Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,453)

Search Parameters:
Keywords = patient aggression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1557 KiB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 (registering DOI) - 2 Aug 2025
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
25 pages, 906 KiB  
Review
Evolution and Prognostic Variables of Cystic Fibrosis in Children and Young Adults: A Narrative Review
by Mădălina Andreea Donos, Elena Țarcă, Elena Cojocaru, Viorel Țarcă, Lăcrămioara Ionela Butnariu, Valentin Bernic, Paula Popovici, Solange Tamara Roșu, Mihaela Camelia Tîrnovanu, Nicolae Sebastian Ionescu and Laura Mihaela Trandafir
Diagnostics 2025, 15(15), 1940; https://doi.org/10.3390/diagnostics15151940 (registering DOI) - 2 Aug 2025
Abstract
Introduction: Cystic fibrosis (CF) is a genetic condition affecting several organs and systems, including the pancreas, colon, respiratory system, and reproductive system. The detection of a growing number of CFTR variants and genotypes has contributed to an increase in the CF population which, [...] Read more.
Introduction: Cystic fibrosis (CF) is a genetic condition affecting several organs and systems, including the pancreas, colon, respiratory system, and reproductive system. The detection of a growing number of CFTR variants and genotypes has contributed to an increase in the CF population which, in turn, has had an impact on the overall statistics regarding the prognosis and outcome of the condition. Given the increase in life expectancy, it is critical to better predict outcomes and prognosticate in CF. Thus, each person’s choice to aggressively treat specific disease components can be more appropriate and tailored, further increasing survival. The objective of our narrative review is to summarize the most recent information concerning the value and significance of clinical parameters in predicting outcomes, such as gender, diabetes, liver and pancreatic status, lung function, radiography, bacteriology, and blood and sputum biomarkers of inflammation and disease, and how variations in these parameters affect prognosis from the prenatal stage to maturity. Materials and methods: A methodological search of the available data was performed with regard to prognostic factors in the evolution of CF in children and young adults. We evaluated articles from the PubMed academic search engine using the following search terms: prognostic factors AND children AND cystic fibrosis OR mucoviscidosis. Results: We found that it is crucial to customize CF patients’ care based on their unique clinical and biological parameters, genetics, and related comorbidities. Conclusions: The predictive significance of more dynamic clinical condition markers provides more realistic future objectives to center treatment and targets for each patient. Over the past ten years, improvements in care, diagnostics, and treatment have impacted the prognosis for CF. Although genotyping offers a way to categorize CF to direct research and treatment, it is crucial to understand that a variety of other factors, such as epigenetics, genetic modifiers, environmental factors, and socioeconomic status, can affect CF outcomes. The long-term management of this complicated multisystem condition has been made easier for patients, their families, and physicians by earlier and more accurate identification techniques, evidence-based research, and centralized expert multidisciplinary care. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Inherited/Genetic Diseases)
Show Figures

Figure 1

20 pages, 681 KiB  
Review
Unraveling Glioblastoma Heterogeneity: Advancing Immunological Insights and Therapeutic Innovations
by Joshua H. Liu, Maksym Horiachok, Santosh Guru and Cecile L. Maire
Brain Sci. 2025, 15(8), 833; https://doi.org/10.3390/brainsci15080833 (registering DOI) - 2 Aug 2025
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, largely due to its profound intratumoral heterogeneity and immunosuppressive microenvironment. Various classifications of GBM subtypes were created based on transcriptional and methylation profiles. This effort, followed by the development of new [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, largely due to its profound intratumoral heterogeneity and immunosuppressive microenvironment. Various classifications of GBM subtypes were created based on transcriptional and methylation profiles. This effort, followed by the development of new technology such as single-nuclei sequencing (snRNAseq) and spatial transcriptomics, led to a better understanding of the glioma cells’ plasticity and their ability to transition between diverse cellular states. GBM cells can mimic neurodevelopmental programs to resemble oligodendrocyte or neural progenitor behavior and hitchhike the local neuronal network to support their growth. The tumor microenvironment, especially under hypoxic conditions, drives the tumor cell clonal selection, which then reshapes the immune cells’ functions. These adaptations contribute to immune evasion by progressively disabling T cell and myeloid cell functions, ultimately establishing a highly immunosuppressive tumor milieu. This complex and metabolically constrained environment poses a major barrier to effective antitumor immunity and limits the success of conventional therapies. Understanding the dynamic interactions between glioma cells and their microenvironment is essential for the development of more effective immunotherapies and rational combination strategies aimed at overcoming resistance and improving patient outcomes. Full article
(This article belongs to the Special Issue Recent Advances in Translational Neuro-Oncology)
Show Figures

