Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = passive microwave satellite remote sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9060 KiB  
Article
Generating 1 km Seamless Land Surface Temperature from China FY3C Satellite Data Using Machine Learning
by Xinhan Liu, Weiwei Zhu, Qifeng Zhuang, Tao Sun and Ziliang Chen
Appl. Sci. 2025, 15(11), 6202; https://doi.org/10.3390/app15116202 - 30 May 2025
Viewed by 396
Abstract
Land Surface Temperature (LST), as a core variable in the coupling of land–atmosphere energy transfers and ecological responses, relies heavily on the global coverage capacity of thermal infrared remote sensing (TIR-LST) for dynamic monitoring. Currently, the time reconstruction method of the TIR-LST products [...] Read more.
Land Surface Temperature (LST), as a core variable in the coupling of land–atmosphere energy transfers and ecological responses, relies heavily on the global coverage capacity of thermal infrared remote sensing (TIR-LST) for dynamic monitoring. Currently, the time reconstruction method of the TIR-LST products from China’s Fengyun polar-orbiting satellite under dynamic cloud interference remains under exploration. This study focuses on the Heihe River Basin in western China, and addresses the issue of cloud coverage in relation to the Fengyun-3C (FY-3C) satellite TIR-LST. An innovative spatiotemporal reconstruction framework based on multi-source data collaboration was developed. Using a hybrid ensemble learning framework of random forest and ridge regression, environmental parameters such as vegetation index (NDVI), land cover type (LC), digital elevation model (DEM), and terrain slope were integrated. A downscaling and multi-factor collaborative representation model for land surface temperature was constructed, thereby integrating the passive microwave LST and thermal infrared VIRR-LST from the FY-3C satellite. This produced a seamless LST dataset with 1 km resolution for the period of 2017–2019, with temporal continuity across space. The validation results show that the reconstructed data significantly improves accuracy compared to the original VIRR-LST and demonstrates notable spatiotemporal consistency with MODIS LST at the daily scale (annual R2 ≥ 0.88, RMSE < 2.3 K). This method successfully reconstructed the FY-3C satellite’s 1 km level all-weather LST time series, providing reliable technical support for the use of domestic satellite data in remote sensing applications such as ecological drought monitoring and urban heat island tracking. Full article
Show Figures

Figure 1

23 pages, 10230 KiB  
Article
Revisiting the Role of SMAP Soil Moisture Retrievals in WRF-Chem Dust Emission Simulations over the Western U.S.
by Pedro A. Jiménez y Muñoz, Rajesh Kumar, Cenlin He and Jared A. Lee
Remote Sens. 2025, 17(8), 1345; https://doi.org/10.3390/rs17081345 - 10 Apr 2025
Viewed by 509
Abstract
Having good replication of the soil moisture evolution is desirable to properly simulate the dust emissions and atmospheric dust load because soil moisture increases the cohesive forces of soil particles, modulating the wind erosion threshold above which emissions occur. To reduce errors, one [...] Read more.
Having good replication of the soil moisture evolution is desirable to properly simulate the dust emissions and atmospheric dust load because soil moisture increases the cohesive forces of soil particles, modulating the wind erosion threshold above which emissions occur. To reduce errors, one can use soil moisture retrievals from space-borne microwave radiometers. Here, we explore the potential of inserting soil moisture retrievals from the Soil Moisture Active Passive (SMAP) satellite into the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to improve dust simulations. We focus our analysis on the contiguous U.S. due to the presence of important dust sources and good observational networks. Our analysis extends over the first year of SMAP retrievals (1 April 2015–31 March 2016) to cover the annual soil moisture variability and go beyond extreme events, such as dust storms, in order to provide a statistically robust characterization of the potential added value of the soil moisture retrievals. We focus on the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model from the Air Force Weather Agency (GOCART-AFWA) dust emission parameterization that represents soil moisture modulations of the wind erosion threshold with a parameterization developed by fitting observations. The dust emissions are overestimated by the GOCART-AFWA parameterization and result in an overestimation of the aerosol optical depth (AOD). Sensitivity experiments show that emissions reduced to 25% in the GOCART-AFWA simulations largely reduced the AOD bias over the Southwest and lead to better agreement with the standard WRF-Chem parameterization of dust emissions (GOCART) and with observations. Comparisons of GOCART-AFWA simulations with emissions reduced to 25% with and without SMAP soil moisture insertion show added value of the retrievals, albeit small, over the dust sources. These results highlight the importance of accurate dust emission parameterizations when evaluating the impact of remotely sensed soil moisture data on numerical weather prediction models. Full article
Show Figures

