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Abstract: Soil moisture (SM) is an important biophysical parameter by which to evaluate water
resource potential, especially for agricultural activities under the pressure of global warming. The
recent advancements in different types of satellite imagery coupled with deep learning-based frame-
works have opened the door for large-scale SM estimation. In this research, high spatial resolution
Sentinel-1 (S1) backscatter data and high temporal resolution soil moisture active passive (SMAP)
SM data were combined to create short-term SM predictions that can accommodate agricultural
activities in the field scale. We created a deep learning model to forecast the daily SM values by
using time series of climate and radar satellite data along with the soil type and topographic data.
The model was trained with static and dynamic features that influence SM retrieval. Although
the topography and soil texture data were taken as stationary, SMAP SM data and Sentinel-1 (S1)
backscatter coefficients, including their ratios, and climate data were fed to the model as dynamic
features. As a target data to train the model, we used in situ measurements acquired from the
International Soil Moisture Network (ISMN). We employed a deep learning framework based on
long short-term memory (LSTM) architecture with two hidden layers that have 32 unit sizes and
a fully connected layer. The accuracy of the optimized LSTM model was found to be effective for
SM prediction with the coefficient of determination (R2) of 0.87, root mean square error (RMSE) of
0.046, unbiased root mean square error (ubRMSE) of 0.045, and mean absolute error (MAE) of 0.033.
The model’s performance was also evaluated concerning above-ground biomass, land cover classes,
soil texture variations, and climate classes. The model prediction ability was lower in areas with
high normalized difference vegetation index (NDVI) values. Moreover, the model can better predict
in dry climate areas, such as arid and semi-arid climates, where precipitation is relatively low. The
daily prediction of SM values based on microwave remote sensing data and geophysical features
was successfully achieved by using an LSTM framework to assist various studies, such as hydrology
and agriculture.

Keywords: soil moisture; time series analysis; long short-term memory; ISMN; Sentinel-1; SMAP

1. Introduction

Freshwater resources are being depleted daily due to climate change and the increasing
world population. Hence, the effective use of available water is of the utmost importance,
which makes its monitoring vital for water savings, mitigation, and adaptation to climate
change. In the last decade, soil moisture (SM) monitoring has been investigated with its
different aspects, covering drought monitoring [1,2], flood prediction [3], and agricultural
applications [4,5]. In particular, in agriculture, SM significantly impacts planning, seeding,
fertilization, and irrigation activities. In addition, its close relationship with crop produc-
tivity makes SM monitoring an essential factor for optimizing the use of available water
resources [6,7].
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The dynamics of SM are influenced by the physical properties of topography and soil
as well as temporal changes in atmospheric conditions. The impact of these parameters on
the variability of SM has been studied in depth concerning topographic data [8–11], soil tex-
ture [11–13], and climate variables [14–16]. In general, the prediction of SM in local studies
(e.g., station-based SM forecasting) does not require static parameters, such as topography
and soil texture, because these data vary insignificantly. However, the variability of SM in
time depends on climate data in both local, regional, or global scale studies.

In the literature, researchers focused on minimizing the prediction uncertainties to
estimate SM by using in situ measurements [17–21]. Including the meteorological parame-
ters in estimating SM enhances the prediction accuracy significantly. The study conducted
in [18] predicted the SM values of five stations located in Shandong Province of China by
using varying depth measurements of SM together with meteorological variables. A similar
study was performed in [19], extending the spatial distribution of stations worldwide,
to forecast the SM values. In this study, however, the time series of each station were
trained and validated separately. Another study carried out by [20] used the SM values of
globally distributed stations of the International Soil Moisture Network (ISMN) coupled
with climate, topography, and soil texture data to create a model for the daily prediction
of SM in different depth layers. By spatially interpolating SM values of stations to form
0.25◦ grid cells, the trained model can predict SM in a quasi-global way. Although the
sensor measurements provide more reliable estimations of SM values, the dependency
of the model on SM sensors limits the use of the model within specific regions where in
situ measurements exist. The lack of measurements in high latitudes resulted in poorer
forecasts of SM values, specifically in arid regions.

Even though in situ measurements play a crucial role in understanding SM, their
spatial coverage and network-related problems make them limited in global studies. Recent
developments in satellite-based remote sensing allowed continuous monitoring of the
Earth’s surface. In order to overcome the problems encountered in SM predictions when
using in situ measurements, satellite data from microwave remote sensing has been used
excessively [22,23]. In this context, satellite images are the key to breaking free from the
dependency of SM prediction from in situ sensors. The data from the NASA soil moisture
active passive (SMAP) [24] and ESA soil moisture and ocean salinity (SMOS) [25] missions
are a valuable asset for the global SM monitoring with their 2–3 days temporal resolution.
In 2020, ref. [26] expanded the near real-time SM predictions by integrating time series
data from SMAP and SMOS missions by using a statistical approach to overcome the
inconsistencies between the different SM retrieval algorithms.

Although SMAP and SMOS SM products enable the monitoring of Earth’s surface
moisture in high temporal resolution, their applications are constrained due to their coarse
spatial resolution. To overcome this limitation, researchers [27,28] used downscaling
methods by merging higher-resolution satellite images with lower-resolution SMAP/SMOS
data to achieve improved spatial resolution SM predictions. Even though these downscaling
efforts are applicable in predicting SM, the generated maps still have an insufficient spatial
resolution (∼5.6 km) for applications such as agricultural monitoring. In this regard, the
launch of the Sentinel SAR satellites by ESA under the Copernicus Programme paved
the way for accurate SM retrieval in smaller scale by acquiring higher spatial resolution
microwave remote sensing images [29–33].

SM retrieval from remote sensing images has been improved by the state-of-art ma-
chine learning-based regression techniques owing to their ability to learn the relationship
between predictors and SM from data [34–37]. An extensive review on the use of machine
learning algorithms for predicting SM can be found in [38]. As computers have improved
in performance, deep learning (DL) algorithms have become increasingly popular, as they
can handle nonlinear and complex relationships between input and output [39].The SM
forecasting studies that use remote sensing images exploited the ability of DL models to
capture the spatial and temporal dynamics of SM at the expense of large datasets and high
computational costs [5,40–45].
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Among the different DL methods, artificial neural networks (ANNs) have been pro-
posed to estimate SM from microwave remote sensing images integrated with some auxil-
iary data [46]. For example, although [47] coupled S1 images with soil texture information,
ref. [44] used soil texture and soil temperature data to improve the prediction accuracy of
SM retrieval. As an alternative to soil texture data, ref. [48] include climate and topography
data to the ANN model. Furthermore, in [42], the combination of soil texture, topography,
and climate data was utilized to improve the artificial neural network (ANN) model’s
performance.

