Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,723)

Search Parameters:
Keywords = patient health monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1054 KiB  
Review
Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review
by Beatriz Teixeira, Helena M. R. Gonçalves and Paula Martins-Lopes
Biosensors 2025, 15(8), 513; https://doi.org/10.3390/bios15080513 (registering DOI) - 7 Aug 2025
Abstract
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on [...] Read more.
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on the healthcare systems. Thus, a number of novel technological approaches have emerged in order to face some of the pivotal questions still associated with IBD. In navigating the intricate landscape of IBD, biosensors act as indispensable allies, bridging the gap between traditional diagnostic methods and the evolving demands of precision medicine. Continuous progress in biosensor technology holds the key to transformative breakthroughs in IBD management, offering more effective and patient-centric healthcare solutions considering the One Health Approach. Here, we will delve into the landscape of biomarkers utilized in the diagnosis, monitoring, and management of IBD. From well-established serological and fecal markers to emerging genetic and epigenetic markers, we will explore the role of these biomarkers in aiding clinical decision-making and predicting treatment response. Additionally, we will discuss the potential of novel biomarkers currently under investigation to further refine disease stratification and personalized therapeutic approaches in IBD. By elucidating the utility of biosensors across the spectrum of IBD care, we aim to highlight their importance as valuable tools in optimizing patient outcomes and reducing healthcare costs. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
Show Figures

Figure 1

24 pages, 3311 KiB  
Review
Investigating Smart Knee Implants
by Supriya Wakale and Tarun Goswami
Designs 2025, 9(4), 93; https://doi.org/10.3390/designs9040093 (registering DOI) - 7 Aug 2025
Abstract
Total knee replacement (TKR) is a common procedure for pain relief and restoration of the mobility of the knee joint in patients with severe knee joint problems. Despite this, some patients still suffer from stiffness, instability, or pain caused by soft tissue imbalance, [...] Read more.
Total knee replacement (TKR) is a common procedure for pain relief and restoration of the mobility of the knee joint in patients with severe knee joint problems. Despite this, some patients still suffer from stiffness, instability, or pain caused by soft tissue imbalance, malalignment, or implant-related issues. Previously, surgeons have had to use their experience and visual judgment to balance the knee, which has resulted in variability of outcomes. Smart knee implants are addressing these issues by using sensor technology to provide real-time feedback on joint motion, pressure distribution, and loading forces. This enables more accurate intra-operative adjustment, enhancing implant positioning and soft tissue balance and eliminating post-operative adjustment. These implants also enable post-operative monitoring, simplifying the ability to have more effective individualized rehabilitation programs directed at optimizing patient mobility and minimizing complications. While the patient pool for smart knee implantation remains not commonly documented, it was found in a study that 83.6% of the patients would opt to have the monitoring device implemented, and nearly 90% find reassurance in monitoring their healing indicators. As the number of knee replacements is likely to rise due to aging populations and the rising prevalence of joint disease, smart implants are a welcome development in orthopedics, optimizing long-term success and patient satisfaction. Smart knee implants are built with embedded sensors such as force, motion, temperature, and pressure detectors placed within the implant structure. These sensors provide real-time data during surgery and recovery, allowing earlier detection of complications and supporting tailored rehabilitation. The design aims to improve outcomes through better monitoring and personalized care. Full article
Show Figures