Figure 1

32 pages, 11960 KiB  
Article
Estimation of 1 km Dawn–Dusk All-Sky Land Surface Temperature Using a Random Forest-Based Reanalysis and Thermal Infrared Remote Sensing Data Merging (RFRTM) Method
by Yaohai Dong, Xiaodong Zhang, Xiuqing Hu, Jian Shang and Feng Zhao
Sensors 2025, 25(2), 508; https://doi.org/10.3390/s25020508 - 16 Jan 2025
Viewed by 845
Abstract
All-sky 1 km land surface temperature (LST) data are urgently needed. Two widely applied approaches to derive such LST data are merging thermal infrared remote sensing (TIR)–passive microwave remote sensing (PMW) observations and merging TIR reanalysis data. However, as only the Moderate Resolution [...] Read more.
All-sky 1 km land surface temperature (LST) data are urgently needed. Two widely applied approaches to derive such LST data are merging thermal infrared remote sensing (TIR)–passive microwave remote sensing (PMW) observations and merging TIR reanalysis data. However, as only the Moderate Resolution Imaging Spectroradiometer (MODIS) is adopted as the TIR source for merging, current 1 km all-sky LST products are limited to the MODIS observation time. Therefore, a gap still remains in terms of all-sky LST data with a higher temporal resolution or at other times (e.g., dawn–dusk time). Under this background, this study merged the observations of the Medium Resolution Spectrum Imager (MERSI-LL) on board the dusk–dawn-orbit Fengyun (FY)-3E satellite and Global Land Data Assimilation System (GLDAS) data to estimate dawn–dusk 1 km all-sky LST using a random forest-based method (RFRTM). The results showed that the model had good robustness, with an STD of 0.62–0.86 K of the RFRTM LST, compared with the original MERSI-LL LST. Validation against in situ LST showed that the estimated LST had an accuracy of 1.34–3.71 K under all-sky conditions. In addition, compared with the dawn–dusk LST merged from MERSI-LL and the Special Sensor Microwave Imager/Sounder (SSMI/S), the RFRTM LST showed better performance in accuracy and image quality. This study’s findings are beneficial for filling the gap in all-sky LST at high spatiotemporal resolutions for associated applications. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

23 pages, 3271 KiB  
Article
A Comparison of Physical-Based and Statistical-Based Radiative Transfer Models in Retrieving Atmospheric Temperature Profiles from the Microwave Temperature Sounder-II Onboard the Feng-Yun-3 Satellite
by Qiurui He, Xiao Guo, Ruiling Zhang, Jiaoyang Li, Lanjie Zhang, Junqi Jia and Xuhui Zhou
Atmosphere 2025, 16(1), 44; https://doi.org/10.3390/atmos16010044 - 2 Jan 2025
Viewed by 761
Abstract
The statistical retrieval of atmospheric parameters will be greatly affected by the accuracy of the simulated brightness temperatures (BTs) derived from the radiative transfer model. However, it is challenging to further improve a physical-based radiative transfer model (RTM) developed based on the physical [...] Read more.
The statistical retrieval of atmospheric parameters will be greatly affected by the accuracy of the simulated brightness temperatures (BTs) derived from the radiative transfer model. However, it is challenging to further improve a physical-based radiative transfer model (RTM) developed based on the physical mechanisms of wave transmission through the atmosphere. We develop a deep neural network-based RTM (DNN-based RTM) to calculate the simulated BTs for the Microwave Temperature Sounder-II onboard the Fengyun-3D satellite under different weather conditions. The DNN-based RTM is compared in detail with the physical-based RTM in retrieving the atmospheric temperature profiles by the statistical retrieval scheme. Compared to the physical-based RTM, the DNN-based RTM can obtain higher accuracy for simulated BTs and enables the statistical retrieval scheme to achieve higher accuracy in temperature profile retrieval in clear, cloudy, and rainy sky conditions. Due to its ability to simulate microwave observations more accurately, the DNN-based RTM is valuable for the theoretical study of microwave remote sensing and the application of passive microwave observations. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