Figure 1

12 pages, 463 KiB  
Article
Association Between BRAF V600E Allele Frequency and Aggressive Behavior in Papillary Thyroid Microcarcinoma
by Luiza Tatar, Saruchi Bandargal, Marc P. Pusztaszeri, Véronique-Isabelle Forest, Michael P. Hier, Jasmine Kouz, Raisa Chowdhury and Richard J. Payne
Cancers 2025, 17(15), 2553; https://doi.org/10.3390/cancers17152553 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Papillary thyroid microcarcinoma (MPTC), a subset of papillary thyroid carcinoma (PTC), is increasingly detected with advanced imaging. While most MPTCs are indolent, some exhibit aggressive behavior, complicating clinical management. The BRAF V600E mutation, common in PTC, is linked to aggressive features, [...] Read more.
Background/Objectives: Papillary thyroid microcarcinoma (MPTC), a subset of papillary thyroid carcinoma (PTC), is increasingly detected with advanced imaging. While most MPTCs are indolent, some exhibit aggressive behavior, complicating clinical management. The BRAF V600E mutation, common in PTC, is linked to aggressive features, and its allele frequency (AF) may serve as a biomarker for tumor aggressiveness. This study explored the association between BRAF V600E AF and aggressive histopathological features in MPTC. Methods: Data from 1 January 2016 to 23 December 2023 were retrieved from two McGill University teaching hospitals. Inclusion criteria comprised patients aged ≥ 18 years with thyroid nodules ≤ 1 cm, documented BRAF V600E mutation and AF results, and available surgical pathology reports. Tumor aggressiveness was defined as the presence of lymph node metastasis, aggressive histological subtype (tall cell, hobnail, columnar, solid/trabecular or diffuse sclerosing), extra thyroidal extension, or extensive lymphovascular extension. Associations were explored using t-tests. Results: Among 1564 records, 34 met the inclusion criteria and were included in analyses. The mean BRAF V600E AF was significantly higher in aggressive tumors (23.58) compared to non-aggressive tumors (13.73) (95% CI: −18.53 to −1.16, p = 0.03). Although not statistically significant, trends were observed for higher BRAF V600E AF in tumors with lymph node metastasis (mean AF: 25.4) compared to those without (mean AF: 16.67, p = 0.08). No significant difference was noted in BRAF V600E AF by histological subtype (mean AF for aggressive: 19.57; non-aggressive: 19.15, p = 0.94). Conclusions: Elevated BRAF V600E AF is associated with aggressive behavior in MPTC, highlighting its potential as a biomarker to inform treatment strategies. Larger studies are warranted to validate these findings and enhance clinical management of MPTC patients. Full article
(This article belongs to the Special Issue Thyroid Cancer: Diagnosis, Prognosis and Treatment (2nd Edition))
Show Figures