Figure 1

24 pages, 639 KiB  
Review
A Systemic Perspective of the Link Between Microbiota and Cardiac Health: A Literature Review
by Ionica Grigore, Oana Roxana Ciobotaru, Delia Hînganu, Gabriela Gurau, Dana Tutunaru and Marius Valeriu Hînganu
Life 2025, 15(8), 1251; https://doi.org/10.3390/life15081251 - 7 Aug 2025
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of death, with long-term hospitalization becoming increasingly frequent in advanced or chronic cases. In this context, the interplay between systemic factors such as lipid metabolism, circulating metabolites, gut microbiota, and oral health is gaining attention [...] Read more.
Cardiovascular diseases (CVDs) are the leading global cause of death, with long-term hospitalization becoming increasingly frequent in advanced or chronic cases. In this context, the interplay between systemic factors such as lipid metabolism, circulating metabolites, gut microbiota, and oral health is gaining attention for its potential role in influencing inflammation, cardiometabolic risk, and long-term outcomes. Despite their apparent independence, these domains are increasingly recognized as interconnected and influential in cardiovascular pathophysiology. Methods: This narrative review was conducted by analyzing studies published between 2015 and 2024 from databases including PubMed, Scopus, and Web of Science. Keywords such as “lipid profile,” “metabolomics,” “gut microbiota,” “oral health,” and “cardiovascular disease” were used. Original research, meta-analyses, and reviews relevant to hospitalized cardiac patients were included. A critical integrative approach was applied to highlight cross-domain connections. Results and Discussion: Evidence reveals significant interrelations between altered lipid profiles, gut dysbiosis (including increased TMAO levels), metabolic imbalances, and oral inflammation. Each component contributes to a systemic pro-inflammatory state that worsens cardiovascular prognosis, particularly in long-term hospitalized patients. Despite isolated research in each domain, there is a paucity of studies integrating all four. The need for interdisciplinary diagnostic models and preventive strategies is emphasized, especially in populations with frailty or immobilization. Conclusions: Monitoring lipid metabolism, metabolomic shifts, gut microbial balance, and oral status should be considered part of comprehensive cardiovascular care. Gut microbiota exerts a dual role in cardiac health: when balanced, it supports anti-inflammatory and metabolic homeostasis; when dysbiotic, it contributes to systemic inflammation and worsened cardiac outcomes. Future research should aim to develop integrative screening tools and personalized interventions that address the multifactorial burden of disease. A systemic approach may improve both short- and long-term outcomes in this complex and vulnerable patient population. Full article
(This article belongs to the Special Issue The Emerging Role of Microbiota in Health and Diseases)
Show Figures

Figure 1

19 pages, 487 KiB  
Review
Smart Clothing and Medical Imaging Innovations for Real-Time Monitoring and Early Detection of Stroke: Bridging Technology and Patient Care
by David Sipos, Kata Vészi, Bence Bogár, Dániel Pető, Gábor Füredi, József Betlehem and Attila András Pandur
Diagnostics 2025, 15(15), 1970; https://doi.org/10.3390/diagnostics15151970 - 6 Aug 2025
Abstract
Stroke is a significant global health concern characterized by the abrupt disruption of cerebral blood flow, leading to neurological impairment. Accurate and timely diagnosis—enabled by imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI)—is essential for differentiating stroke types and [...] Read more.
Stroke is a significant global health concern characterized by the abrupt disruption of cerebral blood flow, leading to neurological impairment. Accurate and timely diagnosis—enabled by imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI)—is essential for differentiating stroke types and initiating interventions like thrombolysis, thrombectomy, or surgical management. In parallel, recent advancements in wearable technology, particularly smart clothing, offer new opportunities for stroke prevention, real-time monitoring, and rehabilitation. These garments integrate various sensors, including electrocardiogram (ECG) electrodes, electroencephalography (EEG) caps, electromyography (EMG) sensors, and motion or pressure sensors, to continuously track physiological and functional parameters. For example, ECG shirts monitor cardiac rhythm to detect atrial fibrillation, smart socks assess gait asymmetry for early mobility decline, and EEG caps provide data on neurocognitive recovery during rehabilitation. These technologies support personalized care across the stroke continuum, from early risk detection and acute event monitoring to long-term recovery. Integration with AI-driven analytics further enhances diagnostic accuracy and therapy optimization. This narrative review explores the application of smart clothing in conjunction with traditional imaging to improve stroke management and patient outcomes through a more proactive, connected, and patient-centered approach. Full article
Show Figures