The recurrent neural network (RNN) is a DL technique that considers the sequential
relationships between input data and their effects on the output data. Therefore, such DL
models are more appropriate when the sequence modeling tasks are needed, such as SM
prediction. However, RNN struggles to learn interdependency between input and output
data when the sequence span gets longer [49]. In order to overcome the limitation of this
DL technique, a special kind of RNN, long short-term memory (LSTM) is proposed by [50].
With the LSTM, information from a sequence can be carried along the consecutive sequences,
and the model can learn the relationship between sequential data and output data.

The study conducted by [51] applied LSTM architecture for the first time in SM studies
by using the SMAP L3_SM_P product with climate and soil texture data to improve the
design accuracy of SMAP SM data. In 2018, ref. [52] presented a model for the long-term
SM forecast on both surface and different depths over the continental US, aiming to exploit
the SMAP data together with the land surface models. The model can predict long-term SM
values in the same region by using the SMAP SM time series data. In [53], the LSTM model
trained with the same data classes used in [51] to nowcast the SM data, when the SMAP
L3_SM_P product became available. Another study [54] downscaled the SMAP SM data in
(∼1 km) with the help of climate, soil texture, and topography data by implementing LSTM.

This research aims to improve short-term SM prediction by combining the high tem-
poral resolution SMAP SM product and high spatial resolution S1 backscatter coefficients
integrated with the auxiliary data to assist the agricultural activities in the field scale. In
this context, we used the SM data of the ground stations from ISMN, distributed around
the world, to train an LSTM model with two microwave radar data products (SMAP and
S1) together with soil texture, climate, and topographical data that are considered as the
predictors of SM. The short-term forecast of SM on a field scale was successfully achieved
by utilizing an approach dependent on microwave remote sensing, satellite-based observa-
tions. The model used in this study predict accurate SM values of the next day with high
spatial resolution in regions with different geophysical properties and climate classes.

The manuscript is structured as follows: Section 2 explains the materials and methods.
Section 4 describes the experimental research with data processing, model optimization,
and our findings by focusing on the accuracy assessments of utilized methods. Section 5
presents the interpretation of the results and focuses on the effects of land cover, especially
in the presence of vegetation, soil texture, and climate, on SM estimation. We finalized the
paper by highlighting the important outcomes of this study in Section 6.

2. Materials

In this research, we aim to predict SM by combining the satellite-based data (S1 and
SMAP) with soil texture percentages (clay, silt, and sand), topography (elevation, slope,
aspect, and hillshade), and climate (temperature, evapotranspiration, and precipitation).
By using the features presented in Table 1, we modeled the SM in time by using an LSTM
framework. The statistics of these features were presented in Table 2.
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Table 1. Data used in this research provided with its descriptions, spatial, and temporal resolutions.

Category Feature Description Spatial Res. Temporal Res.

Climate Data 1 T(◦C) , ET (mm) & P (mm) 1 to 5 km Daily
Satellite Data 2 (S1) VV, VH & VH/VV 10 m 6–12 days
Satellite Data (SMAP) Surface & Subsurface SM (mm) 10 km 3 days
Soil Texture Sand, Clay, Silt (%) Point-wise Constant Values
Topographical Data 3 H (m), S (◦), A (◦), HS (◦) 30 m Constant Values
Soil Moisture Data SM of top 5 cm (m3/m3) Point-wise 15 min

1 T: temperature, ET: evapotranspiration, P: precipitation, 2 S1 backscatter coefficients in linear scale, 3 H: elevation,
S: slope, A: aspect, HS: hillshade.

Table 2. The statistics of features used in the study.

Feature Mean Std Feature Mean Std

Temperature (T) 8.81 11.03 Sand 42.81 13.91
Evapotranspiration (ET) 2.80 1.96 Clay 18.77 6.90
Precipitation (P) 2.64 11.01 Silt 38.42 10.87
VV 0.019 0.019 Elevation (H) 1400.48 1150.57
VH 0.088 0.076 Slope (S) 7.55 7.16
VH/VV 0.229 0.281 Aspect (A) 162.99 104.83
SMAP SM (Surface) 14.70 8.62 Hillshade (HS) 180.10 23.09
SMAP SM (Subsurface) 52.56 37.97 Soil Moisture (SM) 0.18 0.12

2.1. International Soil Moisture Network

ISMN is a data-hosting facility developed and still maintained by several universi-
ties [55–57]. It is supported by the European Space Agency’s (ESA) Earth Observation
program. The ISMN stations include soil texture properties and SM values in time, freely
available at https://ismn.geo.tuwien.ac.at/ (accessed on 17 August 2022). When we started
the algorithm development, the total number of available stations was 1611 after 2017,
when S1 data became available. The locations of the stations cover different climates and
ecoregions. However, ∼70% of the available stations were located in the USA (see Figure 1).

Figure 1. The spatial distribution of ISMN sites. Red dots display the distribution of 103 stations with
reliable data.

In addition to the station locations, in Figure 2, we present the ternary distribution
of the soil data. Ternary distribution depicts the data in a 3D space, making it simpler to
understand relations. Figure 2 shows that most soil samples are located in the loam class,
followed by sandy loam, clay loam, and silty loam.

https://ismn.geo.tuwien.ac.at/
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Figure 2. Ternary plot of the soil class distribution of ISMN sites.

Along with the soil texture and SM data, the metadata of each station includes land
cover based on the ESA CCI land cover product [58] and Köppen–Geiger climate classes [59].
It should be noted that these data were used only for the evaluation of the model perfor-
mance w.r.t. varying land cover and climate class of the stations, not for training the model.

2.2. Satellite Data

In this research, we accessed all satellite data via the Google Earth Engine (GEE)
Python application programming interface (API) [60]. From the GEE, we downloaded
the S1 data—one of the missions of ESA’s Copernicus initiative—together with NASA’s
SMAP data on the location of the SM stations. Their ensured continuity for the future and
sensitivity to changes in vegetation and soil properties makes both satellites a viable option
for SM monitoring [5,61–64].