Figure 1

37 pages, 1469 KiB  
Review
Oncolytic Therapies for Glioblastoma: Advances, Challenges, and Future Perspectives
by Omar Alomari, Habiba Eyvazova, Beyzanur Güney, Rana Al Juhmani, Hatice Odabasi, Lubna Al-Rawabdeh, Muhammed Edib Mokresh, Ufuk Erginoglu, Abdullah Keles and Mustafa K. Baskaya
Cancers 2025, 17(15), 2550; https://doi.org/10.3390/cancers17152550 (registering DOI) - 1 Aug 2025
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under investigation, including genetically engineered herpes simplex virus (HSV), adenovirus, poliovirus, reovirus, vaccinia virus, measles virus, and Newcastle disease virus, each exploiting unique tumor-selective mechanisms. While some, such as HSV-based therapies including G207 and DelytactTM, have demonstrated clinical progress, significant challenges persist, including immune evasion, heterogeneity in patient response, and delivery barriers due to the blood–brain barrier. Moreover, combination strategies integrating OVs with immune checkpoint inhibitors, chemotherapy, and radiation are promising but require further clinical validation. Non-viral oncolytic approaches, such as tumor-targeting bacteria and synthetic peptides, remain underexplored. This review highlights current advancements while addressing critical gaps in the literature, including the need for optimized delivery methods, better biomarker-based patient stratification, and a deeper understanding of GBM’s immunosuppressive microenvironment. Future research should focus on enhancing OV specificity, engineering viruses to deliver therapeutic genes, and integrating OVs with precision medicine strategies. By identifying these gaps, this review provides a framework for advancing oncolytic therapies in GBM treatment. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

22 pages, 3527 KiB  
Review
Applications of Organoids and Spheroids in Anaplastic and Papillary Thyroid Cancer Research: A Comprehensive Review
by Deepak Gulwani, Neha Singh, Manisha Gupta, Ridhima Goel and Thoudam Debraj Singh
Organoids 2025, 4(3), 18; https://doi.org/10.3390/organoids4030018 - 1 Aug 2025
Abstract
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models [...] Read more.
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models offer unparalleled insights into tumor biology, therapeutic vulnerabilities, and resistance mechanisms. These models maintain essential tumor characteristics such as cellular diversity, spatial structure, and interactions with the microenvironment, making them extremely valuable for disease modeling and drug testing. This review emphasizes recent progress in the development and use of thyroid cancer organoids and spheroids, focusing on their role in replicating disease features, evaluating targeted therapies, and investigating epithelial–mesenchymal transition (EMT), cancer stem cell behavior, and treatment resistance. Patient-derived organoids have shown potential in capturing individualized drug responses, supporting precision oncology strategies for both differentiated and aggressive subtypes. Additionally, new platforms, such as thyroid organoid-on-a-chip systems, provide dynamic, high-fidelity models for functional studies and assessments of endocrine disruption. Despite ongoing challenges, such as standardization, limited inclusion of immune and stromal components, and culture reproducibility, advancements in microfluidics, biomaterials, and machine learning have enhanced the clinical and translational potential of these systems. Organoids and spheroids are expected to become essential in the future of thyroid cancer research, particularly in bridging the gap between laboratory discoveries and patient-focused therapies. Full article
Show Figures

Figure 1

17 pages, 5703 KiB  
Review
IFN γ and the IFN γ Signaling Pathways in Merkel Cell Carcinoma
by Lina Song, Jinye Guan, Qunmei Zhou, Wenshang Liu, Jürgen C. Becker and Dan Deng
Cancers 2025, 17(15), 2547; https://doi.org/10.3390/cancers17152547 (registering DOI) - 1 Aug 2025
Abstract
Recent preclinical and clinical studies have confirmed the essential role of interferons in the host’s immune response against malignant cells. Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer strongly associated with Merkel cell polyomavirus (MCPyV). Despite progress in understanding MCC pathogenesis, [...] Read more.
Recent preclinical and clinical studies have confirmed the essential role of interferons in the host’s immune response against malignant cells. Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer strongly associated with Merkel cell polyomavirus (MCPyV). Despite progress in understanding MCC pathogenesis, the role of innate immune signaling, particularly interferon-γ (IFN γ) and its downstream pathways, remains underexplored. This review summarizes recent findings on IFN-γ in MCC, highlighting its dual role in promoting both antitumor immunity and immune evasion. IFN-γ enhances cytotoxic T cell responses, upregulates MHC class I/II expression, and induces tumor cell apoptosis. Transcriptomic studies have shown that IFN-γ treatment upregulates immune-regulatory genes including PD-L1, HLA-A/B/C, and IDO1 by over threefold; it also activates APOBEC3B and 3G, contributing to antiviral defense and tumor editing. Clinically, immune checkpoint inhibitors (ICIs) such as pembrolizumab and avelumab yield objective response rates of 30–56% and two-year overall survival rates exceeding 60% in advanced MCC. However, approximately 50% of patients do not respond, in part due to IFN-γ signaling deficiencies. This review further discusses IFN-γ’s crosstalk with the STAT1/3/5 pathways and emerging combination strategies aimed at restoring immune sensitivity. Understanding these mechanisms may inform personalized immunotherapeutic approaches and guide the development of IFN-γ–based interventions in MCC. Full article
(This article belongs to the Special Issue Histopathology and Pathogenesis of Skin Cancer)
Show Figures

