Estimation of 1 km Dawn–Dusk All-Sky Land Surface Temperature Using a Random Forest-Based Reanalysis and Thermal Infrared Remote Sensing Data Merging (RFRTM) Method
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Reanalysis Data
2.2.3. Atmospheric Profile Data
2.2.4. Ground Measurements
3. Methods
3.1. Retrieval of Dawn–Dusk 1 km TIR LST
- (1)
- Estimation of MERSI-LL BT from the original MERSI-LL L1 data
- (2)
- Estimation of the land surface emissivity (LSE) of MERSI-LL
- (3)
- Estimation of the water vapor content (WVC)
- (4)
- Simulation of observed MERSI BT
- (5)
- Estimation of MERSI-LL LST
- (1)
- In [58], global atmospheric profile data were used, while in this study, only tropical and mid-latitude area profiles were used.
- (2)
- (3)
- In [58], when simulating BT using MOTRAN, the LST was divided into five sub-ranges: Ts ≤ 280 K, [275 K, 295 K], [290 K, 310 K], [305 K, 325 K], and Ts ≥ 320 K. The range of mean LSE of the two MERSI TIR bands was divided into two sub-ranges: [0.90, 0.96] and [0.94, 1.0]. In this study, the LST range was determined from statistics of MERSI-LL 1 km LST in 2023 over the study area (the data were from Fengyun Satellite Data Center (http://satellite.nsmc.org.cn/, accessed on 1 November 2024). The range of mean LSE of the two MERSI TIR bands was determined from the statistics of 1 km surface emissivity in the FY-3E MERSI-LL L1 product in 2023 over the study area. As a consequence, the divided LST sub-ranges in this study were as follows: Ts ≤ 260 K, [260 K, 280 K], [275 K, 295 K], [290 K, 310 K], [305 K, 325 K], and Ts ≥ 325 K. The range of mean LSE of the two MERSI TIR bands was divided into the following sub-ranges: [0.72, 0.80], [0.78, 0.86], [0.84, 0.92], and [0.90, 1.0].
3.2. Estimation of 1 km All-Sky LST Merging TIR LST and Reanalysis Data
3.2.1. Basic Theory
3.2.2. Selection of LST Descriptors
3.3. Implementation of the Method
- (1)
- Temporally interpolate 16-day 1 km MODIS NDVI to daily resolution as follows:
- (2)
- For a single 1 km MERSI-LL pixel M, select the spatially nearest GLDAS grid as its spatially matched GLDAS grid. Then, temporally interpolate the GLDAS data to the observation time of MERSI-LL using the cubic spline function as follows [43,44]:
- (3)
- Fill the missing 1 km albedo caused by cloud coverage with the statistics-based temporal filter [80].
- (1)
- For a single 1 km MERSI-LL pixel, train the RF regression mapping between the MERSI-LL LST and the LST descriptors from GLDAS data over the training period using Equation (3).
- (2)
- Estimate the systematic error between the initial all-sky LST and the MERSI-LL LST via Equation (5).
- (1)
- Estimate the initial all-sky 1 km LST (i.e., s-RFT-P) using Equation (4) over the target period.
- (2)
- Estimate the final all-sky 1 km LST using Equation (6) over the target period.
- (3)
- Repeat steps (1)–(4) pixel by pixel until all 1 km pixels are processed.
3.4. Evaluation of the RFRTM LST
4. Results and Discussion
4.1. Retrieved Dawn–Dusk 1 km TIR LST
4.2. Intercomparison with Satellite LST
4.2.1. Intercomparison of Retrieved TIR LST and Official TIR LST
4.2.2. Intercomparison of RFRTM LST and Original TIR LST
4.2.3. Intercomparison of RFRTM LST and TIR–PMW Merged All-Sky LST
4.3. Validation of RFRTM LST Against Ground Measurements
- (1)
- Tibetan Plateau
- (2)
- Heihe River Basin
4.4. Performance over the PMW Swath Gap-Covered Area
4.5. Variation in Method Performance with Main Land Covers and Models
4.5.1. Main Land Covers
4.5.2. Models
4.6. Limitations and Implications
4.6.1. Limitations
4.6.2. Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hulley, G.C.; Ghent, D.; Göttsche, F.M.; Guillevic, P.C.; Mildrexler, D.J.; Coll, C. 3—Land Surface Temperature. In Taking the Temperature of the Earth; Hulley, G.C., Ghent, D.B.T.-T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 57–127. ISBN 978-0-12-814458-9. [Google Scholar]