34 pages, 10549 KiB  
Review
Multi-Sensor Precipitation Estimation from Space: Data Sources, Methods and Validation
by Ruifang Guo, Xingwang Fan, Han Zhou and Yuanbo Liu
Remote Sens. 2024, 16(24), 4753; https://doi.org/10.3390/rs16244753 - 20 Dec 2024
Cited by 2 | Viewed by 1530
Abstract
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation [...] Read more.
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation data generation by integrating infrared and microwave observations. Among others, Global Precipitation Measurement (GPM) plays a crucial role in providing invaluable data sources for MPE by utilizing passive microwave sensors and geostationary infrared sensors. MPE represents the current state-of-the-art approach for generating high-quality, high-resolution global satellite precipitation products (SPPs), employing various methods such as cloud motion analysis, probability matching, adjustment ratios, regression techniques, neural networks, and weighted averaging. International collaborations, such as the International Precipitation Working Group and the Precipitation Virtual Constellation, have significantly contributed to enhancing our understanding of the uncertainties associated with MPEs and their corresponding SPPs. It has been observed that SPPs exhibit higher reliability over tropical oceans compared to mid- and high-latitudes, particularly during cold seasons or in regions with complex terrains. To further advance MPE research, future efforts should focus on improving accuracy for extremely low- and high-precipitation events, solid precipitation measurements, as well as orographic precipitation estimation. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Figure 1

15 pages, 2158 KiB  
Article
How Can Seasonality Influence the Performance of Recent Microwave Satellite Soil Moisture Products?
by Raffaele Albano, Teodosio Lacava, Arianna Mazzariello, Salvatore Manfreda, Jan Adamowski and Aurelia Sole
Remote Sens. 2024, 16(16), 3044; https://doi.org/10.3390/rs16163044 - 19 Aug 2024
Cited by 4 | Viewed by 1170
Abstract
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and [...] Read more.
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and soil properties. When long-term analysis is performed, these discrepancies are mitigated by the contribution of SM seasonality and are only evident when high-frequency variations (i.e., signal anomalies) are investigated. This study sought to examine the responsiveness of SM to seasonal variations in terrestrial ecoregions located in areas covered by the in situ Romanian Soil Moisture Network (RSMN). To achieve this aim, several remote sensing-derived retrievals were considered: (i) NASA’s Soil Moisture Active and Passive (SMAP) L4 V5 model assimilated product data; (ii) the European Space Agency’s Soil Moisture and Ocean Salinity INRA–CESBIO (SMOS-IC) V2.0 data; (iii) time-series data extracted from the H115 and H116 SM products, which are derived from the analysis of Advanced Scatterometer (ASCAT) data acquired via MetOp satellites; (iv) Copernicus Global Land Service SSM 1 km data; and (v) the “combined” European Space Agency’s Climate Change Initiative for Soil Moisture (ESA CCI SM) product v06.1. An initial assessment of the performance of these products was conducted by checking the anomaly of long-term fluctuations, quantified using the Absolute Variation of Local Change of Environment (ALICE) index, within a time frame spanning 2015 to 2020. These correlations were then compared with those based on raw data and anomalies computed using a moving window of 35 days. Prominent correlations were observed with the SMAP L4 dataset and across all ecoregions, and the Balkan mixed forests (646) exhibited strong concordance regardless of the satellite source (with a correlation coefficient RALICE > 0.5). In contrast, neither the Central European mixed forests (No. 654) nor the Pontic steppe (No. 735) were adequately characterized by any satellite dataset (RALICE < 0.5). Subsequently, the phenological seasonality and dynamic behavior of SM were computed to investigate the effects of the wetting and drying processes. Notably, the Central European mixed forests (654) underwent an extended dry phase (with an extremely low p-value of 2.20 × 10−16) during both the growth and dormancy phases. This finding explains why the RSMN showcases divergent behavior and underscores why no satellite dataset can effectively capture the complexities of the ecoregions covered by this in situ SM network. Full article
(This article belongs to the Special Issue Remote Sensing of Climate-Related Hazards)
Show Figures