Figure 1

17 pages, 5323 KiB  
Review
Contrast-Enhanced Harmonic Endoscopic Ultrasonography for Prediction of Aggressiveness and Treatment Response in Patients with Pancreatic Lesions
by Marco Spadaccini, Gianluca Franchellucci, Marta Andreozzi, Maria Terrin, Matteo Tacelli, Piera Zaccari, Maria Chiara Petrone, Gaetano Lauri, Matteo Colombo, Valeria Poletti, Giacomo Marcozzi, Antonella Durante, Roberto Leone, Maria Margherita Massaro, Antonio Facciorusso, Alessandro Fugazza, Alessandro Repici, Paolo Giorgio Arcidiacono and Silvia Carrara
Cancers 2025, 17(15), 2545; https://doi.org/10.3390/cancers17152545 - 1 Aug 2025
Abstract
Endoscopic ultrasonography represents a crucial aspect of the diagnosis of pancreatic lesions. The echo-endoscopic features of pancreatic lesions, particularly their contrast behavior with the advent of Contrast-Enhanced EUS (CE-EUS) and Contrast Enhanced Harmonic-EUS (CH-EUS), can predict a lesion’s aggressiveness, depending on its nature. [...] Read more.
Endoscopic ultrasonography represents a crucial aspect of the diagnosis of pancreatic lesions. The echo-endoscopic features of pancreatic lesions, particularly their contrast behavior with the advent of Contrast-Enhanced EUS (CE-EUS) and Contrast Enhanced Harmonic-EUS (CH-EUS), can predict a lesion’s aggressiveness, depending on its nature. According to this, CH-EUS could be applied to structure an even more dedicated approach to patient care, for example, to ascertain eligibility for surgical intervention of a pancreatic ductal adenocarcinoma (PDAC) or the response to neoadjuvant chemotherapy in cases deemed borderline resectable. In addition to PDAC, other significant issues pertain to the management of small neuroendocrine tumors (NETs) and intraductal papillary mucinous neoplasms (IPMNs). In this context, CH-EUS can be crucial. The aim of this review is to underline the most recent evidence for EUS and CH-EUS applications in pancreatic lesion aggressiveness assessment and to focus on possible future research directions to further extend the application of CH-EUS in this field. Full article
(This article belongs to the Special Issue Clinical Applications of Ultrasound in Cancer Imaging and Treatment)
Show Figures