- Li, Z.-L.; Wu, H.; Duan, S.-B.; Zhao, W.; Ren, H.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J.; et al. Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Rev. Geophys. 2023, 61, e2022RG000777. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Cammalleri, C.; Vogt, J. On the Role of Land Surface Temperature as Proxy of Soil Moisture Status for Drought Monitoring in Europe. Remote Sens. 2015, 7, 16849–16864. [Google Scholar] [CrossRef]
- Hu, X.; Ren, H.; Tansey, K.; Zheng, Y.; Ghent, D.; Liu, X.; Yan, L. Agricultural Drought Monitoring Using European Space Agency Sentinel 3A Land Surface Temperature and Normalized Difference Vegetation Index Imageries. Agric. For. Meteorol. 2019, 279, 107707. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, H.; Pan, L.; Song, H.; Niu, W.; Wang, R.; Li, R.; Bian, X.; Guo, Y.; Qin, Y. Drought Monitoring over Yellow River Basin from 2003–2019 Using Reconstructed MODIS Land Surface Temperature in Google Earth Engine. Remote Sens. 2021, 13, 3748. [Google Scholar] [CrossRef]
- Hu, L.; Brunsell, N.A. The Impact of Temporal Aggregation of Land Surface Temperature Data for Surface Urban Heat Island (SUHI) Monitoring. Remote Sens. Environ. 2013, 134, 162–174. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H. V Characterizing the Relationship between Land Use Land Cover Change and Land Surface Temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of Landscape Composition and Pattern on Land Surface Temperature: An Urban Heat Island Study in the Megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Liao, Y.; Shen, X.; Zhou, J.; Ma, J.; Zhang, X.; Tang, W.; Chen, Y.; Ding, L.; Wang, Z. Surface Urban Heat Island Detected by All-Weather Satellite Land Surface Temperature. Sci. Total Environ. 2022, 811, 151405. [Google Scholar] [CrossRef]
- Case, J.L.; LaFontaine, F.J.; Bell, J.R.; Jedlovec, G.J.; Kumar, S.V.; Peters-Lidard, C.D. A Real-Time MODIS Vegetation Product for Land Surface and Numerical Weather Prediction Models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1772–1786. [Google Scholar] [CrossRef]
- de Rosnay, P.; Balsamo, G.; Albergel, C.; Muñoz-Sabater, J.; Isaksen, L. Initialisation of Land Surface Variables for Numerical Weather Prediction. Surv. Geophys. 2014, 35, 607–621. [Google Scholar] [CrossRef]
- Candy, B.; Saunders, R.W.; Ghent, D.; Bulgin, C.E. The Impact of Satellite-Derived Land Surface Temperatures on Numerical Weather Prediction Analyses and Forecasts. J. Geophys. Res. Atmos. 2017, 122, 9783–9802. [Google Scholar] [CrossRef]
- Fang, L.; Zhan, X.; Hain, C.R.; Yin, J.; Liu, J.; Schull, M.A. An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches. Remote Sens. 2018, 10, 625. [Google Scholar] [CrossRef] [PubMed]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of Green Space Spatial Pattern on Land Surface Temperature: Implications for Sustainable Urban Planning and Climate Change Adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef]
- Hereher, M.E. Time Series Trends of Land Surface Temperatures in Egypt: A Signal for Global Warming. Environ. Earth Sci. 2016, 75, 1218. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Evaluation of the Climate Change Impact on Urban Heat Island Based on Land Surface Temperature and Geospatial Indicators. Int. J. Environ. Res. 2021, 15, 819–835. [Google Scholar] [CrossRef]
- Dickinson, R.E. Land Surface Processes and Climate—Surface Albedos and Energy Balance. In Theory of Climate; Saltzman, B., Ed.; Elsevier: Amsterdam, The Netherlands, 1983; Volume 25, pp. 305–353. ISBN 0065-2687. [Google Scholar]
- Friedl, M.A. Forward and Inverse Modeling of Land Surface Energy Balance Using Surface Temperature Measurements. Remote Sens. Environ. 2002, 79, 344–354. [Google Scholar] [CrossRef]