2.2.1. Sentinel-1 (S1)

S1 is a synthetic aperture radar (SAR) satellite mission with a C-band (5.6 cm) sensor.
The advantage of S1 lies in its sensitivity to SM content [65]. There are two identical
satellites in the S1 mission, S1a, and S1b. Each satellite has a temporal resolution of 12 days,
resulting in an average of a six-day repeat cycle. Unfortunately, in December 2021, S1b
failed data dissemination and became space junk. Since then, S1a has been providing data
alone, and its temporal resolution depends on the area, with a minimum orbit repeat cycle
of six days in Europe and 12 days in other areas. ESA is planning to launch S1c in the first
half of 2023 to continue the dual satellite constellation.

This research used the ground range detected (GRD) 10-meter spatial sampled data
processed by ESA. The data we have selected has vertical transmission–vertical received
(VV) and vertical transmission–horizontal received (VH) polarizations.

In this study, all S1 passes between 31 December 2017 and 01 January 2021 were
included for each station of ISMN. In the data processing step, 50 m × 50 m region of
interest was defined around each station to calculate the mean value of S1 GRD backscatter
signals. The mean backscatter signals were converted from logarithmic scale to linear scale.
Additionally, the VH/VV ratio was added as a feature to the dataset.

2.2.2. Sentinel-2 (S2)

S2 is a multi-spectral instrument (MSI) satellite mission with spectral sensitivity to the
visible-near-infrared region of the electromagnetic spectrum. In this mission, like S1, there
are two identical satellites (a and b). Both satellites have a temporal resolution of 12 days,
also resulting in an average of a six-day repeat cycle.
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In our research, we used the Level-2a surface reflectance product processed by ESA.
The data has 13 bands ranging from 10- to 60-m spatial resolution. We only used red and
near-infrared bands to derive the vegetation indices. As in the case of S1, pixels within the
50 m × 50 m region of interest around the stations were extracted to calculate the mean
NDVI values. However, this feature was only used to evaluate the model performance in
the presence of vegetation and was not included in the feature set to train the model.

2.2.3. Soil Moisture Active Passive (SMAP)

In 2015, NASA launched the SMAP satellite to monitor the SM content by using L-
band SAR (active) and radiometer (passive) instruments. SMAP has a temporal resolution
of 2–3 days globally. In this research, we used Level-3 data of SMAP SM, which has 10-km
spatial resolution [66].

2.2.4. Topography

The topography of the surface also influences the variation in the SM. With the GEE
platform, topographic parameters, such as elevation, slope, aspect, and hill shade are
obtained from the ALOS DSM Global 30 m dataset [67].

2.3. Climate Data

As an integral part of the water cycle, the dynamics of SM are closely associated
with climate data, such as precipitation, temperature, and evapotranspiration. In this
research, we gathered the precipitation (P), air temperature (T), and evapotranspiration
(ET) data on the location of the SM stations by using the Meteomatics API [68]. The
available meteorological data have a spatial resolution ranging from 1 km to 5 km. Under
the assumption of lower spatial variability, we used the reported data without changing the
processing pipeline. The usage of the API was made possible within the service provided
to AgriCircle AG by Meteomatics.

2.4. Data Preprocessing

For SM modeling, we created a dataset that combines static and dynamic features,
as previously shown in Table 1. The static features are soil texture and topography; the
dynamic features are climate and satellite-derived time-series data. In addition, we added
a time variable as a dynamic feature. Because the LSTM framework requires time-series
data, we repeated the static features as the sequence length before feeding it to the LSTM
framework.

For dynamic features, we prepared a three-year dataset that includes in situ obser-
vations acquired from ISMN stations from 31 December 2017 to 1 January 2021. In this
dataset, we applied data cleaning to reduce the data-originated uncertainty and eliminate
the inconsistency within the measurements. Data cleaning involves a two-step elimination
criteria. The first criterion is related to the record length. The record length condition
requires that those stations be discarded if more than 10% of the measurements were
missing in any station. The second criterion is developed to ensure sequential dependence
in the observations. The SM stations with more than 60 consecutive days of missing mea-
surements are also excluded from the analysis because a solution like interpolation was
unrealistic considering the complex nature of the problem. According to these criteria, we
found 103 stations, shown by red dots in Figure 1, out of 1611 with time series of SM mea-
surements suitable for the analysis. Because dynamic features are gathered from various
sources with different temporal resolutions, we upsampled all data into daily sampling by
using the linear interpolation method for temporal matching. The ground measurements
are resampled into daily SM values to ensure the matching temporal resolution.

For the training of the LSTM model, we formed five different scenarios to determine
the contribution of feature groups. As previously shown in Table 1, in SM monitoring,
climate data, soil texture, and topographical data are the main drivers of SM. Beginning with
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the climate data (Case I), we consecutively included soil texture (Case II), topographical
data (Case III), and satellite data (Case IV and Case V) and listed them below.

Case-I Climate data
Case-II Climate data, soil texture
Case-III Climate data, soil texture, topographical data
Case-IV Climate data, soil texture, topographical data, satellite data (SMAP)
Case-V Climate data, soil texture, topographical data, satellite data (SMAP, S1)

In each case, time variables (sine and cosine of time) are kept within the features set
because they are independent variables that represent the positional encoding of input
features in a time series.

3. Methods

We employed the satellite data, soil texture, climate, and topography features men-
tioned above to forecast the SM by using the following process chart shown in Figure 3.
The process starts with the first row and ends with the accuracy assessment and prediction
of SM.

Figure 3. The overall process chart of the study, starting from data sources and ending with the
final-user output.