Graphical abstract

21 pages, 3098 KiB  
Article
MFPANet: Multi-Scale Feature Perception and Aggregation Network for High-Resolution Snow Depth Estimation
by Liling Zhao, Junyu Chen, Muhammad Shahzad, Min Xia and Haifeng Lin
Remote Sens. 2024, 16(12), 2087; https://doi.org/10.3390/rs16122087 - 9 Jun 2024
Cited by 3 | Viewed by 1731
Abstract
Accurate snow depth estimation is of significant importance, particularly for preventing avalanche disasters and predicting flood seasons. The predominant approaches for such snow depth estimation, based on deep learning methods, typically rely on passive microwave remote sensing data. However, due to the low [...] Read more.
Accurate snow depth estimation is of significant importance, particularly for preventing avalanche disasters and predicting flood seasons. The predominant approaches for such snow depth estimation, based on deep learning methods, typically rely on passive microwave remote sensing data. However, due to the low resolution of passive microwave remote sensing data, it often results in low-accuracy outcomes, posing considerable limitations in application. To further improve the accuracy of snow depth estimation, in this paper, we used active microwave remote sensing data. We fused multi-spectral optical satellite images, synthetic aperture radar (SAR) images and land cover distribution images to generate a snow remote sensing dataset (SRSD). It is a first-of-its-kind dataset that includes active microwave remote sensing images in high-latitude regions of Asia. Using these novel data, we proposed a multi-scale feature perception and aggregation neural network (MFPANet) that focuses on improving feature extraction from multi-source images. Our systematic analysis reveals that the proposed approach is not only robust but also achieves high accuracy in snow depth estimation compared to existing state-of-the-art methods, with RMSE of 0.360 and with MAE of 0.128. Finally, we selected several representative areas in our study region and applied our method to map snow depth distribution, demonstrating its broad application prospects. Full article
(This article belongs to the Special Issue Monitoring Cold-Region Water Cycles Using Remote Sensing Big Data)
Show Figures

Figure 1

44 pages, 25578 KiB  
Review
Remote Sensing and Modeling of the Cryosphere in High Mountain Asia: A Multidisciplinary Review
by Qinghua Ye, Yuzhe Wang, Lin Liu, Linan Guo, Xueqin Zhang, Liyun Dai, Limin Zhai, Yafan Hu, Nauman Ali, Xinhui Ji, Youhua Ran, Yubao Qiu, Lijuan Shi, Tao Che, Ninglian Wang, Xin Li and Liping Zhu
Remote Sens. 2024, 16(10), 1709; https://doi.org/10.3390/rs16101709 - 11 May 2024
Cited by 8 | Viewed by 4864
Abstract
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock–ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are [...] Read more.
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock–ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are essential for studying climate change, the hydrological cycle, water resource management, and natural disaster mitigation and prevention. However, knowledge gaps, data uncertainties, and other substantial challenges limit comprehensive research in climate–cryosphere–hydrology–hazard systems. To address this, we provide an up-to-date, comprehensive, multidisciplinary review of remote sensing techniques in cryosphere studies, demonstrating primary methodologies for delineating glaciers and measuring geodetic glacier mass balance change, glacier thickness, glacier motion or ice velocity, snow extent and water equivalent, frozen ground or frozen soil, lake ice, and glacier-related hazards. The principal results and data achievements are summarized, including URL links for available products and related data platforms. We then describe the main challenges for cryosphere monitoring using satellite-based datasets. Among these challenges, the most significant limitations in accurate data inversion from remotely sensed data are attributed to the high uncertainties and inconsistent estimations due to rough terrain, the various techniques employed, data variability across the same regions (e.g., glacier mass balance change, snow depth retrieval, and the active layer thickness of frozen ground), and poor-quality optical images due to cloudy weather. The paucity of ground observations and validations with few long-term, continuous datasets also limits the utilization of satellite-based cryosphere studies and large-scale hydrological models. Lastly, we address potential breakthroughs in future studies, i.e., (1) outlining debris-covered glacier margins explicitly involving glacier areas in rough mountain shadows, (2) developing highly accurate snow depth retrieval methods by establishing a microwave emission model of snowpack in mountainous regions, (3) advancing techniques for subsurface complex freeze–thaw process observations from space, (4) filling knowledge gaps on scattering mechanisms varying with surface features (e.g., lake ice thickness and varying snow features on lake ice), and (5) improving and cross-verifying the data retrieval accuracy by combining different remote sensing techniques and physical models using machine learning methods and assimilation of multiple high-temporal-resolution datasets from multiple platforms. This comprehensive, multidisciplinary review highlights cryospheric studies incorporating spaceborne observations and hydrological models from diversified techniques/methodologies (e.g., multi-spectral optical data with thermal bands, SAR, InSAR, passive microwave, and altimetry), providing a valuable reference for what scientists have achieved in cryosphere change research and its hydrological effects on the Third Pole. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