- Hain, C.R.; Anderson, M.C. Estimating Morning Change in Land Surface Temperature from MODIS Day/Night Observations: Applications for Surface Energy Balance Modeling. Geophys. Res. Lett. 2017, 44, 9723–9733. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The Impact of Global Land-Cover Change on the Terrestrial Water Cycle. Nat. Clim. Chang. 2013, 3, 385–390. [Google Scholar] [CrossRef]
- CG, M.; PG, Z.; AF, C.; Sánchez, E. Hydrological Cycle, Temperature, and Land Surface atmosphere Interaction in the La Plata Basin during Summer: Response to Climate Change. Clim. Res. 2016, 68, 231–241. [Google Scholar]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote Sensing of the Terrestrial Carbon Cycle: A Review of Advances over 50 Years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Meng, X.; Liu, W.; Cheng, J.; Guo, H.; Yao, B. Estimating Hourly Land Surface Temperature From FY-4A AGRI Using an Explicitly Emissivity-Dependent Split-Window Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5474–5487. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Romaguera, M. Land Surface Temperature Retrieval from MSG1-SEVIRI Data. Remote Sens. Environ. 2004, 92, 247–254. [Google Scholar] [CrossRef]
- Wan, Z. New Refinements and Validation of the MODIS Land-Surface Temperature/Emissivity Products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A. A Single-Channel Algorithm for Land-Surface Temperature Retrieval from ASTER Data. IEEE Geosci. Remote Sens. Lett. 2010, 7, 176–179. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Olesen, F.-S.; Bork-Unkelbach, A. Validation of Land Surface Temperature Derived from MSG/SEVIRI with in Situ Measurements at Gobabeb, Namibia. Int. J. Remote Sens. 2013, 34, 3069–3083. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, H.; Li, Z.; Qian, Y. Retrieval and Validation of the Land Surface Temperature from FY-3D MERSI-LL-II. Natl. Remote Sens. Bull. 2021, 25, 1792–1807. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P. Modeling Annual Parameters of Clear-Sky Land Surface Temperature Variations and Evaluating the Impact of Cloud Cover Using Time Series of Landsat TIR Data. Remote Sens. Environ. 2014, 140, 267–278. [Google Scholar] [CrossRef]
- Holmes, T.R.H.; Hain, C.R.; Anderson, M.C.; Crow, W.T. Cloud Tolerance of Remote-Sensing Technologies to Measure Land Surface Temperature. Hydrol. Earth Syst. Sci. 2016, 20, 3263–3275. [Google Scholar] [CrossRef]
- Kou, X.; Jiang, L.; Bo, Y.; Yan, S.; Chai, L. Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method. Remote Sens. 2016, 8, 105. [Google Scholar] [CrossRef]
- Duan, S.B.; Li, Z.L.; Leng, P. A Framework for the Retrieval of All-Weather Land Surface Temperature at a High Spatial Resolution from Polar-Orbiting Thermal Infrared and Passive Microwave Data. Remote Sens. Environ. 2017, 195, 107–117. [Google Scholar] [CrossRef]
- Xu, S.; Cheng, J.; Zhang, Q. Reconstructing All-Weather Land Surface Temperature Using the Bayesian Maximum Entropy Method over the Tibetan Plateau and Heihe River Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3307–3316. [Google Scholar] [CrossRef]
- Xu, S.; Cheng, J. A New Land Surface Temperature Fusion Strategy Based on Cumulative Distribution Function Matching and Multiresolution Kalman Filtering. Remote Sens. Environ. 2021, 254, 112256. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Gottsche, F.-M.; Zhan, W.; Liu, S.; Cao, R. A Method Based on Temporal Component Decomposition for Estimating 1-Km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4670–4691. [Google Scholar] [CrossRef]
- Shwetha, H.R.; Kumar, D.N. Prediction of High Spatio-Temporal Resolution Land Surface Temperature under Cloudy Conditions Using Microwave Vegetation Index and ANN. ISPRS J. Photogramm. Remote Sens. 2016, 117, 40–55. [Google Scholar] [CrossRef]
