Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = passivity preservation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 8533 KiB  
Systematic Review
Eco-Efficient Retrofitting of Rural Heritage: A Systematic Review of Sustainable Strategies
by Stefano Bigiotti, Mariangela Ludovica Santarsiero, Anna Irene Del Monaco and Alvaro Marucci
Energies 2025, 18(15), 4065; https://doi.org/10.3390/en18154065 (registering DOI) - 31 Jul 2025
Abstract
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural [...] Read more.
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural contexts embodies historical, cultural, and typological values worthy of preservation, while remaining adaptable to reuse through eco-efficient solutions and technological innovation. Using the PRISMA protocol, 115 scientific contributions were selected from 1711 initial records and classified into four macro-groups: landscape relationships; seismic and energy retrofitting; construction techniques and innovative materials; and morphological–typological analysis. Results show a predominance (over 50%) of passive design strategies, compatible materials, and low-impact techniques, while active systems are applied more selectively to protect cultural integrity. The study identifies replicable methodological models combining sustainability, cultural continuity, and functional adaptation, offering recommendations for future operational guidelines. Conscious eco-efficient retrofitting thus emerges as a strategic tool for the integrated valorization of rural landscapes and heritage. Full article
(This article belongs to the Special Issue Sustainable Building Energy and Environment: 2nd Edition)
Show Figures

Figure 1

21 pages, 6163 KiB  
Article
Residual Stress and Corrosion Performance in L-PBF Ti6Al4V: Unveiling the Optimum Stress Relieving Temperature via Microcapillary Electrochemical Characterisation
by Lorenzo D’Ambrosi, Katya Brunelli, Francesco Cammelli, Reynier I. Revilla and Arshad Yazdanpanah
Metals 2025, 15(8), 855; https://doi.org/10.3390/met15080855 - 30 Jul 2025
Viewed by 21
Abstract
This study aims to determine the optimal low-temperature stress relieving heat treatment that minimizes residual stresses while preserving corrosion resistance in Laser Powder Bed Fusion (L-PBF) processed Ti6Al4V alloy. Specifically, it investigates the effects of stress relieving at 400 °C, 600 °C, and [...] Read more.
This study aims to determine the optimal low-temperature stress relieving heat treatment that minimizes residual stresses while preserving corrosion resistance in Laser Powder Bed Fusion (L-PBF) processed Ti6Al4V alloy. Specifically, it investigates the effects of stress relieving at 400 °C, 600 °C, and 800 °C on microstructure, residual stress, and electrochemical performance. Specimens were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical techniques. A novel microcapillary electrochemical method was employed to precisely assess passive layer stability and corrosion behaviour under simulated oral conditions, including fluoride contamination and tensile loading. Results show that heat treatments up to 600 °C effectively reduce residual stress with minimal impact on corrosion resistance. However, 800 °C treatment leads to a phase transformation from α′ martensite to a dual-phase α + β structure, significantly compromising passive film integrity. The findings establish 600 °C as the optimal stress-relieving temperature for balancing mechanical stability and electrochemical performance in biomedical and aerospace components. Full article
Show Figures