3.1. Long Short-Term Memory

As a descendent of RNN, [50] proposed an approach called long short-term memory
(LSTM) to overcome the vanishing gradient problem in RNN. In LSTM, the ordinary unit
cell repeats the input–output sequence; in RNN, this is replaced by a memory cell. LSTM
contains three gates: the input gate it, forget gate ft, and output gate ot. In addition to these
gates, there are two different parts: cell state ct, which keeps information from previous
states and transfers it to the next, and the hidden state ht, which is the output of the LSTM
cell. The equation of input gate, forget gate, and output gate is defined as

it = σ(wi[ht−1, xt] + bi) (1)

ft = σ
(

w f [ht−1, xt] + b f

)
(2)

ot = σ(wo[ht−1, xt] + bo), (3)

where wi, w f , and wo are the weight matrix, xt is input, ht−1 is the hidden state from
previous time step, bi, b f and bo are bias vector and σ is the sigmoid activation function
for the gates. The activation functions introduce nonlinearity by transforming inputs to
targeted outputs with a nonlinear regression procedure, making the model capable of
learning and performing more complex tasks. After the calculation of gates, the cell state
and hidden state can be defined as

ct = ft � ct−1 + it � tanh(wc[ht−1, xt] + bc) (4)
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ht = ot � tanh(ct), (5)

where wc is the weight matrix, ct−1 is the cell state from the previous time step, bc is the
bias vector, tanh is the hyperbolic tangent activation function and � is the element-wise
multiplication. The size of the weight matrix is determined according to the unit size and
hidden layer size of the LSTM model, feature vector dimension, and feature sequence
length. It should be noted here that the weight matrix of LSTM does not change through
timesteps. For detailed information please refer to [69].

3.2. Accuracy Assessment

Four accuracy metrics, namely, coefficient of determination (R2), root mean square
error (RMSE), unbiased root mean square error (ubRMSE), and mean absolute error (MAE)
were used to evaluate the performance of the implemented model for the SM prediction.
We have

R2 = 1− ∑N
i=1(yi−ŷi)

2

∑N
i=1(yi−ȳi)

2 MAE = ∑N
i=1|yi−ŷ|

N

RMSE =

√
∑N

i=1(yi−ŷi)
2

N ubRMSE =
√
(RMSE)2 − ( 1

N ∑N
i=1(yi − ŷi))2.

In the above equations, yi, ŷi, and ȳi indicates actual SM, predicted SM, and mean
value of the actual SM, at ith time step, respectively. Out of these four metrics, we use R2,
RMSE, and ubRMSE to evaluate the performance and MAE for station-based assessments
of the trained model.

3.3. Implementation of the LSTM Framework

The SM value at time t (Yt) was predicted by using n number of input features with
previous w sequential days (window size) as [Xn

t−1 . . . Xn
t−w]. After preparing the dataset,

we divided it temporally into 60% for training, 10% for validation, and 30% for testing
purposes. The temporal split corresponds to 658 days used to train the model starting
from 31 December 2017 until 20 October 2019, 109 days used to validate the model training
between 21 October 2019 and 6 February 2020, and 330 days used to evaluate the trained
model from 7 February 2020 until 1 January 2021. Whereas the LSTM model was built with
training data, the hyperparameter tuning was carried out by using a validation dataset.
After the optimum hyperpamater set was determined, independent evaluation of the model
was conducted based on testing data.

Before starting the training, we normalized all the input features via the MinMaxScaler
function of the sklearn Python package to ensure numerical stability. For the normalization,
we followed different strategies for static and dynamic features. By their nature, the static
features have global minimum and maximum values; therefore, we normalized them
together. On the other hand, dynamic features have local variations that change each
station’s minimum and maximum values, leading to a station-based normalization.

One of the primary flexibility features involved in the use of time series data is the
varying length of past data to make future predictions. In such a structure, the number of
previous timesteps is called the window size. The window size parameter must be selected
carefully because it impacts forecast accuracy. For its determination in the SM forecast, we
reformed the original dataset according to different window sizes: last one day, five days,
ten days, and thirty days.

The LSTM networks were created by using TensorFlow back-end with GPU processing
integration in the conda environment. We used the the gridSearchCV function of the sklearn
Python library, to determine the LSTM model’s hyperparameters. In addition, in the LSTM
architecture, all models started with an LSTM layer, followed by a one-dimensional dense
layer as an output.
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4. Results

The results of the SM prediction framework were presented in this section, starting
with data preparation followed by model training, model parameter optimization, and
finally the assessment of feature effects.

4.1. Model Parameter Optimization

The grid search algorithm was applied by using various hidden layers and unit sizes,
learning rates, loss functions, and optimization functions for hyperparameter optimization.
The number of hidden layers for LSTM was tested by gradually increasing from a single
layer to three stacked layers. The unit size of these stacked layers was tested for 32, 64, and
128. The tested learning rates were 10−2, 10−3, and 10−4. For the optimization function,
we tested Adam, Adamax, and SGD [70]. For epoch number, the test was for values
between 1000 and 1500 with 100 steps. Lastly, the dropout rate was between 0 and 0.5 with
0.05 increments.

The performances of the trained models with setups having different window sizes
are presented in Table 3. We can see that the window size of five days is performing better
than other window sizes, with the overall MAE reduced to ∼0.03 for both training and
testing. Out of these four different window sizes, the one-day window size showed the
worst prediction results with R2 values of ∼0.70 for both training and testing. Following
the window size of five days, 10, and 30 days gave comparable results.

Table 3. Accuracy of LSTM models with different window size.

Window Size Train Test
R2 RMSE ubRMSE MAE R2 RMSE ubRMSE MAE

1 0.701 0.069 0.069 0.053 0.695 0.071 0.071 0.053
5 0.922 0.035 0.035 0.026 0.871 0.046 0.045 0.033
10 0.922 0.035 0.044 0.026 0.859 0.048 0.048 0.035
30 0.900 0.040 0.040 0.029 0.837 0.052 0.048 0.038

Focusing on the window size of the last five days, which performed better than the
other tested cases, we found that LSTM with two hidden layers and 32 unit sizes followed
by a one-dimensional dense layer having a learning rate of 10−3, an epoch number of 1000,
and a dropout rate of 0.25, and Adamax as the activation function gave the best accuracy
for SM prediction. The summary of the grid search is given in Table 4.

Table 4. Hyperparameter ranges of LSTM model and selected values for the last five days win-
dow size.

Hyperparameters Tested Selected

Hidden Layer 1, 2, 3 2
Unit Size 32, 64, 128 32
Learning Rate 0.01, 0.001, 0.0001 0.001
Activation Function Adam, Adamax, SGD Adamax
Epoch Number 1000–1500 1000
Dropout Rate 0–0.5 0.25

4.2. Effect of the Different Features on the Model Performance

After the optimum window size and hyperparameters were assessed, we investigated
the effect of a different group of features on the model’s prediction capability by designing
five different cases. Table 5 summarizes the statistics of these cases for their corresponding
feature combinations where the model hyperparameters are based on the best performing
LSTM model with a window size of five days (see Table 4). We found that the optimum
solution for SM prediction was achieved when all feature groups were combined, i.e., Case
V, for training the LSTM model.
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Table 5. Accuracy analysis of LSTM with different features set.

