 | 41.30 | 59.13 | 25.58 | 54.78 | 31.68 |
0.1 | 33.77 | 52.03 | 20.78 | 47.59 | 30.76 |
0.15 | 29.27 | 48.62 | 19.53 | 43.23 | 27.68 |
0.3 | 25.49 | 48.81 | 25.73 | 39.48 | 30.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Li, H.; Bian, S.; Zhang, C.; Ji, B.; Zhang, Y. A Gravity Data Denoising Method Based on Multi-Scale Attention Mechanism and Physical Constraints Using U-Net. Appl. Sci. 2025, 15, 7956. https://doi.org/10.3390/app15147956
Liu B, Li H, Bian S, Zhang C, Ji B, Zhang Y. A Gravity Data Denoising Method Based on Multi-Scale Attention Mechanism and Physical Constraints Using U-Net. Applied Sciences. 2025; 15(14):7956. https://doi.org/10.3390/app15147956
Chicago/Turabian StyleLiu, Bing, Houpu Li, Shaofeng Bian, Chaoliang Zhang, Bing Ji, and Yujie Zhang. 2025. "A Gravity Data Denoising Method Based on Multi-Scale Attention Mechanism and Physical Constraints Using U-Net" Applied Sciences 15, no. 14: 7956. https://doi.org/10.3390/app15147956
APA StyleLiu, B., Li, H., Bian, S., Zhang, C., Ji, B., & Zhang, Y. (2025). A Gravity Data Denoising Method Based on Multi-Scale Attention Mechanism and Physical Constraints Using U-Net. Applied Sciences, 15(14), 7956. https://doi.org/10.3390/app15147956