- Sun, D.; Li, Y.; Zhan, X.; Houser, P.; Yang, C.; Chiu, L.; Yang, R. Land Surface Temperature Derivation under All Sky Conditions through Integrating AMSR-E/AMSR-2 and MODIS/GOES Observations. Remote Sens. 2019, 11, 1704. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Liang, S.; Chai, L.; Wang, D.; Liu, J. Estimation of 1-Km All-Weather Remotely Sensed Land Surface Temperature Based on Reconstructed Spatial-Seamless Satellite Passive Microwave Brightness Temperature and Thermal Infrared Data. ISPRS J. Photogramm. Remote Sens. 2020, 167, 321–344. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Cho, D.; Yokoya, N.; Xia, J.; Bechtel, B. Estimation of All-Weather 1 Km MODIS Land Surface Temperature for Humid Summer Days. Remote Sens. 2020, 12, 1398. [Google Scholar] [CrossRef]
- Xu, S.; Cheng, J.; Zhang, Q. A Random Forest-Based Data Fusion Method for Obtaining All-Weather Land Surface Temperature with High Spatial Resolution. Remote Sens. 2021, 13, 2211. [Google Scholar] [CrossRef]
- Jia, A.; Liang, S.; Wang, D.; Mallick, K.; Zhou, S.; Hu, T.; Xu, S. Advances in Methodology and Generation of All-Weather Land Surface Temperature Products from Polar-Orbiting and Geostationary Satellites: A Comprehensive Review. IEEE Geosci. Remote Sens. Mag. 2024, 12, 218–260. [Google Scholar] [CrossRef]
- Long, D.; Yan, L.; Bai, L.; Zhang, C.; Li, X.; Lei, H.; Yang, H.; Tian, F.; Zeng, C.; Meng, X.; et al. Generation of MODIS-like Land Surface Temperatures under All-Weather Conditions Based on a Data Fusion Approach. Remote Sens. Environ. 2020, 246, 111863. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A Practical Reanalysis Data and Thermal Infrared Remote Sensing Data Merging (RTM) Method for Reconstruction of a 1-Km All-Weather Land Surface Temperature. Remote Sens. Environ. 2021, 260, 112437. [Google Scholar] [CrossRef]
- Cho, D.; Bae, D.; Yoo, C.; Im, J.; Lee, Y.; Lee, S. All-Sky 1 Km MODIS Land Surface Temperature Reconstruction Considering Cloud Effects Based on Machine Learning. Remote Sens. 2022, 14, 1815. [Google Scholar] [CrossRef]
- Dong, S.; Cheng, J.; Shi, J.; Shi, C.; Sun, S.; Liu, W. A Data Fusion Method for Generating Hourly Seamless Land Surface Temperature from Himawari-8 AHI Data. Remote Sens. 2022, 14, 5170. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J.; Song, H.; Fu, D.; Wong, K. Generating High Spatiotemporal Resolution Land Surface Temperature for Urban Heat Island Monitoring. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1011–1015. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Weng, Q. Monitoring Diurnal Dynamics of Surface Urban Heat Island for Urban Agglomerations Using ECOSTRESS Land Surface Temperature Observations. Sustain. Cities Soc. 2023, 98, 104833. [Google Scholar] [CrossRef]
- Maffei, C.; Lindenbergh, R.; Menenti, M. Combining Multi-Spectral and Thermal Remote Sensing to Predict Forest Fire Characteristics. ISPRS J. Photogramm. Remote Sens. 2021, 181, 400–412. [Google Scholar] [CrossRef]
- Zhang, T.; Armstrong, R.L.; Smith, J. Investigation of the Near-Surface Soil Freeze-Thaw Cycle in the Contiguous United States: Algorithm Development and Validation. J. Geophys. Res. Atmos. 2003, 108, 22. [Google Scholar] [CrossRef]
- Edwards, J.M.; McGregor, J.R.; Bush, M.R.; Bornemann, F.J. Assessment of Numerical Weather Forecasts against Observations from Cardington: Seasonal Diurnal Cycles of Screen-Level and Surface Temperatures and Surface Fluxes. Q. J. R. Meteorol. Soc. 2011, 137, 656–672. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Olesen, F.-S. Modelling the Effect of Optical Thickness on Diurnal Cycles of Land Surface Temperature. Remote Sens. Environ. 2009, 113, 2306–2316. [Google Scholar] [CrossRef]
- Pérez-Planells, L.; Göttsche, F.-M. Combined Modelling of Annual and Diurnal Land Surface Temperature Cycles. Remote Sens. Environ. 2023, 299, 113892. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global Land-Surface Evaporation Estimated from Satellite-Based Observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Bateni, S.M.; Entekhabi, D.; Castelli, F. Mapping Evaporation and Estimation of Surface Control of Evaporation Using Remotely Sensed Land Surface Temperature from a Constellation of Satellites. Water Resour. Res. 2013, 49, 950–968. [Google Scholar] [CrossRef]