Case No. Train Test
R2 RMSE ubRMSE MAE R2 RMSE ubRMSE MAE

Case-I 0.366 0.101 0.101 0.082 0.337 0.105 0.104 0.085
Case-II 0.663 0.074 0.074 0.057 0.651 0.076 0.076 0.058
Case-III 0.875 0.045 0.045 0.033 0.843 0.051 0.051 0.037
Case-IV 0.908 0.038 0.038 0.028 0.860 0.048 0.046 0.034
Case-V 0.922 0.035 0.035 0.026 0.871 0.046 0.045 0.033

4.3. Overview of the Model Training

Figure 4 presents the training progress of the best performing LSTM model, the
optimum hyperparameters of which are given in Table 4. The figure shows the change in
the loss value, R2, and RMSE w.r.t. epoch as the model continues its training with a constant
learning rate of 10−3. The loss value, R2, and RMSE for training and validation datasets
converge around epoch number 1000, and the model tends to overfit beyond 1000 epochs.

Figure 4. Accuracy of the best-performing LSTM model according to epoch. The upper figure shows
the training progress of the model w.r.t. loss value per epoch, and the lower figure shows the change
in accuracy w.r.t. R2 and RMSE.

Figure 5 shows the outcomes of the training (left side) and testing (right side) SM
predictions for all stations. The scatter plots between measured and estimated values for the
training and testing datasets show a similar pattern when compared. The main population
of the points is along the 1-1 line. The model can make good predictions with MAE of
less than 0.035. In the second row, violin plots show the measurement and prediction
distributions. The left side of the violin corresponds to actual values, while the right side
stands for the predictions. In an ideal case, we should see a mirror-like shape, which is also
the case for our predictions with small differences due to the error previously mentioned in
the scatter plots.
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Figure 5. The scatter plot (top left and right) and distribution graph (bottom left and right) of
(a) training and (b) testing data of windows size 5.

5. Discussion

The LSTM-based SM forecast model relies on satellite-driven data, soil texture, topog-
raphy, and climate. Therefore, as the predictions are conducted for different conditions, we
investigated the prediction performances for land cover classes, biomass variations based
on the NDVI calculated from the Sentinel-2 satellite, climate classes, and soil texture.

5.1. Relationship between Model Performance and Land Cover

The physical characteristics of the land cover affect the prediction accuracy of the
developed LSTM model. This effect originates from the physical heterogeneity of the
observed area.

In the ISMN, every station is provided with its land cover type. The corresponding
land covers are based on the ESA CCI land cover product [58]. In a total of 103 stations,
34 croplands, 20 grasslands, 18 shrublands, 23 trees/forests, and 6 mosaics (mixture of
trees, shrubs, herbaceous, and cropland), and two urban sites exist. However, we did not
investigate the urban sites due to the insufficient number of samples.

Figure 6 presents the model’s prediction capability for different land covers. The
smallest MAE (∼0.02) was achieved for shrubland class. The model shows similar perfor-
mance for cropland, grassland, and tree covers with a mean MAE of approximately ∼0.03.
However, the variance of MAE for the cropland cover is higher than the others. The worst
MAE, (∼0.05), is obtained for the mosaic cover due to the complexity of the surface. This
can be explained by the scattering mechanism of SAR imagery in the presence of vegetation
and forest. Because the shrubland land cover class is sparsely vegetated area, radar signals
can interact with the soil more than vegetation or forest canopy.
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Figure 6. Overall MAE for land cover classes.

5.2. Relationship between Model Performance and NDVI

The presence of biomass over soil may affect the model’s prediction capability because
the satellite data also carries information regarding the vegetation. To see the effect of the
biomass, we calculated the NDVI from the S2 surface reflectance image during the testing
periods and compared it with the MAE values of the model for the prediction dates.

Figure 7a visualizes the distribution of MAE values for all available stations to-
gether with the NDVImean and NDVImax values. The figure shows the correlation be-
tween the mean NDVImean and MAE values. MAE values tend to increase with increasing
NDVImean values.

The violin plot given in Figure 7b shows the distribution of the actual vs. predicted
SM values at stations whose MAE values are lower (Station ID: 1569, 1541, 1577) with low
soil moisture and higher (Station ID: 1527, 816, 1481) with high soil moisture. Here, we
focused on finding out the origins of the variations in MAE values among these stations.
For this purpose, the variation of the NDVI values were used. This analysis showed that
the NDVI variation is one of the reasons for the deterioration of the SM prediction.

The backscattered signals obtained from SAR data were strongly affected by high
biomass due to the interaction between electromagnetic radiation, plants, and soil. There-
fore, these findings show that the model’s estimation performance is prone to uncertainties
from the existing biomass. Similar findings also exist in previous studies [35,71–73]. These
studies found that the SM content in bare or low-density vegetation areas is more pre-
dictable than in high-density vegetation areas.

(a) (b)
Figure 7. Model performance w.r.t. NDVI variation. (a) Scatter plot shows the distribution of MAE
vs. NDVI relationship for each station. (b) Violin plots representing the statistical distribution of
actual and predicted temporal SM data at the ISMN stations with their minimum and maximum
NDVI values.
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Another investigation that we conducted on the impact of NDVI variation was using
station-based time series. For this purpose, we focused on some stations that show a
variation in NDVI over the years. We see that the growth cycle of NDVI values before
seeding and after harvest is lower than crops’ vegetative and reproductive phases. We
believe that the prediction capability of the model thoughout the growth cycle is an impor-
tant detail that needs to be investigated. Hence, we prepared the Figure 8a to show the
model’s performance in time. According to Figure 8a, the model’s performance on the SM
forecasting dropped approximately between May 2020 to October 2020 due to very low SM
values. During this period, we can see an increase in the NDVI values from ∼0.2 to ∼0.9.
We observed a similar situation in the other stations as well. In the time series of stations
827 and 1572, given in Figure 8b,c, the station has higher NDVI values from June to the end
of December and from mid-April to the beginning of November, respectively. These three
stations and the others with similar behavior have MAE values less than 0.075.