Figure 1

17 pages, 2002 KiB  
Article
Passive Blood-Flow-Restriction Exercise’s Impact on Muscle Atrophy Post-Total Knee Replacement: A Randomized Trial
by Alexander Franz, Luisa Heiß, Marie Schlotmann, Sanghyeon Ji, Andreas Christian Strauss, Thomas Randau and Frank Sebastian Fröschen
J. Clin. Med. 2025, 14(15), 5218; https://doi.org/10.3390/jcm14155218 - 23 Jul 2025
Viewed by 290
Abstract
Background/Objectives: Total knee arthroplasty (TKA) is commonly associated with postoperative muscle atrophy and weakness, while traditional rehabilitation is often limited by pain and patient compliance. Passive blood flow restriction (pBFR) training may offer a safe, low-threshold method to attenuate muscle loss in [...] Read more.
Background/Objectives: Total knee arthroplasty (TKA) is commonly associated with postoperative muscle atrophy and weakness, while traditional rehabilitation is often limited by pain and patient compliance. Passive blood flow restriction (pBFR) training may offer a safe, low-threshold method to attenuate muscle loss in this early phase. This pilot study examined the feasibility, safety, and early effects of pBFR initiated during hospitalization on muscle mass, swelling, and functional recovery after TKA. Methods: In a prospective, single-blinded trial, 26 patients undergoing primary or aseptic revision TKA were randomized to either a control group (CON: sham BFR at 20 mmHg) or intervention group (INT: pBFR at 80% limb occlusion pressure). Both groups received 50 min daily in-hospital rehabilitation sessions for five consecutive days. Outcomes, including lean muscle mass (DXA), thigh/knee circumference, 6 min walk test (6 MWT), handgrip strength, and patient-reported outcomes, were assessed preoperatively and at discharge, six weeks, and three months postoperatively. Linear mixed models with Bonferroni correction were applied. Results: The INT group showed significant preservation of thigh circumference (p = 0.002), reduced knee swelling (p < 0.001), and maintenance of lean muscle mass (p < 0.01), compared with CON, which exhibited significant declines. Functional performance improved faster in INT (e.g., 6 MWT increase at T3: +23.7%, p < 0.001; CON: −7.2%, n.s.). Quality of life improved in both groups, with greater gains in INT (p < 0.05). No adverse events were reported. Conclusions: Initiating pBFR training on the first postoperative day is feasible, safe, and effective in preserving muscle mass and reducing swelling after TKA. These findings extend prior BFR research by demonstrating its applicability in older, surgical populations. Further research is warranted to evaluate its integration with standard rehabilitation programs and long-term functional benefits. Full article
Show Figures