Figure 1

17 pages, 926 KiB  
Review
Advancing Heart Failure Care Through Disease Management Programs: A Comprehensive Framework to Improve Outcomes
by Maha Inam, Robert M. Sangrigoli, Linda Ruppert, Pooja Saiganesh and Eman A. Hamad
J. Cardiovasc. Dev. Dis. 2025, 12(8), 302; https://doi.org/10.3390/jcdd12080302 - 5 Aug 2025
Abstract
Heart failure (HF) is a major global health challenge, characterized by high morbidity, mortality, and frequent hospital readmissions. Despite the advent of guideline-directed medical therapies (GDMTs), the burden of HF continues to grow, necessitating a shift toward comprehensive, multidisciplinary care models. Heart Failure [...] Read more.
Heart failure (HF) is a major global health challenge, characterized by high morbidity, mortality, and frequent hospital readmissions. Despite the advent of guideline-directed medical therapies (GDMTs), the burden of HF continues to grow, necessitating a shift toward comprehensive, multidisciplinary care models. Heart Failure Disease Management Programs (HF-DMPs) have emerged as structured frameworks that integrate evidence-based medical therapy, patient education, telemonitoring, and support for social determinants of health to optimize outcomes and reduce healthcare costs. This review outlines the key components of HF-DMPs, including patient identification and risk stratification, pharmacologic optimization, team-based care, transitional follow-up, remote monitoring, performance metrics, and social support systems. Incorporating tools such as artificial intelligence, pharmacist-led titration, and community health worker support, HF-DMPs represent a scalable approach to improving care delivery. The success of these programs depends on tailored interventions, interdisciplinary collaboration, and health equity-driven strategies. Full article
Show Figures

Graphical abstract

24 pages, 330 KiB  
Review
Collaboration Between Endocrinologists and Dentists in the Care of Patients with Acromegaly—A Narrative Review
by Beata Wiśniewska, Kosma Piekarski, Sandra Spychała, Ewelina Golusińska-Kardach, Maria Stelmachowska-Banaś and Marzena Wyganowska
J. Clin. Med. 2025, 14(15), 5511; https://doi.org/10.3390/jcm14155511 - 5 Aug 2025
Abstract
Acromegaly is caused by an excessive secretion of growth hormone and the secondary elevation of IGF-1 levels, leading to progressive changes in multiple body systems, including the craniofacial region and oral cavity. Dental manifestations such as mandibular overgrowth, macroglossia, malocclusion, periodontal disease, and [...] Read more.
Acromegaly is caused by an excessive secretion of growth hormone and the secondary elevation of IGF-1 levels, leading to progressive changes in multiple body systems, including the craniofacial region and oral cavity. Dental manifestations such as mandibular overgrowth, macroglossia, malocclusion, periodontal disease, and prosthetic difficulties represent not only a clinical component of the disease but also a significant therapeutic and diagnostic challenge. The aim of this review is to present the current state of knowledge on the relationship between acromegaly and oral health and to analyze the role of interdisciplinary collaboration between endocrinologists and dentists in patient care. For this narrative review, a literature search was conducted in the PubMed, Scopus, and Web of Science databases covering the period from 2000 to 2025. Sixty-two peer-reviewed publications meeting the methodological and thematic criteria were included in the analysis, including original studies, meta-analyses, systematic reviews, and case reports. The results indicate significant correlations between disease activity and the severity of periodontal and microbiological changes, while effective endocrine treatment only results in the partial regression of morphological changes. Particular attention was given to the role of the dentist in recognizing the early symptoms of the disease, planning prosthetic and surgical treatment, and monitoring therapy-related complications. Interdisciplinary collaboration models, including integrated clinics and co-managed care, were also described as optimal systemic solutions for improving treatment quality. The conclusion drawn from the analysis are as follows: there is a need for the permanent integration of dentistry into the standard of interdisciplinary care for patients with acromegaly, in both diagnostic and therapeutic dimensions. Increasing awareness among dentists and developing integrated collaboration models may reduce the time to diagnosis, improve patients’ quality of life, and enable the more effective management of craniofacial complications in the course of this rare disease. Full article
(This article belongs to the Section Endocrinology & Metabolism)
18 pages, 1939 KiB  
Review
Dual Nature of Neutrophil Extracellular Traps (NETs)—From Cancer’s Ally to Therapeutic Target
by Karolina Buszka, Claudia Dompe, Kinga Derwich, Izabela Pieścikowska, Michał Nowicki and Joanna Budna-Tukan
Cells 2025, 14(15), 1200; https://doi.org/10.3390/cells14151200 - 5 Aug 2025
Viewed by 30
Abstract
Cancer remains a major global health challenge requiring the development of diagnostic and therapeutic strategies. Liquid biopsy is considered a promising minimally invasive tool for cancer screening, prognosis and treatment monitoring. Recent studies suggest that neutrophil extracellular traps (NETs) may also be potential [...] Read more.
Cancer remains a major global health challenge requiring the development of diagnostic and therapeutic strategies. Liquid biopsy is considered a promising minimally invasive tool for cancer screening, prognosis and treatment monitoring. Recent studies suggest that neutrophil extracellular traps (NETs) may also be potential liquid biopsy markers. NETs are web-like chromatin structures released by neutrophils in response to various stimuli to trap and neutralize pathogens. However, excessive or dysregulated NET formation has been implicated in tumor progression and metastasis. Elevated levels of NETs have been observed in patients with various types of cancer and correlate with disease stage and prognosis. The presence of NET markers such as citrullinated histone H3 (H3Cit), neutrophil elastase (NE) and myeloperoxidase (MPO) has been associated with higher tumor burden and poorer clinical outcomes. Several studies have shown a positive correlation between NET markers and circulating free DNA (cfDNA) levels, suggesting that NETs may increase the sensitivity of liquid biopsy in detecting and monitoring cancer progression. This review examines the role of NETs in the tumor microenvironment, their contribution to cancer progression and metastasis, and their potential use in liquid biopsy and cancer therapy. Full article
(This article belongs to the Special Issue Targeting Tumor Microenvironments for Enhanced Cancer Immunotherapy)
Show Figures