18 pages, 4978 KiB  
Article
Drought Monitoring of Winter Wheat in Henan Province, China Based on Multi-Source Remote Sensing Data
by Guizhi Tian and Liming Zhu
Agronomy 2024, 14(4), 758; https://doi.org/10.3390/agronomy14040758 - 6 Apr 2024
Cited by 3 | Viewed by 2151
Abstract
Characterized by soil moisture content and plant growth, agricultural drought occurs when the soil moisture content is lower than the water requirement of plants. Microwave remote sensing observation has the advantages of all-weather application and sensitivity to soil moisture change. However, microwave remote [...] Read more.
Characterized by soil moisture content and plant growth, agricultural drought occurs when the soil moisture content is lower than the water requirement of plants. Microwave remote sensing observation has the advantages of all-weather application and sensitivity to soil moisture change. However, microwave remote sensing can only invert 0~5 cm of soil surface moisture, so it cannot effectively reflect the drought situation of farmland. Therefore, this study took Henan Province as the study area, used soil moisture active and passive (SMAP) satellite soil moisture data, employed NDVI, LST, and ET as the independent variables, and took the drought grade on the sample as the dependent variable. Using the 2017–2019 data as the training set and the 2020 data as the testing set, a random forest drought monitoring model with comprehensive influence of multiple factors was constructed based on the training set data. In the process of model training, the cross-validation method was employed to establish and verify the model. This involved allocating 80% of the sample data for model construction and reserving 20% for model verification. The results demonstrated an 85% accuracy on the training set and an 87% accuracy on the testing set. Additionally, two drought events occurring during the winter wheat growing period in Henan Province were monitored, and the validity of these droughts was confirmed using on-site soil moisture and the vegetation supply water index (VSWI). The findings indicated a high incidence of agricultural drought in the southwestern part of Henan Province, while the central and northern regions experienced a lower incidence during the jointing to heading and filling stages. Subsequently, leveraging the results from the random forest drought monitoring, this study conducted a time series analysis using the Mann–Kendall test and a spatial analysis employing Moran’s I index to examine the temporal and spatial distribution of agricultural drought in Henan Province. This analysis aimed to unveil trends in soil moisture changes affecting agricultural drought, as observed via the SMAP satellite (NASA). The results suggested a possible significant spatial auto-correlation in the occurrence of agricultural drought. Full article
(This article belongs to the Special Issue Application of Remote Sensing and GIS Technology in Agriculture)
Show Figures