Figure 1

19 pages, 12443 KiB  
Article
Multivalent Immune-Protective Effects of Egg Yolk Immunoglobulin Y (IgY) Derived from Live or Inactivated Shewanella xiamenensis Against Major Aquaculture Pathogens
by Jing Chen, Pan Cui, Huihui Xiao, Xiaohui Han, Ziye Ma, Xiaoqing Wu, Juan Lu, Guoping Zhu, Yong Liu and Xiang Liu
Int. J. Mol. Sci. 2025, 26(14), 7012; https://doi.org/10.3390/ijms26147012 - 21 Jul 2025
Viewed by 174
Abstract
Egg yolk immunoglobulin Y (IgY) possesses advantages such as low cost, easy availability, simple preparation, high antigen specificity, absence of drug residues, and compliance with animal welfare standards, making it an environmentally friendly and safe alternative to antibiotics. This research utilizes IgY antibody [...] Read more.
Egg yolk immunoglobulin Y (IgY) possesses advantages such as low cost, easy availability, simple preparation, high antigen specificity, absence of drug residues, and compliance with animal welfare standards, making it an environmentally friendly and safe alternative to antibiotics. This research utilizes IgY antibody technology to develop a multivalent passive immune vaccine for major pathogenic bacteria in aquaculture. In this study, IgY antibodies against live Shewanella xiamenensis (LSX-IgY) and inactivated S. xiamenensis (ISX-IgY) were prepared by immunizing laying hens, and passive immunization protection experiments were conducted in Carassius auratus infected with S. xiamenensis and Aeromonas hydrophila. The passive immunization protection rates of LSX-IgY and ISX-IgY against S. xiamenensis were 63.64% and 72.73%, respectively, and the passive cross-protection rates against A. hydrophila were 50% and 71.43%, respectively. Further, C. auratus sera could specifically bind to S. xiamenensis or A. hydrophila in vitro, and the phagocytic activity of leukocytes was increased. LSX-IgY and ISX-IgY could reduce the bacterial load in the C. auratus kidneys. Meanwhile, they could significantly reduce the levels of antioxidant factors in serum and inhibit the mRNA expression of inflammation-related factors in the kidneys and spleens. Additionally, histopathology and immunofluorescence analysis showed that both IgY preparations preserved tissue integrity and reduced the expression of apoptosis factor (p53) and DNA damage factor (γH2A.X) of visceral organs, respectively. In summary, LSX-IgY and ISX-IgY can combat various bacterial infections, with no significant difference between the two. Additionally, inactivated bacterial immunization is more aligned with animal welfare standards for laying hens. Therefore, ISX-IgY is expected to serve as a multivalent vaccine against major aquaculture pathogens. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 1019 KiB  
Article
Micro-Yizkor and Hasidic Memory: A Post-Holocaust Letter from the Margins
by Isaac Hershkowitz
Religions 2025, 16(7), 937; https://doi.org/10.3390/rel16070937 - 19 Jul 2025
Viewed by 460
Abstract
This paper examines a previously unknown anonymous Hebrew letter inserted into a postwar edition of Shem HaGedolim, found in the library of the Jewish University in Budapest. The letter, composed in Győr in 1947, consists almost entirely of passages copied from Tiferet Chayim, [...] Read more.
This paper examines a previously unknown anonymous Hebrew letter inserted into a postwar edition of Shem HaGedolim, found in the library of the Jewish University in Budapest. The letter, composed in Győr in 1947, consists almost entirely of passages copied from Tiferet Chayim, a hagiographic genealogy of the Sanz Hasidic dynasty. Although derivative in content, the letter’s form and placement suggest it was not meant for transmission but instead served as a private act of mourning and historiographical preservation. By situating the letter within the broader context of post-Holocaust Jewish and Hasidic memory practices, including yizkor books, rabbinic memoirs, and grassroots commemorative writing, this study proposes that the document constitutes a “micro-yizkor”: a bibliographic ritual that aimed to re-inscribe lost tzaddikim into sacred memory. Drawing on theories of trauma, religious coping, and bereavement psychology, particularly the Two-Track Model of Bereavement, the paper examines the letter as both a therapeutic and historiographical gesture. The author’s meticulous copying, selective omissions, and personalized touches (such as modified honorifics and emotive phrases) reflect an attempt to maintain spiritual continuity in the wake of communal devastation. Engaging scholarship by Michal Shaul, Lior Becker, Gershon Greenberg, and others, the analysis demonstrates how citation, far from being a passive act, functions here as an instrument of resistance, memory, and redemptive reconstruction. The existence of such a document can also be examined through the lens of Maurice Rickards’ insights, particularly his characterization of the “compulsive note” as a salient form of ephemera, materials often inserted between the pages of books, which pose unique challenges for interpreting the time capsule their authors sought to construct. Ultimately, the paper argues that this modest and anonymous document offers a rare window into postwar Ultra-orthodox religious subjectivity. It challenges prevailing assumptions about Hasidic silence after the Holocaust and demonstarates how even derivative texts can serve as potent sites of historical testimony, spiritual resilience, and bibliographic mourning. The letter thus sheds light on a neglected form of Hasidic historiography, one authored not by professional historians, but by the broken-hearted, writing in the margins of sacred books. Full article
Show Figures