Figure 1

20 pages, 538 KiB  
Article
Bridging the Capacity Building Gap for Antimicrobial Stewardship Implementation: Evidence from Virtual Communities of Practice in Kenya, Ghana, and Malawi
by Ana C. Barbosa de Lima, Kwame Ohene Buabeng, Mavis Sakyi, Hope Michael Chadwala, Nicole Devereaux, Collins Mitambo, Christine Mugo-Sitati, Jennifer Njuhigu, Gunturu Revathi, Emmanuel Tanui, Jutta Lehmer, Jorge Mera and Amy V. Groom
Antibiotics 2025, 14(8), 794; https://doi.org/10.3390/antibiotics14080794 (registering DOI) - 4 Aug 2025
Viewed by 385
Abstract
Background/Objectives: Strengthening antimicrobial stewardship (AMS) programs is an invaluable intervention in the ongoing efforts to contain the threat of antimicrobial resistance (AMR), particularly in low-resource settings. This study evaluates the impact of the Telementoring, Education, and Advocacy Collaboration initiative for Health through Antimicrobial [...] Read more.
Background/Objectives: Strengthening antimicrobial stewardship (AMS) programs is an invaluable intervention in the ongoing efforts to contain the threat of antimicrobial resistance (AMR), particularly in low-resource settings. This study evaluates the impact of the Telementoring, Education, and Advocacy Collaboration initiative for Health through Antimicrobial Stewardship (TEACH AMS), which uses the virtual Extension for Community Healthcare Outcomes (ECHO) learning model to enhance AMS capacity in Kenya, Ghana, and Malawi. Methods: A mixed-methods approach was used, which included attendance data collection, facility-level assessments, post-session and follow-up surveys, as well as focus group discussions. Results: Between September 2023 and February 2025, 77 virtual learning sessions were conducted, engaging 2445 unique participants from hospital-based AMS committees and health professionals across the three countries. Participants reported significant knowledge gain, and data showed facility improvements in two core AMS areas, including the implementation of multidisciplinary ward-based interventions/communications and enhanced monitoring of antibiotic resistance patterns. Along those lines, participants reported that the program assisted them in improving prescribing and culture-based treatments, and also evidence-informed antibiotic selection. The evidence of implementing ward-based interventions was further stressed in focus group discussions, as well as other strengthened practices like point-prevalence surveys, and development or revision of stewardship policies. Substantial improvements in microbiology services were also shared by participants, particularly in Malawi. Other practices mentioned were strengthened multidisciplinary communication, infection prevention efforts, and education of patients and the community. Conclusions: Our findings suggest that a virtual case-based learning educational intervention, providing structured and tailored AMS capacity building, can drive behavior change and strengthen healthcare systems in low resource settings. Future efforts should aim to scale up the engagements and sustain improvements to further strengthen AMS capacity. Full article
Show Figures