Figure 1

17 pages, 5624 KiB  
Article
Estimation of Irrigation Water Use by Using Irrigation Signals from SMAP Soil Moisture Data
by Liming Zhu, Huifeng Wu, Min Li, Chaoyin Dou and A-Xing Zhu
Agriculture 2023, 13(9), 1709; https://doi.org/10.3390/agriculture13091709 - 29 Aug 2023
Cited by 3 | Viewed by 2428
Abstract
Accurate irrigation water-use data are essential to agricultural water resources management and optimal allocation. The obscuration presented by ground cover in farmland and the subjectivity of irrigation-related decision-making processes mean that effectively identifying regional irrigation water use remains a critical problem to be [...] Read more.
Accurate irrigation water-use data are essential to agricultural water resources management and optimal allocation. The obscuration presented by ground cover in farmland and the subjectivity of irrigation-related decision-making processes mean that effectively identifying regional irrigation water use remains a critical problem to be solved. In view of the advantages of satellite microwave remote sensing in monitoring soil moisture, previous studies have proposed a method for estimating irrigation water use using the satellite microwave remote sensing of soil moisture. However, the method is affected by false irrigation signals from soil moisture increases caused by non-irrigation factors, causing irrigation water use to be overestimated. Therefore, the purpose of this study is to improve the estimation of irrigation water use in drylands by using irrigation signals from SMAP soil moisture data. In this paper, the irrigation water use in Henan Province is estimated by using the irrigation signals from SMAP (soil moisture active and passive) soil moisture data. Firstly, a method for recognizing irrigation signals in soil moisture data obtained by microwave satellite remote sensing was used. Then, an estimation model of the amount of irrigation water (SM2Rainfall model) was built on each data pixel of the satellite microwave remote sensing of soil moisture. Finally, the amount of irrigation water utilized in Henan Province was estimated by combining the irrigation signals and irrigation water-use estimation model, and the results were evaluated. According to the findings, this study improved the estimation accuracy of irrigation water use by using the irrigation signals in Henan Province. The result of this study is of great importance to accurately obtain irrigation water use in the region. Full article
(This article belongs to the Special Issue Remote Sensing Technologies in Agricultural Crop and Soil Monitoring)
Show Figures

Figure 1

19 pages, 3724 KiB  
Article
A Performance Analysis of Soil Dielectric Models over Organic Soils in Alaska for Passive Microwave Remote Sensing of Soil Moisture
by Runze Zhang, Steven Chan, Rajat Bindlish and Venkataraman Lakshmi
Remote Sens. 2023, 15(6), 1658; https://doi.org/10.3390/rs15061658 - 19 Mar 2023
Cited by 11 | Viewed by 2884
Abstract
Passive microwave remote sensing of soil moisture (SM) requires a physically based dielectric model that quantitatively converts the volumetric SM into the soil bulk dielectric constant. Mironov 2009 is the dielectric model used in the operational SM retrieval algorithms of the NASA Soil [...] Read more.
Passive microwave remote sensing of soil moisture (SM) requires a physically based dielectric model that quantitatively converts the volumetric SM into the soil bulk dielectric constant. Mironov 2009 is the dielectric model used in the operational SM retrieval algorithms of the NASA Soil Moisture Active Passive (SMAP) and the ESA Soil Moisture and Ocean Salinity (SMOS) missions. However, Mironov 2009 suffers a challenge in deriving SM over organic soils, as it does not account for the impact of soil organic matter (SOM) on the soil bulk dielectric constant. To this end, we presented a comparative performance analysis of nine advanced soil dielectric models over organic soil in Alaska, four of which incorporate SOM. In the framework of the SMAP single-channel algorithm at vertical polarization (SCA-V), SM retrievals from different dielectric models were derived using an iterative optimization scheme. The skills of the different dielectric models over organic soils were reflected by the performance of their respective SM retrievals, which was measured by four conventional statistical metrics, calculated by comparing satellite-based SM time series with in-situ benchmarks. Overall, SM retrievals of organic-soil-based dielectric models tended to overestimate, while those from mineral-soil-based models displayed dry biases. All the models showed comparable values of unbiased root-mean-square error (ubRMSE) and Pearson Correlation (R), but Mironov 2019 exhibited a slight but consistent edge over the others. An integrated consideration of the model inputs, the physical basis, and the validated accuracy indicated that the separate use of Mironov 2009 and Mironov 2019 in the SMAP SCA-V for mineral soils (SOM <15%) and organic soils (SOM 15%) would be the preferred option. Full article
(This article belongs to the Special Issue Microwave Remote Sensing of Soil Moisture)
Show Figures