Figure 1

15 pages, 1285 KiB  
Article
Prognostic Relevance of Clinical and Tumor Mutational Profile in High-Grade Serous Ovarian Cancer
by Javier Martín-Vallejo, Juan Ramón Berenguer-Marí, Raquel Bosch-Romeu, Julia Sierra-Roca, Irene Tadeo-Cervera, Juan Pardo, Antonio Falcó, Patricia Molina-Bellido, Juan Bautista Laforga, Pedro Antonio Clemente-Pérez, Juan Manuel Gasent-Blesa and Joan Climent
Int. J. Mol. Sci. 2025, 26(15), 7416; https://doi.org/10.3390/ijms26157416 (registering DOI) - 1 Aug 2025
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common and aggressive subtype of ovarian cancer, accounting for approximately 70% of cases. This study investigates genetic mutations and their associations with overall survival (OS), complete cytoreduction (R0), and platinum response in patients undergoing either [...] Read more.
High-grade serous ovarian cancer (HGSOC) is the most common and aggressive subtype of ovarian cancer, accounting for approximately 70% of cases. This study investigates genetic mutations and their associations with overall survival (OS), complete cytoreduction (R0), and platinum response in patients undergoing either primary debulking surgery followed by adjuvant chemotherapy (PDS) or neoadjuvant chemotherapy followed by interval debulking surgery (NACT). Genetic analysis was performed on 43 primary HGSOC tumor samples using targeted massive parallel sequencing via next-generation sequencing (NGS). Clinical and molecular data were evaluated collectively and through subgroup comparisons between PDS and NACT cohorts. All analyzed samples harbored genetic alterations. Univariate survival analysis revealed that the total number of mutations (p = 0.0035), as well as mutations in HRAS (p = 0.044), FLT3 (p = 0.023), TP53 (p = 0.03), and ERBB4 (p = 0.007), were significantly associated with poorer OS. Multivariate Cox regression integrating clinical and molecular data confirmed that ERBB4 mutations are independently associated with adverse outcomes. These findings reveal a distinctive mutational landscape between the PDS and NACT groups and suggest that ERBB4 alterations may define a particularly aggressive tumor phenotype. This study contributes to a deeper understanding of HGSOC biology and may support the development of novel therapeutic targets and personalized treatment strategies in the context of precision oncology. Full article
(This article belongs to the Special Issue Molecular Genetics in Ovarian Cancer)
Show Figures

Graphical abstract

16 pages, 1194 KiB  
Systematic Review
Artificial Intelligence in the Diagnosis of Tongue Cancer: A Systematic Review with Meta-Analysis
by Seorin Jeong, Hae-In Choi, Keon-Il Yang, Jin Soo Kim, Ji-Won Ryu and Hyun-Jeong Park
Biomedicines 2025, 13(8), 1849; https://doi.org/10.3390/biomedicines13081849 - 30 Jul 2025
Viewed by 176
Abstract
Background: Tongue squamous cell carcinoma (TSCC) is an aggressive oral malignancy characterized by early submucosal invasion and a high risk of cervical lymph node metastasis. Accurate and timely diagnosis is essential, but it remains challenging when relying solely on conventional imaging and [...] Read more.
Background: Tongue squamous cell carcinoma (TSCC) is an aggressive oral malignancy characterized by early submucosal invasion and a high risk of cervical lymph node metastasis. Accurate and timely diagnosis is essential, but it remains challenging when relying solely on conventional imaging and histopathology. This systematic review aimed to evaluate studies applying artificial intelligence (AI) in the diagnostic imaging of TSCC. Methods: This review was conducted under PRISMA 2020 guidelines and included studies from January 2020 to December 2024 that utilized AI in TSCC imaging. A total of 13 studies were included, employing AI models such as Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), and Random Forest (RF). Imaging modalities analyzed included MRI, CT, PET, ultrasound, histopathological whole-slide images (WSI), and endoscopic photographs. Results: Diagnostic performance was generally high, with area under the curve (AUC) values ranging from 0.717 to 0.991, sensitivity from 63.3% to 100%, and specificity from 70.0% to 96.7%. Several models demonstrated superior performance compared to expert clinicians, particularly in delineating tumor margins and estimating the depth of invasion (DOI). However, only one study conducted external validation, and most exhibited moderate risk of bias in patient selection or index test interpretation. Conclusions: AI-based diagnostic tools hold strong potential for enhancing TSCC detection, but future research must address external validation, standardization, and clinical integration to ensure their reliable and widespread adoption. Full article
(This article belongs to the Special Issue Recent Advances in Oral Medicine—2nd Edition)
Show Figures