(a) Station ID: 816

(b) Station ID: 827

(c) Station ID: 1572
Figure 8. Time series of SM predictions during the testing period for stations 816, 827, and 1572.
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5.3. Relationship between Model Performance and Soil Texture

The variation in the soil texture is a driving factor for the spatial and temporal changes
in the SM. Soils with high clay or silt fraction are associated with high water-holding
capacity, resulting in a generally higher SM value. On the other hand, such soils lose their
moisture slower than the others. From an agricultural point of view, clay soils have the
highest soil moisture content in general; however, silty soils are more favorable for plants.

We provide a ternary plot in Figure 9 to show the MAE values of stations, which are
scattered based on their soil texture contents. In the same figure, we also included each
station’s NDVImean values in a color map. The combination of soil texture and NDVImean
allows us to observe the relationship between the amount of silt and clay in the soil and
vegetation activity.

The size of each circle, representing a station, is proportional to its MAE value. We
observe that the smaller circles generally accumulate in areas where the sand fraction is
high. Among all the stations, 61% have sandy soil with an average MAE of 0.03, and 38%
of them are silty soils with 0.04 average MAE.

As we focus on particular stations for an in-depth investigation, it was observed that
the silt content of the stations, having cropland cover, given in Figure 8 are 52%, 61%,
and 42% for stations 816, 827, and 1572, respectively. In the corresponding stations, we
have similar findings that justify the performance of the model w.r.t. the change in the
NDVI values.

Figure 9. Soil texture ternary plot w.r.t. MAE of each station. The circles are scaled based on their
MAE value and are colored based on NDVImean.

In addition to silt and clay-dominated soils, the soil types in which the sand proportion
is higher generally have a lower trend in SM values because the sandy soil has low water-
holding capacity. This property makes them less suitable for agricultural applications.
In order to investigate the sand effect, we present the time series of SM predictions at
stations 815, 1541, and 1569 in Figure 10. The typical features of these stations are the
high percentage of sand fraction in soil content (81%, 52%, and 52% for stations 815, 1541,
and 1569) and lower NDVI values along the time series. The mean NDVI value for these
stations is 0.15, 0.19, and 0.11, respectively. Unlike the findings from Figure 8, we saw that
in Figure 10a, the higher sand fraction leads to lower and less fluctuated SM values. Thus,
the highest accuracy was obtained at stations with sandy soils having low NDVI values.
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(a) Station ID: 815

(b) Station ID: 1541

(c) Station ID: 1569
Figure 10. Time series of SM predictions during the testing period for stations 815, 1541, and 1569.

5.4. Relationship between Model Performance and Climate Classes

Lastly, we investigated the effect of climate classes. To this aim, we used [59], which
defines four classes in total: tropical (A), dry (B), temperate (C), and continental (D). Our
selected stations are distributed as 23% in class B and 75% in class C. The remaining 2%
belongs to classes A and D, with one station for each.

In Figure 11, we present the model’s prediction performance under different climate
conditions as a boxplot. The stations in class B shows lower MAE values compared to those
in class C (see Figure 11a). Considering the climate class properties, the rapid changes in the
moisture affect the dielectric properties of the target [32,74]; at the same time, precipitation
is a significant factor that negatively impacts the SM prediction due to the change in the
interaction between SAR signals and land surface.

We obtained better soil moisture predictions in arid climates (Bw) than those in semi-
arid climates (Bs) regions due to less precipitation and more evapotranspiration. We also
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observed a similar behavior between no-dry-season climate (Cf) and dry summer (Cs)
temperate climate classes (see Figure 11b). The no-dry-season climate, as inferred by its
name, has a high precipitation rate compared to a dry summer climate, which makes the
stations located in this climate region challenging for SM prediction.

(a) (b)

Figure 11. Overall mean absolute error for first-order (a) and second-order (b) Köppen–Geiger
climate classes [59].

6. Conclusions

In this study, we investigated the short-term SM prediction based on satellite-derived
data with LSTM. For this purpose, the static and dynamic features were combined to create
sequential input data and used in situ SM measurements of 103 stations from ISMN as an
output to train an LSTM model. Our approach uses soil texture and topographical data as
static features and satellite (S1 and SMAP) and climate data as dynamic features. As SM
monitoring is crucial for water resource management, we employed the SAR data due to
its lower sensitivity to atmospheric conditions than optical data. To optimize the LSTM
models’ hyperparameters, we used the gridSearchCV algorithm. After the optimization,
the overall testing accuracy of the model was calculated as R2 = 0.87, RMSE = 0.046, and
MAE = 0.033. The values obtained from different stations are summarized in Appendix A,
including the station ID, network and station name, soil texture, NDVI mean and max
values, climate, land cover classes, and the corresponding MAE values.

During our investigations, it was observed that the model’s prediction performance
is affected by the soil texture, vegetation status, and climate conditions. Variations in soil
texture change the soil water-holding capacity. In the case in which the amount of sand was
dominant, the SM values were easier to model than in the case of silt and clay dominance
due to the low SM values and fewer fluctuations in sandy soils. We also observed that
vegetation affects the interaction between the SAR signal and the soil. Thus, the model’s
prediction ability was lowered in vegetated areas with high NDVI values. Moreover, the
model can predict better under dry climate conditions, such as arid and semi-arid climates
in relatively low precipitation.

This study used satellite-based products to create a model to forecast SM values.
For operational purposes, we know that obtaining soil texture data on the pixel level
is challenging. However, we can overcome this by conducting an intensive sampling
campaign for soil texture, or existing models can be used [75], which employs S1 and S2
multi-temporal data.

In the future, we plan to combine the LSTM model with the attention mechanism
to study the contribution of each variable to SM prediction. The LSTM model combined
with the attention mechanism can determine the importance of each feature and its tem-
poral relationship with SM phenomena. Thus, we can increase the accuracy of the model
predictions and explain the physical behavior of the black-box model.
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Appendix A

Table A1. Soil texture, NDVI, climate and land-cover class features of stations with their MAE of SM prediction.