Figure 1

29 pages, 3455 KiB  
Review
Recent Advances in Nanoparticle and Nanocomposite-Based Photodynamic Therapy for Cervical Cancer: A Review
by Dorota Bartusik-Aebisher, Mohammad A. Saad, Agnieszka Przygórzewska and David Aebisher
Cancers 2025, 17(15), 2572; https://doi.org/10.3390/cancers17152572 - 4 Aug 2025
Viewed by 123
Abstract
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in [...] Read more.
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in the body, hypoxia in the tumor microenvironment, and limited light penetration. Recent advances in nanoparticle and nanocomposite platforms have addressed these challenges by integrating multiple functional components into a single delivery system. By encapsulating or conjugating photosensitizers in biodegradable matrices, such as mesoporous silica, organometallic structures and core–shell construct nanocarriers increase stability in water and extend circulation time, enabling both passive and active targeting through ligand decoration. Up-conversion and dual-wavelength responsive cores facilitate deep light conversion in tissues, while simultaneous delivery of hypoxia-modulating agents alleviates oxygen deprivation to sustain reactive oxygen species generation. Controllable “motor-cargo” constructs and surface modifications improve intratumoral diffusion, while aggregation-induced emission dyes and plasmonic elements support real-time imaging and quantitative monitoring of therapeutic response. Together, these multifunctional nanosystems have demonstrated potent cytotoxicity in vitro and significant tumor suppression in vivo in mouse models of cervical cancer. Combining targeted delivery, controlled release, hypoxia mitigation, and image guidance, engineered nanoparticles provide a versatile and powerful platform to overcome the current limitations of PDT and pave the way toward more effective, patient-specific treatments for cervical malignancies. Our review of the literature summarizes studies on nanoparticles and nanocomposites used in PDT monotherapy for cervical cancer, published between 2023 and July 2025. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

20 pages, 2267 KiB  
Article
Mechanical Properties of Collagen Implant Used in Neurosurgery Towards Industry 4.0/5.0 Reflected in ML Model
by Marek Andryszczyk, Izabela Rojek and Dariusz Mikołajewski
Appl. Sci. 2025, 15(15), 8630; https://doi.org/10.3390/app15158630 (registering DOI) - 4 Aug 2025
Viewed by 123
Abstract
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic [...] Read more.
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic reinforcements, and advanced manufacturing techniques such as 3D bioprinting to improve durability and predictability. Industry 4.0 is contributing to this by automating production, using data analytics and machine learning to optimize implant properties and ensure quality control. In Industry 5.0, the focus is shifting to personalization, enabling the creation of patient-specific implants through human–machine collaboration and advanced biofabrication. eHealth integrates digital monitoring systems, enabling real-time tracking of implant healing and performance to inform personalized care. Despite progress, challenges such as cost, material property variability, and scalability for mass production remain. The future lies in smart biomaterials, AI-driven design, and precision biofabrication, which could mean the possibility of creating more effective, accessible, and patient-specific collagen implants. The aim of this article is to examine the current state and determine the prospects for the development of mechanical properties of collagen implant used in neurosurgery towards Industry 4.0/5.0, including ML model. Full article
Show Figures