Figure 1

21 pages, 11946 KiB  
Article
Identification of Sea Surface Temperature and Sea Surface Salinity Fronts along the California Coast: Application Using Saildrone and Satellite Derived Products
by Jorge Vazquez-Cuervo, Marisol García-Reyes and José Gómez-Valdés
Remote Sens. 2023, 15(2), 484; https://doi.org/10.3390/rs15020484 - 13 Jan 2023
Cited by 12 | Viewed by 2717
Abstract
Coastal upwelling regions are one of the most dynamic areas of the world’s oceans. The California and Baja California Coasts are impacted by both coastal upwelling and the California Current, leading to frontal activity that is captured by gradients in both Sea Surface [...] Read more.
Coastal upwelling regions are one of the most dynamic areas of the world’s oceans. The California and Baja California Coasts are impacted by both coastal upwelling and the California Current, leading to frontal activity that is captured by gradients in both Sea Surface Temperature (SST) and Sea Surface Salinity (SSS). Satellite data are a great source of spatial data to study fronts. However, biases near coastal areas and coarse resolutions can impair its usefulness in upwelling areas. In this work gradients in SST from NASA Multi-Scale Ultra-High Resolution (MUR) and in two SSS products derived from the Soil Moisture Active Passive (SMAP) NASA mission are compared directly with gradients derived from the Saildrone uncrewed vehicles to validate the gradients as well as to assess their ability to detect known frontal features. The three remotely sensed data sets (MURSST/JPL, SMAP SSS/RSS, SMAP SSS) were co-located with the Saildrone data prior to the calculation of the gradients. Wavelet analysis is used to determine how well the satellite derived SST and SSS products are reproducing the Saildrone derived gradients. Overall results indicate the remote sensing products are reproducing features of known areas of coastal upwelling. Differences between the SST and SSS gradients are mainly associated with the limitations of the microwave derived SSS coverage near land and its reduced spatial resolution. The results are promising for using remote sensing data sets to monitor frontal structure along the California Coast and the application to long term changes in coastal upwelling and dynamics. Full article
Show Figures

Figure 1

25 pages, 6208 KiB  
Article
Exploring the Spatial Autocorrelation in Soil Moisture Networks: Analysis of the Bias from Upscaling the Texas Soil Observation Network (TxSON)
by Yaping Xu, Cuiling Liu, Lei Wang and Lei Zou
Water 2023, 15(1), 87; https://doi.org/10.3390/w15010087 - 27 Dec 2022
Cited by 5 | Viewed by 2748
Abstract
Microwave remote sensing such as soil moisture active passive (SMAP) can provide soil moisture data for agricultural and hydrological studies. However, the scales between station-measured and satellite-measured products are quite different, as stations measure on a point scale while satellites have a much [...] Read more.
Microwave remote sensing such as soil moisture active passive (SMAP) can provide soil moisture data for agricultural and hydrological studies. However, the scales between station-measured and satellite-measured products are quite different, as stations measure on a point scale while satellites have a much larger footprint (e.g., 9 km). Consequently, the validation for soil moisture products, especially inter-comparison between these two types of observations, is quite a challenge. Spatial autocorrelation among the stations could be a contribution of bias, which impacts the dense soil moisture networks when compared with satellite soil moisture products. To examine the effects of spatial autocorrelation to soil moisture upscaling models, this study proposes a spatial analysis approach for soil moisture ground observation upscaling and Thiessen polygon-based block kriging (TBP kriging) and compares the results with three other methods typically used in the current literature: arithmetic average, Thiessen polygon, and Gaussian-weighted average. Using the Texas Soil Observation Network (TxSON) as ground observation, this methodology detects spatial autocorrelation in the distribution of the stations that exist in dense soil moisture networks and improved the spatial modeling accuracy when carrying out upscaling tasks. The study concluded that through TBP kriging the minimum root-mean-square deviation (RMSD) is given where spatial autocorrelation takes place in the soil moisture stations. Through TBP kriging, the station-measured and satellite-measured soil moisture products are more comparable. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