- Sun, L.; Sun, R.; Li, X.; Liang, S.; Zhang, R. Monitoring Surface Soil Moisture Status Based on Remotely Sensed Surface Temperature and Vegetation Index Information. Agric. For. Meteorol. 2012, 166–167, 175–187. [Google Scholar] [CrossRef]
- Zhan, W.; Zhou, J.; Ju, W.; Li, M.; Sandholt, I.; Voogt, J.; Yu, C. Remotely Sensed Soil Temperatures beneath Snow-Free Skin-Surface Using Thermal Observations from Tandem Polar-Orbiting Satellites: An Analytical Three-Time-Scale Model. Remote Sens. Environ. 2014, 143, 1–14. [Google Scholar] [CrossRef]
- Cheng, Y.; Ni, L.; Li, X.; Feng, R.; Wu, H. Retrieval and Validation of the Dawn-Dusk Land Surface Temperature from FY-3E MERSI-LL-LL. Int. J. Remote Sens. 2023, 45, 7452–7469. [Google Scholar] [CrossRef]
- Liu, Z.; Ichii, K.; Yamamoto, Y.; Wang, R.; Kobayashi, H.; Ueyama, M. Construction and Validation of a Dawn and Dusk Land Surface Temperature Using MERSI-LL-LL FY-3E. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8875–8887. [Google Scholar] [CrossRef]
- Li, Y.; Lin, X.; Xu, R.; Hu, Y.; Zhang, Y.; Gao, H.; Yan, L.; Yuan, Y. Radiometric Calibration Analysis for Thermal Infrared Data From MERSI-LL-LL Onboard the Dust-Dawn Orbiting Satellite FY-3E. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1813–1823. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent Climate Changes over the Tibetan Plateau and Their Impacts on Energy and Water Cycle: A Review. Glob. Planet. Change 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Li, L.; Yang, S.; Wang, Z.; Zhu, X.; Tang, H. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau. Arctic Antarct. Alp. Res. 2010, 42, 449–457. [Google Scholar] [CrossRef]
- Kuang, X.; Jiao, J.J. Review on Climate Change on the Tibetan Plateau during the Last Half Century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- You, Q.; Chen, D.; Wu, F.; Pepin, N.; Cai, Z.; Ahrens, B.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Elevation Dependent Warming over the Tibetan Plateau: Patterns, Mechanisms and Perspectives. Earth-Science Rev. 2020, 210, 103349. [Google Scholar] [CrossRef]
- Meng, Y.; Duan, K.; Shi, P.; Shang, W.; Li, S.; Cheng, Y.; Xing, L.; Chen, R.; He, J. Sensitive Temperature Changes on the Tibetan Plateau in Response to Global Warming. Atmos. Res. 2023, 294, 106948. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Wang, W.; Cui, W.; Wang, X.; Chen, X. Evaluation of GLDAS-1 and GLDAS-2 Forcing Data and Noah Model Simulations over China at the Monthly Scale. J. Hydrometeorol. 2016, 17, 2815–2833. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. 2018, 17, 180072. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, T.; Zhong, L.; Wang, B.; Xu, X.; Hu, Z.; Ma, W.; Sun, F.; Han, C.; Li, M.; et al. Comprehensive Study of Energy and Water Exchange over the Tibetan Plateau: A Review and Perspective: From GAME/Tibet and CAMP/Tibet to TORP, TPEORP, and TPEITORP. Earth-Science Rev. 2023, 237, 104312. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Olesen, F.-S.; Trigo, I.F.; Bork-Unkelbach, A.; Martin, M.A. Long Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa. Remote Sens. 2016, 8, 410. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liang, S.; Liang, S.; Zhang, X.; Wang, K.; Zhang, X.; Wild, M. Review on Estimation of Land Surface Radiation and Energy Budgets From Ground Measurement, Remote Sensing and Model Simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Zhang, T. Influence of the Seasonal Snow Cover on the Ground Thermal Regime: An Overview. Rev. Geophys. 2005, 43. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Gillespie, A.; Sabol, D.; Gustafson, W.T. Improved Land Surface Emissivities over Agricultural Areas Using ASTER NDVI. Remote Sens. Environ. 2006, 103, 474–487. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, C.K.; Shashtri, S.; Rahman, A.; Mukherjee, S. Land Surface Emissivity Retrieval Based on Moisture Index from LANDSAT TM Satellite Data over Heterogeneous Surfaces of Delhi City. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 348–358. [Google Scholar] [CrossRef]