Figure 1

17 pages, 4334 KiB  
Article
Wafer-Level Fabrication of Radiofrequency Devices Featuring 2D Materials Integration
by Vitor Silva, Ivo Colmiais, Hugo Dinis, Jérôme Borme, Pedro Alpuim and Paulo M. Mendes
Nanomaterials 2025, 15(14), 1119; https://doi.org/10.3390/nano15141119 - 18 Jul 2025
Viewed by 254
Abstract
Two-dimensional (2D) materials have been proposed for use in a multitude of applications, with graphene being one of the most well-known 2D materials. Despite their potential to contribute to innovative solutions, the fabrication of such devices still faces significant challenges. One of the [...] Read more.
Two-dimensional (2D) materials have been proposed for use in a multitude of applications, with graphene being one of the most well-known 2D materials. Despite their potential to contribute to innovative solutions, the fabrication of such devices still faces significant challenges. One of the key challenges is the fabrication at a wafer-level scale, a fundamental step for allowing reliable and reproducible fabrication of a large volume of devices with predictable properties. Overcoming this barrier will allow further integration with sensors and actuators, as well as enabling the fabrication of complex circuits based on 2D materials. This work presents the fabrication steps for a process that allows the on-wafer fabrication of active and passive radiofrequency (RF) devices enabled by graphene. Two fabrication processes are presented. In the first one, graphene is transferred to a back gate surface using critical point drying to prevent cracks in the graphene. In the second process, graphene is transferred to a flat surface planarized by ion milling, with the gate being buried beneath the graphene. The fabrication employs a damascene-like process, ensuring a flat surface that preserves the graphene lattice. RF transistors, passive RF components, and antennas designed for backscatter applications are fabricated and measured, illustrating the versatility and potential of the proposed method for 2D material-based RF devices. The integration of graphene on devices is also demonstrated in an antenna. This aimed to demonstrate that graphene can also be used as a passive device. Through this device, it is possible to measure different backscatter responses according to the applied graphene gating voltage, demonstrating the possibility of wireless sensor development. With the proposed fabrication processes, a flat graphene with good quality is achieved, leading to the fabrication of RF active devices (graphene transistors) with intrinsic fT and fmax of 14 GHz and 80 GHz, respectively. Excellent yield and reproducibility are achieved through these methods. Furthermore, since the graphene membranes are grown by Chemical Vapor Deposition (CVD), it is expected that this process can also be applied to other 2D materials. Full article
(This article belongs to the Special Issue Advanced 2D Materials for Emerging Application)
Show Figures

Figure 1

16 pages, 1618 KiB  
Article
Sustainable Bamboo-Based Packaging and Passive Modified Atmosphere: A Strategy to Preserve Strawberry Quality During Cold Storage
by Giuseppina Adiletta, Marisa Di Matteo, Giuseppe De Filippis, Antonio Di Grazia, Paolo Ciambelli and Milena Petriccione
Processes 2025, 13(7), 2262; https://doi.org/10.3390/pr13072262 - 15 Jul 2025
Viewed by 317
Abstract
This study investigates the potential of bamboo-based sustainable packaging in combination with passive modified atmosphere (MA) and cold storage to enhance the shelf life of strawberries while preserving their physico-chemical properties, bioactive compounds, and antioxidant enzyme activity. The study monitored key parameters such [...] Read more.
This study investigates the potential of bamboo-based sustainable packaging in combination with passive modified atmosphere (MA) and cold storage to enhance the shelf life of strawberries while preserving their physico-chemical properties, bioactive compounds, and antioxidant enzyme activity. The study monitored key parameters such as fruit weight loss, firmness, color, and the content of bioactive compounds as well as phenolics and flavonoids. Additionally, antioxidant enzyme activity, including catalase, ascorbate peroxidase, and superoxide dismutase, was assessed to evaluate oxidative stress during 9 days at 4 °C. The results show that strawberries packaged with bamboo materials in a passive MA retained their physico-chemical traits, exhibiting slower changes in firmness, color, and bioactive compound content compared to those in unpackaged samples. Furthermore, the antioxidant enzyme activity remained significantly higher, suggesting a lower oxidative stress in packaged fruit. This combination of bamboo-based packaging with passive MA is a valid, effective, and sustainable approach to prolonging the qualitative traits of strawberries during cold storage, offering both environmental and nutritional benefits. Full article
Show Figures