Figure 1

25 pages, 1751 KiB  
Review
Large Language Models for Adverse Drug Events: A Clinical Perspective
by Md Muntasir Zitu, Dwight Owen, Ashish Manne, Ping Wei and Lang Li
J. Clin. Med. 2025, 14(15), 5490; https://doi.org/10.3390/jcm14155490 - 4 Aug 2025
Viewed by 202
Abstract
Adverse drug events (ADEs) significantly impact patient safety and health outcomes. Manual ADE detection from clinical narratives is time-consuming, labor-intensive, and costly. Recent advancements in large language models (LLMs), including transformer-based architectures such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pretrained [...] Read more.
Adverse drug events (ADEs) significantly impact patient safety and health outcomes. Manual ADE detection from clinical narratives is time-consuming, labor-intensive, and costly. Recent advancements in large language models (LLMs), including transformer-based architectures such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pretrained Transformer (GPT) series, offer promising methods for automating ADE extraction from clinical data. These models have been applied to various aspects of pharmacovigilance and clinical decision support, demonstrating potential in extracting ADE-related information from real-world clinical data. Additionally, chatbot-assisted systems have been explored as tools in clinical management, aiding in medication adherence, patient engagement, and symptom monitoring. This narrative review synthesizes the current state of LLMs in ADE detection from a clinical perspective, organizing studies into categories such as human-facing decision support tools, immune-related ADE detection, cancer-related and non-cancer-related ADE surveillance, and personalized decision support systems. In total, 39 articles were included in this review. Across domains, LLM-driven methods have demonstrated promising performances, often outperforming traditional approaches. However, critical limitations persist, such as domain-specific variability in model performance, interpretability challenges, data quality and privacy concerns, and infrastructure requirements. By addressing these challenges, LLM-based ADE detection could enhance pharmacovigilance practices, improve patient safety outcomes, and optimize clinical workflows. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 1189 KiB  
Article
Innovative Payment Mechanisms for High-Cost Medical Devices in Latin America: Experience in Designing Outcome Protection Programs in the Region
by Daniela Paredes-Fernández and Juan Valencia-Zapata
J. Mark. Access Health Policy 2025, 13(3), 39; https://doi.org/10.3390/jmahp13030039 - 4 Aug 2025
Viewed by 124
Abstract
Introduction and Objectives: Risk-sharing agreements (RSAs) have emerged as a key strategy for financing high-cost medical technologies while ensuring financial sustainability. These payment mechanisms mitigate clinical and financial uncertainties, optimizing pricing and reimbursement decisions. Despite their widespread adoption globally, Latin America has [...] Read more.
Introduction and Objectives: Risk-sharing agreements (RSAs) have emerged as a key strategy for financing high-cost medical technologies while ensuring financial sustainability. These payment mechanisms mitigate clinical and financial uncertainties, optimizing pricing and reimbursement decisions. Despite their widespread adoption globally, Latin America has reported limited implementation, particularly for high-cost medical devices. This study aims to share insights from designing RSAs in the form of Outcome Protection Programs (OPPs) for medical devices in Latin America from the perspective of a medical devices company. Methods: The report follows a structured approach, defining key OPP dimensions: payment base, access criteria, pricing schemes, risk assessment, and performance incentives. Risks were categorized as financial, clinical, and operational. The framework applied principles from prior models, emphasizing negotiation, program design, implementation, and evaluation. A multidisciplinary task force analyzed patient needs, provider motivations, and payer constraints to ensure alignment with health system priorities. Results: Over two semesters, a panel of seven experts from the manufacturer designed n = 105 innovative payment programs implemented in Argentina (n = 7), Brazil (n = 7), Colombia (n = 75), Mexico (n = 9), Panama (n = 4), and Puerto Rico (n = 3). The programs targeted eight high-burden conditions, including Coronary Artery Disease, atrial fibrillation, Heart Failure, and post-implantation arrhythmias, among others. Private providers accounted for 80% of experiences. Challenges include clinical inertia and operational complexities, necessitating structured training and monitoring mechanisms. Conclusions: Outcome Protection Programs offer a viable and practical risk-sharing approach to financing high-cost medical devices in Latin America. Their implementation requires careful stakeholder alignment, clear eligibility criteria and endpoints, and robust monitoring frameworks. These findings contribute to the ongoing dialogue on sustainable healthcare financing, emphasizing the need for tailored approaches in resource-constrained settings. Full article
Show Figures