20 pages, 6243 KiB  
Article
Estimating All-Weather Surface Longwave Radiation from Satellite Passive Microwave Data
by Zhonghu Jiao
Remote Sens. 2022, 14(23), 5960; https://doi.org/10.3390/rs14235960 - 25 Nov 2022
Cited by 2 | Viewed by 2561
Abstract
Surface longwave radiation (SLR) is an essential geophysical parameter of Earth’s energy balance, and its estimation based on thermal infrared (TIR) remote sensing data has been extensively studied. However, it is difficult to estimate cloudy SLR from TIR measurements. Satellite passive microwave (PMW) [...] Read more.
Surface longwave radiation (SLR) is an essential geophysical parameter of Earth’s energy balance, and its estimation based on thermal infrared (TIR) remote sensing data has been extensively studied. However, it is difficult to estimate cloudy SLR from TIR measurements. Satellite passive microwave (PMW) radiometers measure microwave radiation under the clouds and therefore can estimate SLR in all weather conditions. We constructed SLR retrieval models using brightness temperature (BT) data from an Advanced Microwave Scanning Radiometer 2 (AMSR2) based on a neural network (NN) algorithm. SLR from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) product was used as the reference. NN-based models were able to reproduce well the spatial variability of SLR from ERA5 at the global scale. Validations indicate a reasonably good performance was found for land sites, with a bias of 1.32 W/m2, root mean squared error (RMSE) of 35.37 W/m2, and coefficient of determination (R2) of 0.89 for AMSR2 surface upward longwave radiation (SULR) data, and a bias of −2.26 W/m2, RMSE of 32.94 W/m2, and R2 of 0.82 for AMSR2 surface downward longwave radiation (SDLR) data. AMSR2 SULR and SDLR retrieval accuracies were higher for oceanic sites, with biases of −2.98 and −4.04 W/m2, RMSEs of 6.50 and 13.42 W/m2, and R2 values of 0.83 and 0.66, respectively. This study provides a solid foundation for the development of a PMW SLR retrieval model applicable at the global scale to generate long-term continuous SLR products using multi-year satellite PMW data and for future research with a higher spatiotemporal resolution. Full article
Show Figures

Figure 1

24 pages, 5463 KiB  
Article
Soil Moisture Prediction from Remote Sensing Images Coupled with Climate, Soil Texture and Topography via Deep Learning
by Mehmet Furkan Celik, Mustafa Serkan Isik, Onur Yuzugullu, Noura Fajraoui and Esra Erten
Remote Sens. 2022, 14(21), 5584; https://doi.org/10.3390/rs14215584 - 5 Nov 2022
Cited by 58 | Viewed by 8915
Abstract
Soil moisture (SM) is an important biophysical parameter by which to evaluate water resource potential, especially for agricultural activities under the pressure of global warming. The recent advancements in different types of satellite imagery coupled with deep learning-based frameworks have opened the door [...] Read more.
Soil moisture (SM) is an important biophysical parameter by which to evaluate water resource potential, especially for agricultural activities under the pressure of global warming. The recent advancements in different types of satellite imagery coupled with deep learning-based frameworks have opened the door for large-scale SM estimation. In this research, high spatial resolution Sentinel-1 (S1) backscatter data and high temporal resolution soil moisture active passive (SMAP) SM data were combined to create short-term SM predictions that can accommodate agricultural activities in the field scale. We created a deep learning model to forecast the daily SM values by using time series of climate and radar satellite data along with the soil type and topographic data. The model was trained with static and dynamic features that influence SM retrieval. Although the topography and soil texture data were taken as stationary, SMAP SM data and Sentinel-1 (S1) backscatter coefficients, including their ratios, and climate data were fed to the model as dynamic features. As a target data to train the model, we used in situ measurements acquired from the International Soil Moisture Network (ISMN). We employed a deep learning framework based on long short-term memory (LSTM) architecture with two hidden layers that have 32 unit sizes and a fully connected layer. The accuracy of the optimized LSTM model was found to be effective for SM prediction with the coefficient of determination (R2) of 0.87, root mean square error (RMSE) of 0.046, unbiased root mean square error (ubRMSE) of 0.045, and mean absolute error (MAE) of 0.033. The model’s performance was also evaluated concerning above-ground biomass, land cover classes, soil texture variations, and climate classes. The model prediction ability was lower in areas with high normalized difference vegetation index (NDVI) values. Moreover, the model can better predict in dry climate areas, such as arid and semi-arid climates, where precipitation is relatively low. The daily prediction of SM values based on microwave remote sensing data and geophysical features was successfully achieved by using an LSTM framework to assist various studies, such as hydrology and agriculture. Full article
(This article belongs to the Special Issue Remote Sensing for Agricultural Water Management (RSAWM))
Show Figures

Graphical abstract

Back to TopTop