- Li, X.; Zhu, W.; Xie, Z.; Zhan, P.; Huang, X.; Sun, L.; Duan, Z. Assessing the Effects of Time Interpolation of NDVI Composites on Phenology Trend Estimation. Remote Sens. 2021, 13, 5018. [Google Scholar] [CrossRef]
- Zhou, G.; He, Q.; Ren, H.; Erhua, L.; Yuhe, J. A Method of Converting MODIS NDVI to MERSI-LL NDVI. CN Patent 113989661A, 28 January 2022. [Google Scholar]
- Liu, N.F.; Liu, Q.; Wang, L.Z.; Liang, S.L.; Wen, J.G.; Qu, Y.; Liu, S.H. A Statistics-Based Temporal Filter Algorithm to Map Spatiotemporally Continuous Shortwave Albedo from MODIS Data. Hydrol. Earth Syst. Sci. 2013, 17, 2121–2129. [Google Scholar] [CrossRef]
- Gao, L.; Zhan, W.; Huang, F.; Zhu, X.; Zhou, J.; Quan, J.; Du, P.; Li, M. Disaggregation of Remotely Sensed Land Surface Temperature: A Simple yet Flexible Index (SIFI) to Assess Method Performances. Remote Sens. Environ. 2017, 200, 206–219. [Google Scholar] [CrossRef]
- Galantowicz, J.F.; Moncet, J.-L.; Liang, P.; Lipton, A.E.; Uymin, G.; Prigent, C.; Grassotti, C. Subsurface Emission Effects in AMSR-E Measurements: Implications for Land Surface Microwave Emissivity Retrieval. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Zhan, W.; Göttsche, F.-M.; Liu, S.; Olesen, F.-S.; Hu, W.; Dai, F. A Thermal Sampling Depth Correction Method for Land Surface Temperature Estimation From Satellite Passive Microwave Observation Over Barren Land. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4743–4756. [Google Scholar] [CrossRef]
- Zhou, F.-C.; Song, X.; Leng, P.; Li, Z.-L. An Effective Emission Depth Model for Passive Microwave Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1752–1760. [Google Scholar] [CrossRef]
- Hu, Z.; Yu, G.; Fu, Y.; Sun, X.; Li, Y.; Shi, P.; Wang, Y.; Zheng, Z. Effects of Vegetation Control on Ecosystem Water Use Efficiency within and among Four Grassland Ecosystems in China. Glob. Chang. Biol. 2008, 14, 1609–1619. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature Retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
Site | Location (°E, °N) | Altitude (m) | Land Cover | Instrument and Height (m) | Diameter of FOV (m) | Data Interval (min) |
---|---|---|---|---|---|---|
D66 | 93.78, 35.32 | 4585 | Alpine grassland | CNR1, 2.43 | 18.14 | 10 |
D105 | 91.94, 33.06 | 5039 | Alpine grassland | CNR1, 1.34 | 10.00 | 10 |
GZ | 84.06, 32.31 | 4394 | Barren land | CNR1, 1.49 | 11.12 | 10 |
MQ | 102.14, 33.89 | 3433 | Alpine plain grass | CNR1, 1.50 | 11.20 | 10 |
PRD | 86.81, 27.96 | 5035 | Alpine plain grass | CNR1, 2.00 | 14.93 | 10 |
AR | 100.41, 37.98 | 3517 | Alpine grassland | CNR4, 6.00 | 44.78 | 10 |
DM | 100.37, 38.86 | 1536 | Cropland | CNR4, 12.00 | 89.57 | 10 |
DSL | 98.94, 38.84 | 3788 | Swamp meadow | CNR4, 6.00 | 44.78 | 10 |
HZZ | 100.32, 38.77 | 1732 | Desert | CNR4, 2.50 | 18.66 | 10 |
Basic Descriptors | Ancillary Descriptors |
---|---|
Net longwave radiation; longwave downward flux; soil moisture profile (0–10 cm depth); canopy surface water; snow depth water equivalent; NDVI | Soil temperature profile (surface, 0–10 cm depth); wind speed; air temperature; albedo |
Condition | MERSI-LL LST | RFTRTM LST (MERSI-LL + GLDAS) |
---|---|---|
Dawn | 52.86% | 100% |
Dusk | 56.94% | 100% |
Case | Condition | N | RFRTM LST | Zhang LST | MERSI-LL LST | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MBE (K) | RMSE (K) | R2 | MBE (K) | RMSE (K) | R2 | MBE (K) | RMSE (K) | R2 | |||
D66 | All conditions | 295 | −0.83 | 3.15 | 0.93 | −0.85 | 3.12 | 0.92 | |||