Figure 1

15 pages, 967 KiB  
Article
Biomarker Correlations in PTSD: IL-18, IRE1, pERK, and ATF6 via Courtauld Emotional Control Scale (CECS)
by Izabela Woźny-Rasała and Ewa Alicja Ogłodek
Int. J. Mol. Sci. 2025, 26(15), 7506; https://doi.org/10.3390/ijms26157506 - 3 Aug 2025
Viewed by 203
Abstract
Post-traumatic stress disorder (PTSD) is a chronic mental health condition resulting from exposure to traumatic events. It is associated with long-term neurobiological changes and disturbances in emotional regulation. Understanding the sociodemographic profiles, biomarkers, and emotional control in patients with PTSD helps to better [...] Read more.
Post-traumatic stress disorder (PTSD) is a chronic mental health condition resulting from exposure to traumatic events. It is associated with long-term neurobiological changes and disturbances in emotional regulation. Understanding the sociodemographic profiles, biomarkers, and emotional control in patients with PTSD helps to better comprehend the impact of the disorder on the body and its clinical course. An analysis of biomarkers such as Interleukin-18 (IL-18), Inositol-Requiring Enzyme 1 (IRE1), Phosphorylated Extracellular Signal-Regulated Kinase (pERK), and Activating Transcription Factor–6 (ATF-6) in PTSD patients with varying durations of illness (≤5 years and >5 years) and a control group without PTSD revealed significant differences. Patients with recently diagnosed PTSD (≤5 years) showed markedly elevated levels of inflammatory and cellular stress markers, indicating an intense neuroinflammatory response during the acute phase of the disorder. In the chronic PTSD group (>5 years), the levels of these biomarkers were lower than in the recently diagnosed group, but still significantly higher than in the control group. An opposite trend was observed regarding the suppression of negative emotions, as measured by the Courtauld Emotional Control Scale (CECS): individuals with chronic PTSD exhibited a significantly greater suppression of anger, depression, and anxiety than those with recent PTSD or healthy controls. Correlations between biomarkers were strongest in individuals with chronic PTSD, suggesting a persistent neuroinflammatory dysfunction. However, the relationships between biomarkers and emotional suppression varied depending on the stage of PTSD. These findings highlight the critical role of PTSD duration in shaping the neurobiological and emotional mechanisms of the disorder, which may have important implications for therapeutic strategies and patient monitoring. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Myocardial Strain Measurements Obtained with Fast-Strain-Encoded Cardiac Magnetic Resonance for the Risk Prediction and Early Detection of Chemotherapy-Related Cardiotoxicity Compared to Left Ventricular Ejection Fraction
by Daniel Lenihan, James Whayne, Farouk Osman, Rafael Rivero, Moritz Montenbruck, Arne Kristian Schwarz, Sebastian Kelle, Pia Wülfing, Susan Dent, Florian Andre, Norbert Frey, Grigorios Korosoglou and Henning Steen
Diagnostics 2025, 15(15), 1948; https://doi.org/10.3390/diagnostics15151948 - 3 Aug 2025
Viewed by 267
Abstract
Background: Breast and hematological cancer treatments, especially with anthracyclines, have been shown to be associated with an increased risk of cardiotoxicity (CTX). An accurate prediction of cardiotoxicity risk and early detection of myocardial injury may allow for effective cardioprotection to be instituted and [...] Read more.
Background: Breast and hematological cancer treatments, especially with anthracyclines, have been shown to be associated with an increased risk of cardiotoxicity (CTX). An accurate prediction of cardiotoxicity risk and early detection of myocardial injury may allow for effective cardioprotection to be instituted and tailored to reverse cardiac dysfunction and prevent the discontinuation of essential cancer treatments. Objectives: The PRoactive Evaluation of Function to Evade Cardio Toxicity (PREFECT) study sought to evaluate the ability of fast-strain-encoded (F-SENC) cardiac magnetic resonance imaging (CMR) and 2D echocardiography (2D Echo) to stratify patients at risk of CTX prior to initiating cancer treatment, detect early signs of cardiac dysfunction, including subclinical CTX (sub-CTX) and CTX, and monitor for recovery (REC) during cardioprotective therapy. Methods: Fifty-nine patients with breast cancer or lymphoma were prospectively monitored for CTX with F-SENC CMR and 2D Echo over at least 1 year for evidence of cardiac dysfunction during anthracycline based chemotherapy. F-SENC CMR also monitored myocardial deformation in 37 left ventricular (LV) segments to obtain a MyoHealth risk score based on both longitudinal and circumferential strain. Sub-CTX and CTX were classified based on pre-specified cardiotoxicity definitions. Results: CTX was observed in 9/59 (15%) and sub-CTX in 24/59 (41%) patients undergoing chemotherapy. F-SENC CMR parameters at baseline predicted CTX with a lower LVEF (57 ± 5% vs. 61 ± 5% for all, p = 0.05), as well as a lower MyoHealth (70 ± 9 vs. 79 ± 11 for all, p = 0.004) and a worse global circumferential strain (GCS) (−18 ± 1 vs. −20 ± 1 for all, p < 0.001). Pre-chemotherapy MyoHealth had a higher accuracy in predicting the development of CTX compared to CMR LVEF and 2D Echo LVEF (AUC = 0.85, 0.69, and 0.57, respectively). The 2D Echo parameters on baseline imaging did not stratify CTX risk. F-SENC CMR obtained good or excellent images in 320/322 (99.4%) scans. During cancer treatment, MyoHealth had a high accuracy of detecting sub-CTX or CTX (AUC = 0.950), and the highest log likelihood ratio (indicating a higher probability of detecting CTX) followed by F-SENC GLS and F-SENC GCS. CMR LVEF and CMR LV stroke volume index (LVSVI) also significantly worsened in patients developing CTX during cancer treatment. Conclusions: F-SENC CMR provided a reliable and accurate assessment of myocardial function during anthracycline-based chemotherapy, and demonstrated accurate early detection of CTX. In addition, MyoHealth allows for the robust identification of patients at risk for CTX prior to treatment with higher accuracy than LVEF. Full article
(This article belongs to the Special Issue New Perspectives in Cardiac Imaging)
Show Figures