Figure 1

15 pages, 2173 KiB  
Review
Optimal Sites for Upper Extremity Amputation: Comparison Between Surgeons and Prosthetists
by Brandon Apagüeño, Sara E. Munkwitz, Nicholas V. Mata, Christopher Alessia, Vasudev Vivekanand Nayak, Paulo G. Coelho and Natalia Fullerton
Bioengineering 2025, 12(7), 765; https://doi.org/10.3390/bioengineering12070765 - 15 Jul 2025
Viewed by 320
Abstract
Upper extremity amputations significantly impact an individual’s physical capabilities, psychosocial well-being, and overall quality of life. The level at which an amputation is performed influences residual limb function, prosthetic compatibility, and long-term patient satisfaction. While surgical guidelines traditionally emphasize maximal limb preservation, prosthetists [...] Read more.
Upper extremity amputations significantly impact an individual’s physical capabilities, psychosocial well-being, and overall quality of life. The level at which an amputation is performed influences residual limb function, prosthetic compatibility, and long-term patient satisfaction. While surgical guidelines traditionally emphasize maximal limb preservation, prosthetists often advocate for amputation sites that optimize prosthetic fit and function, highlighting the need for a collaborative approach. This review examines the discrepancies between surgical and prosthetic recommendations for optimal amputation levels, from digit amputations to shoulder disarticulations, and explores their implications for prosthetic design, functionality, and patient outcomes. Various prosthetic options, including passive functional, body-powered, myoelectric, and hybrid devices, offer distinct advantages and limitations based on the level of amputation. Prosthetists emphasize the importance of residual limb length, not only for mechanical efficiency but also for achieving symmetry with the contralateral limb, minimizing discomfort, and enhancing control. Additionally, emerging technologies such as targeted muscle reinnervation (TMR) and advanced myoelectric prostheses are reshaping rehabilitation strategies, further underscoring the need for precise amputation planning. By integrating insights from both surgical and prosthetic perspectives, this review highlights the necessity of a multidisciplinary approach involving surgeons, prosthetists, rehabilitation specialists, and patients in the decision-making process. A greater emphasis on preoperative planning and interprofessional collaboration can improve prosthetic outcomes, reduce device rejection rates, and ultimately enhance the functional independence and well-being of individuals with upper extremity amputations. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

14 pages, 1459 KiB  
Article
Research on the Dynamic Response of the Catenary of the Co-Located Railway for Conventional/High Speed Trains in High-Wind Area
by Guanghui Li, Yongzhi Gou, Binqian Guo, Hongmei Li, Enfan Cao and Junjie Ma
Infrastructures 2025, 10(7), 182; https://doi.org/10.3390/infrastructures10070182 - 11 Jul 2025
Viewed by 224
Abstract
To establish a theoretical foundation for assessing the dynamic performance of high-speed train catenary systems in wind-prone regions, this study develops a coupled pantograph–catenary model using ANSYS(2022R1) APDL. The dynamic responses of conventional high-speed pantographs traversing both mainline and transition sections are analyzed [...] Read more.
To establish a theoretical foundation for assessing the dynamic performance of high-speed train catenary systems in wind-prone regions, this study develops a coupled pantograph–catenary model using ANSYS(2022R1) APDL. The dynamic responses of conventional high-speed pantographs traversing both mainline and transition sections are analyzed under varying operational conditions. The key findings reveal that an elevated rated tension in the contact wire and messenger wire reduces the pantograph lift in wind areas with no crosswind compared to non-wind areas, with an average lift reduction of 8.52% and diminished standard deviation, indicating enhanced system stability. Under a 20 m/s crosswind, both tested pantograph designs maintain contact force and dynamic lift within permissible thresholds, while significant catenary undulations predominantly occur at mid-span locations. Active control strategies preserve the static lift force but induce pantograph flattening under compression, reducing aerodynamic drag and resulting in smaller contact force fluctuations relative to normal-speed sections. In contrast, passive control increases static lift, thereby causing greater fluctuations in contact force compared to baseline conditions. The superior performance of active control is attributed to its avoidance of static lift amplification, which dominates the dynamic response in passive systems. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