Station ID Network Station Name Clay Sand Silt NDV I_min NDV I_max NDV I_mean CC-I CC-II LCC MAE

139 FR_Aqui hillan2 13 69 18 0.377 0.823 0.661 C Cf Tree 0.022
140 FR_Aqui parcmeteo 19 48 33 0.247 0.994 0.593 C Cf Cropland 0.022
292 HOAL Hoal_02 23 30 47 0.361 0.872 0.592 C Cf Cropland 0.051
617 REMEDHUS Casa_Periles 21 48 31 0.112 0.934 0.321 C Cs Cropland 0.020
619 REMEDHUS El_Coto 18 51 32 0.125 0.581 0.267 C Cs Cropland 0.028
620 REMEDHUS El_Tomillar 16 54 30 0.150 0.471 0.234 C Cs Cropland 0.019
622 REMEDHUS Guarrati 16 51 34 0.130 0.612 0.366 C Cs Cropland 0.067
624 REMEDHUS La_Cruz_de_Elias 21 48 31 0.097 0.381 0.226 C Cs Cropland 0.046
625 REMEDHUS Las_Arenas 16 55 29 0.093 0.303 0.214 C Cs Cropland 0.042
626 REMEDHUS Las_Bodegas 21 46 33 0.233 0.565 0.406 C Cs Cropland 0.033
627 REMEDHUS Las_Brozas 17 52 31 0.195 0.303 0.228 C Cs Cropland 0.025
628 REMEDHUS Las_Eritas 23 49 28 0.110 0.431 0.260 C Cs Cropland 0.028
629 REMEDHUS Las_Tres_Rayas 20 49 32 0.155 0.470 0.310 C Cs Cropland 0.037
630 REMEDHUS Las_Vacas 21 52 27 0.083 0.486 0.222 B Bs Cropland 0.031
631 REMEDHUS Las_Victorias 20 49 31 0.113 0.479 0.217 C Cs Cropland 0.022
633 REMEDHUS Paredinas 17 53 30 0.154 0.514 0.281 C Cs Cropland 0.018
634 REMEDHUS Zamarron 20 48 32 0.037 0.252 0.177 C Cs Cropland 0.027
639 RSMN Bacles 28 27 44 0.287 0.752 0.562 C Cf Urban 0.026
659 SCAN AAMU_jtg 18 25 57 0.266 0.863 0.773 C Cf Grassland 0.041
661 SCAN Adams_Ranch_#1 17 59 24 0.177 0.417 0.294 B Bs Shrubland 0.026
685 SCAN Charkiln 18 52 30 0.300 0.648 0.412 C Cs Tree 0.018
689 SCAN Cochora_Ranch 15 57 28 0.091 0.177 0.114 B Bs Shrubland 0.012
698 SCAN Deep_Springs 10 69 21 0.049 0.166 0.113 B Bw Shrubland 0.020
713 SCAN Fort_Reno_#1 18 35 46 0.202 0.727 0.445 C Cf Grassland 0.038
715 SCAN French_Gulch 19 47 34 0.336 0.671 0.436 C Cs Tree 0.046
719 SCAN Goodwin_Creek_Timber 12 17 71 0.575 0.894 0.769 C Cf Grassland 0.027
729 SCAN Holden 20 40 40 0.083 0.233 0.124 B Bs Shrubland 0.020
746 SCAN Knox_City 18 42 41 0.166 0.508 0.304 C Cf Cropland 0.038
747 SCAN Koptis_Farms 16 58 25 0.171 0.765 0.587 C Cf Cropland 0.029
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Table A1. Cont.

Station ID Network Station Name Clay Sand Silt NDV I_min NDV I_max NDV I_mean CC-I CC-II LCC MAE

750 SCAN Kyle_Canyon 20 46 34 0.322 0.708 0.506 C Cs Tree 0.020
752 SCAN Levelland 18 66 16 0.043 0.195 0.109 B Bs Cropland 0.020
753 SCAN Lind_#1 11 29 60 0.179 0.533 0.366 B Bs Cropland 0.036
757 SCAN Los_Lunas_Pmc 18 56 26 0.157 0.535 0.291 B Bs Urban 0.041
758 SCAN Lovell_Summit 18 51 30 0.042 0.513 0.376 C Cs Tree 0.045
764 SCAN Mammoth_Cave 19 14 67 0.434 0.926 0.700 C Cf Tree 0.036
768 SCAN Marble_Creek 13 59 28 0.078 0.206 0.155 C Cs Shrubland 0.015
769 SCAN Maricao_Forest 47 25 27 0.669 0.902 0.823 A Af Tree 0.037
772 SCAN Mason_#1 16 55 29 0.177 0.736 0.469 C Cf Cropland 0.035
775 SCAN Mcalister_Farm 17 23 60 0.243 0.885 0.454 C Cf Cropland 0.035
776 SCAN Mccracken_Mesa 15 58 27 0.114 0.188 0.147 B Bs Shrubland 0.039
777 SCAN Milford 28 26 45 0.088 0.956 0.479 B Bs Cropland 0.038
780 SCAN Monocline_Ridge 27 41 32 0.067 0.650 0.202 B Bs Shrubland 0.022
782 SCAN Morris_Farms 15 58 27 0.196 0.761 0.367 C Cf Mosaic 0.064
786 SCAN N_Piedmont_Arec 20 28 52 0.234 0.699 0.601 C Cf Grassland 0.055
790 SCAN North_Issaquena 30 19 51 0.131 0.953 0.370 C Cf Cropland 0.029
798 SCAN Perthshire 36 12 52 0.139 0.897 0.381 C Cf Cropland 0.017
802 SCAN Powder_Mill 14 47 39 0.226 0.809 0.477 C Cf Grassland 0.037
814 SCAN San_Angelo 28 37 36 0.092 0.515 0.330 C Cf Shrubland 0.054
815 SCAN Sand_Hollow 9 81 10 0.116 0.191 0.153 B Bw Grassland 0.011
816 SCAN Sandy_Ridge 34 14 52 0.136 0.921 0.369 C Cf Cropland 0.070
819 SCAN Sellers_Lake_#1 2 87 11 0.591 0.813 0.730 C Cf Tree 0.015
820 SCAN Selma 16 56 28 0.511 0.760 0.659 C Cf Tree 0.027
827 SCAN Silver_City 19 19 61 0.150 0.845 0.524 C Cf Cropland 0.043
831 SCAN Spooky 12 70 18 0.125 0.190 0.155 B Bs Grassland 0.024
837 SCAN Sudduth_Farms 13 40 46 0.553 0.800 0.675 C Cf Tree 0.057
840 SCAN TNC_Fort_Bayou 8 64 28 0.384 0.726 0.630 C Cf Mosaic 0.078
846 SCAN Tule_Valley 18 47 35 0.045 0.130 0.064 B Bs Shrubland 0.020
851 SCAN UAPB_Dewitt 15 14 71 0.487 0.747 0.640 C Cf Cropland 0.032
852 SCAN UAPB_Earle 24 22 54 0.049 0.334 0.211 C Cf Cropland 0.036
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Table A1. Cont.