Figure 1

12 pages, 526 KiB  
Systematic Review
Advances in Understanding Chronic Traumatic Encephalopathy: A Systematic Review of Clinical and Pathological Evidence
by Francesco Orsini, Giovanni Pollice, Francesco Carpano, Luigi Cipolloni, Andrea Cioffi, Camilla Cecannecchia, Roberta Bibbò and Stefania De Simone
Forensic Sci. 2025, 5(3), 33; https://doi.org/10.3390/forensicsci5030033 - 30 Jul 2025
Viewed by 95
Abstract
Background/Objectives: Traumatic brain injury is one of the leading causes of death and disability. When traumatic brain injury is repeated over time, it can lead to the development of Chronic Traumatic Encephalopathy, a chronic neurodegenerative disease commonly observed in individuals who engage [...] Read more.
Background/Objectives: Traumatic brain injury is one of the leading causes of death and disability. When traumatic brain injury is repeated over time, it can lead to the development of Chronic Traumatic Encephalopathy, a chronic neurodegenerative disease commonly observed in individuals who engage in contact sports or military personnel involved in activities with a high risk of repeated head trauma. At autopsy, the examination of the brain reveals regional atrophy, corresponding to high concentrations of glutamate receptors. Microscopically, the primary findings are the deposition of neurofibrillary tangles and neuropil threads. The aim of this study is to highlight the clinical and histopathological characteristics of Chronic Traumatic Encephalopathy, providing diagnostic support to forensic pathologists. Additionally, it seeks to aid in the differential diagnosis of similar conditions. Methods: A review of literature was conducted following the PRISMA criteria. Of 274 articles, 7 were selected. Results: According to these papers, most patients were male and exhibited neurological symptoms and neuropsychiatric impairments, and a proportion of them committed suicide or had aggressive behavior. Conclusions: Chronic Traumatic Encephalopathy remains largely underdiagnosed during life. The definitive diagnosis of Chronic Traumatic Encephalopathy is established post-mortem through the identification of pathognomonic tauopathy lesions. Early and accurate antemortem recognition, particularly in at-risk individuals, is highly valuable for its differentiation from other neurodegenerative conditions, thereby enabling appropriate clinical management and potential interventions. Full article
Show Figures

Figure 1

24 pages, 946 KiB  
Review
Long-Term Adverse Events Following Early Breast Cancer Treatment with a Focus on the BRCA-Mutated Population
by Berta Obispo, Caroline Bailleux, Blanca Cantos, Pilar Zamora, Sachin R. Jhawar, Jajini Varghese, Lucia Cabal-Hierro, Paulo Luz, Luis Berrocal-Almanza and Xiaoqing Xu
Cancers 2025, 17(15), 2506; https://doi.org/10.3390/cancers17152506 - 30 Jul 2025
Viewed by 311
Abstract
Breast cancer (BC) is the most prevalent malignancy in women worldwide. Despite most cases being diagnosed in the early stages, patients typically require a multimodal treatment approach. This typically involves a combination of surgery, radiotherapy, systemic treatments (including chemotherapy or immunotherapy), targeted therapy, [...] Read more.
Breast cancer (BC) is the most prevalent malignancy in women worldwide. Despite most cases being diagnosed in the early stages, patients typically require a multimodal treatment approach. This typically involves a combination of surgery, radiotherapy, systemic treatments (including chemotherapy or immunotherapy), targeted therapy, and endocrine therapy, depending on the disease subtype and the risk of recurrence. Moreover, patients with BC and germline mutations in the breast cancer genes 1 or 2 (BRCA1/BRCA2), (gBRCAm), who are typically young women, often require more aggressive therapeutic interventions. These mutations present unique characteristics that necessitate a distinct treatment approach, potentially influencing the side effect profiles of patients with BC. Regardless of the clear benefit observed with these treatments in terms of reduced recurrence and mortality rates, long-term, treatment-related adverse events occur that negatively affect the health-related quality of life (HRQoL) of BC survivors. Thus, long-term adverse events need to be factored into the treatment decision algorithm of patients with early BC (eBC). Physical, functional, emotional, and psychosocial adverse events can occur and represent a significant concern and a challenge for clinicians, patients, and their families. This review article provides an overview of the various long-term adverse events that patients with eBC may experience, including their associated risk factors, as well as management and prevention strategies. We also explore the evidence of the long-term impact of treatment on the HRQoL of patients with gBRCAm. By providing a comprehensive overview of current evidence and recommendations regarding patients’ HRQoL, we aim to equip clinicians with scientific and clinical knowledge and provide guidance to optimize care and improve long-term outcomes. Full article
Show Figures