17 pages, 2556 KiB  
Article
Novel Hybrid Islanding Detection Technique Based on Digital Lock-In Amplifier
by Muhammad Noman Ashraf, Abdul Shakoor Akram and Woojin Choi
Energies 2025, 18(13), 3449; https://doi.org/10.3390/en18133449 - 30 Jun 2025
Viewed by 246
Abstract
Islanding detection remains a critical challenge for grid-connected distributed generation systems, as passive techniques suffer from inherent non-detection zones (NDZ), and active methods often degrade power quality. This paper introduces a hybrid detection strategy based on monitoring inherent grid harmonics via a Digital [...] Read more.
Islanding detection remains a critical challenge for grid-connected distributed generation systems, as passive techniques suffer from inherent non-detection zones (NDZ), and active methods often degrade power quality. This paper introduces a hybrid detection strategy based on monitoring inherent grid harmonics via a Digital Lock-In Amplifier. By comparing real-time 5th and 7th harmonic amplitudes against their three-cycle-delayed values, the passive stage adaptively identifies potential islanding without fixed thresholds. Upon detecting significant relative variation, a brief injection of a non-characteristic 10th harmonic (limited to under 3% distortion for three line cycles) serves as active verification, ensuring robust discrimination between islanding and normal disturbances. Case studies demonstrate detection within 140 ms—faster than typical reclosing delays and well below the 2 s limit of IEEE std. 1547—while preserving current zero-crossings and enabling grid impedance estimation. The method’s resilience to grid disturbances and stiffness is validated through PSIM simulations and laboratory experiments, meeting IEEE 1547 and UL 1741 requirements. Comparative analysis shows superior accuracy and minimal power-quality impact relative to existing passive, active, and intelligent approaches. Full article
(This article belongs to the Special Issue Power Electronics and Power Quality 2025)
Show Figures

Figure 1

16 pages, 2546 KiB  
Article
A Multi-Point Moment Matching Approach with Frequency-Aware ROM-Based Criteria for RLCk Model Order Reduction
by Dimitrios Garyfallou, Christos Giamouzis and Nestor Evmorfopoulos
Technologies 2025, 13(7), 274; https://doi.org/10.3390/technologies13070274 - 30 Jun 2025
Viewed by 260
Abstract
Model order reduction (MOR) is crucial for efficiently simulating large-scale RLCk models extracted from modern integrated circuits. Among MOR methods, balanced truncation offers strong theoretical error bounds but is computationally intensive and does not preserve passivity. In contrast, moment matching (MM) techniques are [...] Read more.
Model order reduction (MOR) is crucial for efficiently simulating large-scale RLCk models extracted from modern integrated circuits. Among MOR methods, balanced truncation offers strong theoretical error bounds but is computationally intensive and does not preserve passivity. In contrast, moment matching (MM) techniques are widely adopted in industrial tools due to their computational efficiency and ability to preserve passivity in RLCk models. Typically, MM approaches based on the rational Krylov subspace (RKS) are employed to produce reduced-order models (ROMs). However, the quality of the reduction is influenced by the selection of the number of moments and expansion points, which can be challenging to determine. This underlines the need for advanced strategies and reliable convergence criteria to adaptively control the reduction process and ensure accurate ROMs. This article introduces a frequency-aware multi-point MM (MPMM) method that adaptively constructs an RKS by closely monitoring the ROM transfer function. The proposed approach features automatic expansion point selection, local and global convergence criteria, and efficient implementation techniques. Compared to an established MM technique, MPMM achieves up to 16.3× smaller ROMs for the same accuracy, over 99.18% reduction in large-scale benchmarks, and up to 4× faster runtime. These advantages establish MPMM as a strong candidate for integration into industrial parasitic extraction tools. Full article
Show Figures