Clear sky | 148 | −0.76 | 3.22 | 0.94 | −0.92 | 3.15 | 0.91 | −0.69 | 3.20 | 0.94 | |
Unclear sky | 147 | −0.91 | 3.07 | 0.93 | −0.77 | 3.09 | 0.92 | ||||
D105 | All conditions | 223 | −1.21 | 3.71 | 0.89 | −1.37 | 4.22 | 0.86 | |||
Clear sky | 82 | −0.91 | 3.68 | 0.91 | −1.06 | 4.28 | 0.88 | −0.81 | 3.57 | 0.90 | |
Unclear sky | 141 | −1.38 | 3.72 | 0.88 | −1.55 | 4.19 | 0.85 | ||||
GZ | All conditions | 224 | −0.15 | 2.83 | 0.92 | −1.20 | 3.53 | 0.90 | |||
Clear sky | 118 | −0.18 | 2.95 | 0.93 | −1.28 | 3.52 | 0.91 | −0.13 | 2.81 | 0.93 | |
Unclear sky | 106 | −0.11 | 2.76 | 0.90 | −1.12 | 3.64 | 0.89 | ||||
MQ | All conditions | 242 | −0.57 | 3.09 | 0.88 | −0.67 | 3.16 | 0.89 | |||
Clear sky | 83 | −0.69 | 2.99 | 0.89 | −0.74 | 3.12 | 0.91 | −0.62 | 2.96 | 0.90 | |
Unclear sky | 159 | −0.50 | 3.12 | 0.88 | −0.63 | 3.19 | 0.88 | ||||
PRD | All conditions | 184 | −0.05 | 2.16 | 0.93 | −0.14 | 2.24 | 0.93 | |||
Clear sky | 105 | −0.02 | 2.21 | 0.91 | −0.18 | 2.26 | 0.92 | −0.02 | 2.24 | 0.93 | |
Unclear sky | 79 | −0.08 | 2.02 | 0.96 | −0.09 | 2.20 | 0.94 |
Case | Condition | N | RFRTM LST | Zhang LST | MERSI-LL LST | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MBE (K) | RMSE (K) | R2 | MBE (K) | RMSE (K) | R2 | MBE (K) | RMSE (K) | R2 | |||
D66 | All conditions | 278 | −0.44 | 2.88 | 0.91 | −0.62 | 2.92 | 0.91 | |||
Clear sky | 132 | −0.36 | 2.92 | 0.90 | −0.67 | 2.95 | 0.91 | −0.31 | 2.86 | 0.92 | |
Unclear sky | 146 | −0.51 | 2.87 | 0.91 | −0.57 | 2.89 | 0.91 | ||||
D105 | All conditions | 243 | −0.59 | 3.48 | 0.92 | −1.27 | 4.13 | 0.86 | |||
Clear sky | 109 | −0.61 | 3.58 | 0.91 | −1.01 | 4.02 | 0.87 | −0.54 | 3.42 | 0.91 | |
Unclear sky | 134 | −0.58 | 3.42 | 0.94 | −1.05 | 4.19 | 0.86 | ||||
GZ | All conditions | 251 | −0.12 | 2.25 | 0.92 | −0.88 | 3.28 | 0.92 | |||
Clear sky | 123 | −0.14 | 2.23 | 0.93 | −0.94 | 3.22 | 0.92 | −0.15 | 2.31 | 0.93 | |
Unclear sky | 128 | −0.11 | 2.26 | 0.91 | −0.82 | 3.32 | 0.90 | ||||
MQ | All conditions | 233 | −0.39 | 2.85 | 0.92 | −0.55 | 3.00 | 0.89 | |||
Clear sky | 112 | −0.35 | 2.73 | 0.90 | −0.57 | 3.01 | 0.90 | −0.32 | 2.66 | 0.92 | |
Unclear sky | 121 | −0.42 | 2.92 | 0.92 | −0.53 | 2.99 | 0.89 | ||||
PRD | All conditions | 176 | 0.14 | 1.68 | 0.94 | −0.30 | 1.93 | 0.94 | |||
Clear sky | 92 | 0.12 | 1.71 | 0.93 | −0.22 | 1.96 | 0.95 | 0.12 | 1.77 | 0.94 | |
Unclear sky | 84 | 0.17 | 1.62 | 0.95 | −0.39 | 1.90 | 0.92 |
Case | Condition | Time | N | RFRTM LST | Zhang LST | MERSI-LL LST | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MBE (K) | RMSE (K) | R2 | MBE (K) | RMSE (K) | R2 | MBE (K) | RMSE (K) | R2 | ||||
AR | All conditions | Dusk | 327 | −0.18 | 2.16 | 0.95 | −0.73 | 2.56 | 0.90 | |||
Dawn | 354 | −0.12 | 2.01 | 0.94 | −0.43 | 2.32 | 0.91 | |||||
Clear sky | Dusk | 215 | −0.15 | 2.27 | 0.92 | −0.74 | 2.59 | 0.90 | −0.11 | 2.19 | 0.91 | |
Dawn | 215 | −0.17 | 1.97 | 0.93 | −0.41 | 2.42 | 0.90 | −0.12 | 1.81 | 0.93 | ||
Unclear sky | Dusk | 112 | −0.25 | 2.11 | 0.93 | −0.71 | 2.50 | 0.91 | ||||
Dawn | 139 | −0.05 | 2.04 | 0.94 | −0.45 | 2.27 | 0.91 | |||||
DM | All conditions | Dusk | 345 | −0.19 | 1.97 | 0.91 | −0.58 | 2.38 | 0.92 | |||
Dawn | 351 | 0.12 | 1.32 | 0.93 | −0.51 | 2.05 | 0.89 | |||||
Clear sky | Dusk | 192 | −0.25 | 2.05 | 0.92 | −0.56 | 2.45 | 0.90 | −0.28 | 2.02 | 0.92 | |
Dawn | 220 | 0.11 | 1.24 | 0.92 | −0.51 | 2.11 | 0.90 | 0.02 | 2.12 | 0.93 | ||
Unclear sky | Dusk | 153 | −0.12 | 1.90 | 0.89 | −0.60 | 2.31 | 0.91 | ||||
Dawn | 131 | 0.14 | 1.36 | 0.94 | −0.52 | 1.97 | 0.89 | |||||
DSL | All conditions | Dusk | 335 | −0.13 | 1.34 | 0.95 | −0.29 | 1.57 | 0.93 | |||
Dawn | 328 | 0.04 | 1.16 | 0.93 | −0.21 | 1.37 | 0.91 | |||||
Clear sky | Dusk | 169 | −0.08 | 1.45 | 0.97 | −0.33 | 1.51 | 0.92 | −0.05 | 1.35 | 0.98 | |
Dawn | 178 | −0.02 | 1.18 | 0.94 | −0.21 | 1.32 | 0.91 | −0.10 | 0.89 | 0.95 | ||
Unclear sky | Dusk | 166 | −0.18 | 1.23 | 0.92 | −0.24 | 1.63 | 0.93 | ||||