Station ID Network Station Name Clay Sand Silt NDV I_min NDV I_max NDV I_mean CC-I CC-II LCC MAE

862 SCAN Vernon 26 31 43 0.089 0.680 0.360 C Cf Grassland 0.033
867 SCAN Wakulla_#1 0 90 10 0.362 0.540 0.443 C Cf Tree 0.015
872 SCAN Weslaco 28 47 25 0.113 0.716 0.296 B Bs Cropland 0.053
874 SCAN Youmans_Farm 14 69 17 0.216 0.775 0.637 C Cf Mosaic 0.032
953 SNOTEL Bar_M 28 32 40 0.195 0.431 0.354 C Cs Tree 0.024
985 SNOTEL Chalender 34 28 38 0.050 0.340 0.178 C Cs Tree 0.041
1044 SNOTEL GUTZ_PEAK 23 45 32 0.145 0.606 0.395 C Cs Grassland 0.020
1049 SNOTEL HAPPY_JACK 28 32 40 0.145 0.683 0.508 C Cs Tree 0.046
1061 SNOTEL HOLLAND_MEADOWS 17 43 39 0.389 0.851 0.530 C Cs Tree 0.035
1113 SNOTEL LITTLE_GRASSY 19 51 30 0.174 0.353 0.278 C Cs Tree 0.021
1171 SNOTEL Mormon_Mountain 22 34 43 0.162 0.530 0.379 C Cs Tree 0.034
1230 SNOTEL SILVER_CREEK 15 49 36 0.100 0.638 0.458 D Ds Shrubland 0.031
1475 USCRN Asheville_13_S 19 48 33 0.385 0.834 0.671 C Cf Tree 0.039
1477 USCRN Austin_33_NW 26 40 34 0.262 0.513 0.369 C Cf Grassland 0.074
1478 USCRN Avondale_2_N 17 38 44 0.265 0.836 0.683 C Cf Mosaic 0.035
1480 USCRN Batesville_8_WNW 17 31 52 0.331 0.854 0.625 C Cf Cropland 0.033
1481 USCRN Bedford_5_WNW 19 19 63 0.377 0.870 0.722 C Cf Grassland 0.063
1487 USCRN Bronte_11_NNE 23 48 29 0.081 0.591 0.351 C Cf Grassland 0.017
1496 USCRN Corvallis_10_SSW 27 28 44 0.000 0.850 0.518 C Cs Grassland 0.029
1503 USCRN Durham_11_W 15 47 39 0.412 0.716 0.600 C Cf Mosaic 0.036
1511 USCRN Fallbrook_5_NE 19 54 27 0.115 0.496 0.340 C Cs Tree 0.018
1512 USCRN Gadsden_19_N 15 34 51 0.498 0.865 0.661 C Cf Grassland 0.033
1527 USCRN Lafayette_13_SE 20 16 64 0.337 0.866 0.654 C Cf Cropland 0.092
1529 USCRN Las_Cruces_20_N 17 66 17 0.000 0.187 0.130 B Bw Shrubland 0.012
1538 USCRN Merced_23_WSW 28 34 38 0.209 0.568 0.315 B Bs Grassland 0.027
1539 USCRN Mercury_3_SSW 7 74 19 0.016 0.141 0.095 B Bw Shrubland 0.011
1541 USCRN Monahans_6_ENE 18 52 29 0.145 0.237 0.191 B Bs Shrubland 0.014
1542 USCRN Monroe_26_N 11 35 54 0.383 0.686 0.560 C Cf Tree 0.026
1549 USCRN Newton_5_ENE 24 32 44 0.379 0.717 0.561 C Cf Grassland 0.045
1556 USCRN Panther_Junction_2_N 25 49 27 0.151 0.229 0.182 B Bw Shrubland 0.014
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Table A1. Cont.

Station ID Network Station Name Clay Sand Silt NDV I_min NDV I_max NDV I_mean CC-I CC-II LCC MAE

1559 USCRN Quinault_4_NE 13 46 41 0.528 0.844 0.697 C Cf Tree 0.051
1560 USCRN Redding_12_WNW 17 48 36 0.142 0.432 0.300 C Cs Tree 0.037
1562 USCRN Salem_10_W 16 29 55 0.244 0.700 0.471 C Cf Grassland 0.031
1569 USCRN Socorro_20_N 19 52 29 0.079 0.148 0.109 B Bw Shrubland 0.014
1572 USCRN Stillwater_2_W 19 38 42 0.204 0.726 0.449 C Cf Cropland 0.052
1573 USCRN Stillwater_5_WNW 19 39 43 0.233 0.772 0.520 C Cf Grassland 0.034
1574 USCRN Stovepipe_Wells_1_SW 6 67 27 0.000 0.058 0.032 B Bw Shrubland 0.020
1577 USCRN Tucson_11_W 20 55 25 0.048 0.237 0.140 B Bs Shrubland 0.015
1578 USCRN Versailles_3_NNW 19 13 68 0.373 0.827 0.666 C Cf Grassland 0.034
1579 USCRN Watkinsville_5_SSE 18 55 27 0.280 0.839 0.654 C Cf Grassland 0.030
1581 USCRN Williams_35_NNW 19 47 34 0.052 0.198 0.140 B Bs Shrubland 0.021
1596 WEGENERNET 6 20 38 42 0.528 0.891 0.757 C Cf Tree 0.031
1597 WEGENERNET 77 23 37 41 0.215 0.883 0.525 C Cf Cropland 0.043
1598 WEGENERNET 78 23 37 40 0.368 0.876 0.699 C Cf Mosaic 0.050

CC-I: Climate Class-I, CC-II: Climate Class-II, LCC: Land Cover Classification.
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