Graphical abstract

19 pages, 3260 KiB  
Article
Individual Variation in Movement Behavior of Stream-Resident Mediterranean Brown Trout (Salmo trutta Complex)
by Enric Aparicio, Rafel Rocaspana, Antoni Palau-Ibars, Neus Oromí, Dolors Vinyoles and Carles Alcaraz
Fishes 2025, 10(7), 308; https://doi.org/10.3390/fishes10070308 - 30 Jun 2025
Viewed by 329
Abstract
Understanding individual movement patterns in stream-resident salmonids is critical for conservation and river management, particularly in Mediterranean streams characterized by high environmental variability. We tagged 997 Mediterranean brown trout (Salmo trutta complex) and conducted an 11-month mark–recapture study using Passive Integrated Transponder [...] Read more.
Understanding individual movement patterns in stream-resident salmonids is critical for conservation and river management, particularly in Mediterranean streams characterized by high environmental variability. We tagged 997 Mediterranean brown trout (Salmo trutta complex) and conducted an 11-month mark–recapture study using Passive Integrated Transponder (PIT) technology to assess movement behavior in the Flamisell River (Ebro Basin, northeastern Iberian Peninsula). Movements followed a leptokurtic distribution, with 81.8% of the individuals classified as sedentary (median movement = 24.9 m) and 18.2% as mobile (median movement = 376.2 m). Generalized linear models revealed distinct drivers of fish movement for each group. In sedentary trout, movement was mainly influenced by mesohabitat type, season, sex, and body size, with males and larger individuals moving farther. In mobile trout, mesohabitat type, density, and body size were key predictors. Movement patterns were repeatable over time, indicating consistent behavioral tendencies. These results support a bimodal movement strategy and highlight the importance of individual variation. Conservation planning should account for both sedentary and mobile groups to preserve functional and genetic connectivity and improve resilience of Mediterranean streams. Full article
Show Figures

Figure 1

26 pages, 2296 KiB  
Article
Novel Design of Three-Channel Bilateral Teleoperation with Communication Delay Using Wave Variable Compensators
by Bo Yang, Chao Liu, Lei Zhang, Long Teng, Jiawei Tian, Siyuan Xu and Wenfeng Zheng
Electronics 2025, 14(13), 2595; https://doi.org/10.3390/electronics14132595 - 27 Jun 2025
Viewed by 329
Abstract
Bilateral teleoperation systems have been widely used in many fields of robotics, such as industrial manipulation, medical treatment, space exploration, and deep-sea operation. Delays in communication, known as an inevitable issues in practical implementation, especially for long-distance operations and challenging communication situations, can [...] Read more.
Bilateral teleoperation systems have been widely used in many fields of robotics, such as industrial manipulation, medical treatment, space exploration, and deep-sea operation. Delays in communication, known as an inevitable issues in practical implementation, especially for long-distance operations and challenging communication situations, can destroy system passivity and potentially lead to system failure. In this work, we address the time-delayed three-channel teleoperation design problem to guarantee system passivity and achieve high transparency simultaneously. To realize this, the three-channel teleoperation structure is first reformulated to form a two-channel-like architecture. Then, the wave variable technique is used to handle the communication delay and guarantee system passivity. Two novel wave variable compensators are proposed to achieve delay-minimized system transparency, and energy reservoirs are employed to monitor and regulate the energy introduced via these compensators to preserve overall system passivity. Numerical studies confirm that the proposed method significantly improves both kinematic and force tracking performance, achieving near-perfect correspondence with only a single-trip delay. Quantitative analyses using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Dynamic Time Warping (DTW) metrics show substantial error reductions compared to conventional wave variable and direct transmission-based three-channel teleoperation approaches. Moreover, statistical validation via the Mann–Whitney U test further confirms the significance of these improvements in system performance. The proposed design guarantees passivity with any passive human operator and environment without requiring restrictive assumptions, offering a robust and generalizable solution for teleoperation tasks with communication time delay. Full article
(This article belongs to the Special Issue Intelligent Perception and Control for Robotics)
Show Figures