Figure 1

18 pages, 3824 KiB  
Article
Prognostic Risk Model of Megakaryocyte–Erythroid Progenitor (MEP) Signature Based on AHSP and MYB in Acute Myeloid Leukemia
by Ting Bin, Ying Wang, Jing Tang, Xiao-Jun Xu, Chao Lin and Bo Lu
Biomedicines 2025, 13(8), 1845; https://doi.org/10.3390/biomedicines13081845 - 29 Jul 2025
Viewed by 206
Abstract
Background: Acute myeloid leukemia (AML) is a common and aggressive adults hematological malignancies. This study explored megakaryocyte–erythroid progenitors (MEPs) signature genes and constructed a prognostic model. Methods: Uniform manifold approximation and projection (UMAP) identified distinct cell types, with differential analysis between [...] Read more.
Background: Acute myeloid leukemia (AML) is a common and aggressive adults hematological malignancies. This study explored megakaryocyte–erythroid progenitors (MEPs) signature genes and constructed a prognostic model. Methods: Uniform manifold approximation and projection (UMAP) identified distinct cell types, with differential analysis between AML-MEP and normal MEP groups. Univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression selected biomarkers to build a risk model and nomogram for 1-, 3-, and 5-year survival prediction. Results: Ten differentially expressed genes (DEGs) related to overall survival (OS), six (AHSP, MYB, VCL, PIM1, CDK6, as well as SNHG3) were retained post-LASSO. The model exhibited excellent efficiency (the area under the curve values: 0.788, 0.77, and 0.847). Pseudotime analysis of UMAP-defined subpopulations revealed that MYB and CDK6 exert stage-specific regulatory effects during MEP differentiation, with MYB involved in early commitment and CDK6 in terminal maturation. Finally, although VCL, PIM1, CDK6, and SNHG3 showed significant associations with AML survival and prognosis, they failed to exhibit pathological differential expression in quantitative real-time polymerase chain reaction (qRT-PCR) experimental validations. In contrast, the downregulation of AHSP and upregulation of MYB in AML samples were consistently validated by both qRT-PCR and Western blotting, showing the consistency between the transcriptional level changes and protein expression of these two genes (p < 0.05). Conclusions: In summary, the integration of single-cell/transcriptome analysis with targeted expression validation using clinical samples reveals that the combined AHSP-MYB signature effectively identifies high-risk MEP-AML patients, who may benefit from early intensive therapy or targeted interventions. Full article
Show Figures