Figure 1

45 pages, 5594 KiB  
Article
Integrated Medical and Digital Approaches to Enhance Post-Bariatric Surgery Care: A Prototype-Based Evaluation of the NutriMonitCare System in a Controlled Setting
by Ruxandra-Cristina Marin, Marilena Ianculescu, Mihnea Costescu, Veronica Mocanu, Alina-Georgiana Mihăescu, Ion Fulga and Oana-Andreia Coman
Nutrients 2025, 17(15), 2542; https://doi.org/10.3390/nu17152542 - 2 Aug 2025
Viewed by 354
Abstract
Introduction/Objective: Post-bariatric surgery patients require long-term, coordinated care to address complex nutritional, physiological, and behavioral challenges. Personalized smart nutrition, combining individualized dietary strategies with targeted monitoring, has emerged as a valuable direction for optimizing recovery and long-term outcomes. This article examines how traditional [...] Read more.
Introduction/Objective: Post-bariatric surgery patients require long-term, coordinated care to address complex nutritional, physiological, and behavioral challenges. Personalized smart nutrition, combining individualized dietary strategies with targeted monitoring, has emerged as a valuable direction for optimizing recovery and long-term outcomes. This article examines how traditional medical protocols can be enhanced by digital solutions in a multidisciplinary framework. Methods: The study analyzes current clinical practices, including personalized meal planning, physical rehabilitation, biochemical marker monitoring, and psychological counseling, as applied in post-bariatric care. These established approaches are then analyzed in relation to the NutriMonitCare system, a digital health system developed and tested in a laboratory environment. Used here as an illustrative example, the NutriMonitCare system demonstrates the potential of digital tools to support clinicians through real-time monitoring of dietary intake, activity levels, and physiological parameters. Results: Findings emphasize that medical protocols remain the cornerstone of post-surgical management, while digital tools may provide added value by enhancing data availability, supporting individualized decision making, and reinforcing patient adherence. Systems like the NutriMonitCare system could be integrated into interdisciplinary care models to refine nutrition-focused interventions and improve communication across care teams. However, their clinical utility remains theoretical at this stage and requires further validation. Conclusions: In conclusion, the integration of digital health tools with conventional post-operative care has the potential to advance personalized smart nutrition. Future research should focus on clinical evaluation, real-world testing, and ethical implementation of such technologies into established medical workflows to ensure both efficacy and patient safety. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

Back to TopTop