Figure 1

20 pages, 4196 KiB  
Article
Development and Efficacy Assessment of an Angle Sensor-Integrated Upper Limb Exoskeleton System for Autonomous Rehabilitation Training
by Linshuai Zhang, Xin Tian, Yaqi Fan, Tao Jiang, Shuoxin Gu and Lin Xu
Sensors 2025, 25(13), 3984; https://doi.org/10.3390/s25133984 - 26 Jun 2025
Viewed by 299
Abstract
In this study, we propose a rehabilitation training system that incorporates active and passive rehabilitation modes to enhance the convenience, efficacy, and safety of rehabilitation training for patients with upper limb hemiplegia. This system facilitates elbow flexion and extension as well as wrist [...] Read more.
In this study, we propose a rehabilitation training system that incorporates active and passive rehabilitation modes to enhance the convenience, efficacy, and safety of rehabilitation training for patients with upper limb hemiplegia. This system facilitates elbow flexion and extension as well as wrist and palm flexion and extension. The experimental results demonstrate that the exoskeleton robot on the affected limb exhibits a rapid response and maintains a highly synchronized movement with the unaffected upper limb equipped with an angle sensor, preserving stability and coordination throughout the movement process without significant delay affecting the overall motion. When the movement of the unaffected upper limb exceeds the predetermined angle threshold, the affected limb promptly initiates a protective mechanism to maintain its current posture. Upon equalization of the angles between the two limbs, the affected limb resumes synchronized movement, thereby ensuring the safety of the rehabilitation training. This research provides some insights into the functional improvements of safe and reliable upper limb exoskeleton rehabilitation training systems. Full article
Show Figures

Figure 1

19 pages, 2832 KiB  
Article
High Spatial Resolution Soil Moisture Mapping over Agricultural Field Integrating SMAP, IMERG, and Sentinel-1 Data in Machine Learning Models
by Diego Tola, Lautaro Bustillos, Fanny Arragan, Rene Chipana, Renaud Hostache, Eléonore Resongles, Raúl Espinoza-Villar, Ramiro Pillco Zolá, Elvis Uscamayta, Mayra Perez-Flores and Frédéric Satgé
Remote Sens. 2025, 17(13), 2129; https://doi.org/10.3390/rs17132129 - 21 Jun 2025
Viewed by 1850
Abstract
Soil moisture content (SMC) is a critical parameter for agricultural productivity, particularly in semi-arid regions, where irrigation practices are extensively used to offset water deficits and ensure decent yields. Yet, the socio-economic and remote context of these regions prevents sufficiently dense SMC monitoring [...] Read more.
Soil moisture content (SMC) is a critical parameter for agricultural productivity, particularly in semi-arid regions, where irrigation practices are extensively used to offset water deficits and ensure decent yields. Yet, the socio-economic and remote context of these regions prevents sufficiently dense SMC monitoring in space and time to support farmers in their work to avoid unsustainable irrigation practices and preserve water resource availability. In this context, our study addresses the challenge of high spatial resolution (i.e., 20 m) SMC estimation by integrating remote sensing datasets in machine learning models. For this purpose, a dataset made of 166 soil samples’ SMC along with corresponding SMC, precipitation, and radar signal derived from Soil Moisture Active Passive (SMAP), Integrated Multi-satellitE Retrievals for GPM (IMERG), and Sentinel-1 (S1), respectively, was used to assess four machine learning models’ (Decision Tree—DT, Random Forest—RF, Gradient Boosting—GB, Extreme Gradient Boosting—XGB) reliability for SMC mapping. First, each model was trained/validated using only the coarse spatial resolution (i.e., 10 km) SMAP SMC and IMERG precipitation estimates as independent features, and, second, S1 information (i.e., 20 m) derived from single scenes and/or composite images was added as independent features to highlight the benefit of information (i.e., S1 information) for SMC mapping at high spatial resolution (i.e., 20 m). Results show that integrating S1 information from both single scenes and composite images to SMAP SMC and IMERG precipitation data significantly improves model reliability, as R2 increased by 12% to 16%, while RMSE decreased by 10% to 18%, depending on the considered model (i.e., RF, XGB, DT, GB). Overall, all models provided reliable SMC estimates at 20 m spatial resolution, with the GB model performing the best (R2 = 0.86, RMSE = 2.55%). Full article
(This article belongs to the Special Issue Remote Sensing for Soil Properties and Plant Ecosystems)
Show Figures

Figure 1

Back to TopTop