Figure 1

25 pages, 2333 KiB  
Article
Loss of Heterozygosity in Pediatric Acute Lymphoblastic Leukemia and Its Prognostic Impact: A Retrospective Study
by Borys Styka, Gabriela Ręka, Aleksandra Ozygała, Mariola Janiszewska, Magdalena Stelmach, Paulina Skowera, Zuzanna Urbańska and Monika Lejman
Cancers 2025, 17(15), 2500; https://doi.org/10.3390/cancers17152500 - 29 Jul 2025
Viewed by 116
Abstract
Background: In childhood acute lymphoblastic leukemia (ALL), in addition to classical chromosomal abnormalities, loss of heterozygosity (LOH), including copy-neutral LOH, is also observed. While LOH has been described in the literature, its clinical relevance in pediatric ALL remains unclear. The aim of this [...] Read more.
Background: In childhood acute lymphoblastic leukemia (ALL), in addition to classical chromosomal abnormalities, loss of heterozygosity (LOH), including copy-neutral LOH, is also observed. While LOH has been described in the literature, its clinical relevance in pediatric ALL remains unclear. The aim of this study is to identify and analyze patterns of LOH, assess their frequency, and evaluate their association with clinical characteristics and early treatment response during the induction phase of the ALL protocol. Methods: The study included 853 pediatric ALL patients, of whom 120 had B-ALL LOH+ and 58 had T-ALL LOH+. LOH was analyzed using CytoScan HD SNP microarrays. Patients were stratified using multiple correspondence analysis (MCA) and hierarchical clustering on principal components (HCPC), which identified three genetically and clinically distinct clusters. Results: In B-ALL, two clusters with extensive LOH—particularly involving chromosome 9—were associated with poor prognosis and suboptimal response to therapy. In contrast, Cluster 2, characterized by CDKN2A duplication and rare LOH, showed a favorable clinical course. In T-ALL, Cluster 1 had LOH in CDKN2A but favorable outcomes; Cluster 2 exhibited biallelic CDKN2A deletion and aggressive disease; Cluster 3 lacked CDKN2A alterations and showed a genetically stable profile. LOH was common on chromosomes not typically affected by trisomy and rare on those gained. Conclusions: Our study indicates that LOH profiling can positively influence patient stratification by identifying high-risk subgroups, inform prognosis by highlighting unfavorable genetic alterations, and help predict poor treatment response in specific clinical profiles. Full article
(This article belongs to the Special Issue Genetics in Hematological Malignancies)
Show Figures

Figure 1

15 pages, 946 KiB  
Article
Different Master Regulators Define Proximal and Distal Gastric Cancer: Insights into Prognosis and Opportunities for Targeted Therapy
by Luigi Marano, Salvatore Sorrenti, Silvia Malerba, Jaroslaw Skokowski, Karol Polom, Sergii Girnyi, Tomasz Cwalinski, Francesco Paolo Prete, Alejandro González-Ojeda, Clotilde Fuentes-Orozco, Aman Goyal, Rajan Vaithianathan, Miljana Vladimirov, Eleonora Lori, Daniele Pironi, Adel Abou-Mrad, Mario Testini, Rodolfo J. Oviedo and Yogesh Vashist
Curr. Oncol. 2025, 32(8), 424; https://doi.org/10.3390/curroncol32080424 - 28 Jul 2025
Viewed by 129
Abstract
Background: Gastric cancer (GC) represents a significant global health burden with considerable heterogeneity in clinical and molecular behavior. The anatomical site of tumor origin—proximal versus distal—has emerged as a determinant of prognosis and response to therapy. The aim of this paper is to [...] Read more.
Background: Gastric cancer (GC) represents a significant global health burden with considerable heterogeneity in clinical and molecular behavior. The anatomical site of tumor origin—proximal versus distal—has emerged as a determinant of prognosis and response to therapy. The aim of this paper is to elucidate the transcriptional and regulatory differences between proximal gastric cancer (PGC) and distal gastric cancer (DGC) through master regulator (MR) analysis. Methods: We analyzed RNA-seq data from TCGA-STAD and microarray data from GEO (GSE62254, GSE15459). Differential gene expression and MR analyses were performed using DESeq2, limma, corto, and RegEnrich pipelines. A harmonized matrix of 4785 genes was used for MR inference following normalization and batch correction. Functional enrichment and survival analyses were conducted to explore prognostic associations. Results: Among 364 TCGA and 492 GEO patients, PGC was associated with more aggressive clinicopathological features and poorer outcomes. We identified 998 DEGs distinguishing PGC and DGC. PGC showed increased FOXM1 (a key regulator of cell proliferation), STAT3, and NF-κB1 activity, while DGC displayed enriched GATA6, CDX2 (a marker of intestinal differentiation), and HNF4A signaling. Functional enrichment highlighted proliferative and inflammatory programs in PGC, and differentiation and metabolic pathways in DGC. MR activity stratified survival outcomes, reinforcing prognostic relevance. Conclusions: PGC and DGC are governed by distinct transcriptional regulators and signaling networks. Our findings provide a biological rationale for location-based stratification and inform targeted therapy development. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Figure 1

Back to TopTop