Dawn | 150 | 0.11 | 1.14 | 0.93 | −0.21 | 1.45 | 0.91 | |||||
HZZ | All conditions | Dusk | 362 | −0.17 | 2.69 | 0.90 | −1.56 | 3.92 | 0.85 | |||
Dawn | 362 | −0.03 | 2.54 | 0.91 | −1.00 | 3.33 | 0.84 | |||||
Clear sky | Dusk | 191 | −0.18 | 2.66 | 0.92 | −1.52 | 3.89 | 0.85 | −0.12 | 2.59 | 0.92 | |
Dawn | 211 | −0.09 | 2.55 | 0.91 | −0.92 | 3.25 | 0.83 | −0.11 | 2.45 | 0.92 | ||
Unclear sky | Dusk | 171 | −0.16 | 2.72 | 0.88 | −1.59 | 3.95 | 0.84 | ||||
Dawn | 151 | 0.05 | 2.53 | 0.92 | −1.12 | 3.45 | 0.84 |
Site | Time | Thermal Spatial Heterogeneity (K) | Soil Moisture (%) |
---|---|---|---|
AR | Dusk | 0.42 | 13.3 |
Dawn | 0.32 | 15.6 | |
DM | Dusk | 0.35 | 15.1 |
Dawn | 0.31 | 18.9 | |
DSL | Dusk | 0.12 | 29.1 |
Dawn | 0.13 | 31.2 | |
HZZ | Dusk | 0.64 | 9.8 |
Dawn | 0.48 | 10.7 | |
D66 | Dusk | 0.75 | 12.4 |
Dawn | 0.57 | 14.7 | |
D105 | Dusk | 0.97 | 9.2 |
Dawn | 0.71 | 11.1 | |
GZ | Dusk | 0.44 | 19.6 |
Dawn | 0.32 | 22.9 | |
MQ | Dusk | 0.62 | 16.6 |
Dawn | 0.43 | 18.2 | |
PRD | Dusk | 0.22 | 27.2 |
Dawn | 0.19 | 34.7 |
Land Cover from MCD12Q1 | Area Proportion | Static Land Cover | Possible Different Land Cover After Dynamic Change |
---|---|---|---|
Deciduous needleleaf forest | 5.24% | Dense vegetation | Sparse vegetation/barren land |
Deciduous broadleaf forest | 0.25% | ||
Mixed forest | 1.17% | ||
Closed shrubland | 0.14% | Sparse vegetation | Dense vegetation/barren land |
Open shrubland | 0.31% | ||
Woody savanna | 0.72% | ||
Savanna | 36.52% | ||
Grassland | 3.23% | ||
Cropland | 18.56% | ||
Cropland–natural vegetation | 1.02% | ||
Permanent wetland | 1.34% | ||
Barren land | 30.89% | Barren land | Dense vegetation/sparse vegetation |
Land Cover After Considering Dynamic Change | Area Proportion |
---|---|
Dense vegetation | 21.57% |
Sparse vegetation | 25.34% |
Barren land area | 52.48% |
Method | Case | R2 | Computing Time (Dawn and Dusk Conditions Together) |
---|---|---|---|
RF | Dusk | 0.95 | 1690 ms (average for each pixel) 11.73 days (for the study area in 10 parallel processing programs) |
Dawn | 0.97 | ||
CNN | Dusk | 0.95 | 2540 ms (average for each pixel) 17.62 days (for the study area in 10 parallel processing programs) |
Dawn | 0.97 | ||
SVM | Dusk | 0.93 | 1810 ms (average for each pixel) 12.55 days (for the study area in 10 parallel processing programs) |
Dawn | 0.94 |
Station | Maximum R2 Difference | Maximum MBE Difference (K) | Maximum RMSE Difference (K) |
---|---|---|---|
AR | 0.00 | 0.01 | 0.02 |
DM | 0.00 | −0.02 | 0.06 |
DSL | 0.01 | 0.05 | −0.07 |
HZZ | 0.01 | −0.04 | 0.07 |
D66 | 0.01 | 0.03 | −0.05 |
D105 | 0.00 | −0.04 | 0.06 |
GZ | 0.01 | 0.00 | 0.00 |
MQ | 0.01 | 0.03 | −0.05 |
PRD | 0.00 | −0.02 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Zhang, X.; Hu, X.; Shang, J.; Zhao, F. Estimation of 1 km Dawn–Dusk All-Sky Land Surface Temperature Using a Random Forest-Based Reanalysis and Thermal Infrared Remote Sensing Data Merging (RFRTM) Method. Sensors 2025, 25, 508. https://doi.org/10.3390/s25020508
Dong Y, Zhang X, Hu X, Shang J, Zhao F. Estimation of 1 km Dawn–Dusk All-Sky Land Surface Temperature Using a Random Forest-Based Reanalysis and Thermal Infrared Remote Sensing Data Merging (RFRTM) Method. Sensors. 2025; 25(2):508. https://doi.org/10.3390/s25020508
Chicago/Turabian StyleDong, Yaohai, Xiaodong Zhang, Xiuqing Hu, Jian Shang, and Feng Zhao. 2025. "Estimation of 1 km Dawn–Dusk All-Sky Land Surface Temperature Using a Random Forest-Based Reanalysis and Thermal Infrared Remote Sensing Data Merging (RFRTM) Method" Sensors 25, no. 2: 508. https://doi.org/10.3390/s25020508
APA StyleDong, Y., Zhang, X., Hu, X., Shang, J., & Zhao, F. (2025). Estimation of 1 km Dawn–Dusk All-Sky Land Surface Temperature Using a Random Forest-Based Reanalysis and Thermal Infrared Remote Sensing Data Merging (RFRTM) Method. Sensors, 25(2), 508. https://doi.org/10.3390/s25020508