Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = particulates control device system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1282
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

25 pages, 3812 KiB  
Article
Opportunities Arising from COVID-19 Risk Management to Improve Ultrafine Particles Exposure: Case Study in a University Setting
by Fabio Boccuni, Riccardo Ferrante, Francesca Tombolini, Sergio Iavicoli and Pasqualantonio Pingue
Sustainability 2025, 17(11), 4803; https://doi.org/10.3390/su17114803 - 23 May 2025
Viewed by 486
Abstract
Particulate matter (PM) is recognized as a leading health risk factor worldwide, causing adverse effects for people in living and working environments. During the COVID-19 pandemic, it was shown that ultrafine particles (UFP) and PM concentrations, may have played an important role in [...] Read more.
Particulate matter (PM) is recognized as a leading health risk factor worldwide, causing adverse effects for people in living and working environments. During the COVID-19 pandemic, it was shown that ultrafine particles (UFP) and PM concentrations, may have played an important role in the transmission of SARS-CoV-2. This study aims to investigate whether the mechanical ventilation system installed as a COVID-19 mitigation measure in a university dining hall can be effectively and sustainably used to improve indoor UFP exposure levels, integrated with a continuous low-cost sensor monitoring system. Measurements of particle number concentration (PNC), average diameter (Davg), and Lung Deposited Surface Area (LDSA) were performed over three working days divided into ten homogeneous daily time slots (from 12:00 am to 11:59 pm) using high-frequency (1 Hz) real-time devices. PM and other indoor pollutants (CO2 and TVOC) were monitored using low-cost handheld sensors. Indoor PNC (Dp < 700 nm) increased and showed great variability related to dining activities, reaching a maximum average PNC level of 30,000 part/cm3 (st. dev. 16,900). Davg (Dp < 300 nm) increased during lunch and dinner times, from 22 nm at night to 48 nm during post-dinner recovery activities. Plasma-based filter technology reduced average PNC (Dp < 700 nm) by up to three times, effectively mitigating UFP concentrations in indoor environments, especially during dining hall access periods. It could be successfully adopted also after the pandemic emergency, as a sustainable health and safety control measure to improve UFPs exposure levels. Full article
Show Figures

Figure 1

19 pages, 12992 KiB  
Article
An Internet of Things Framework for Monitoring Environmental Conditions in Livestock Housing to Improve Animal Welfare and Assess Environmental Impact
by Giorgio Provolo, Carlo Brandolese, Matteo Grotto, Augusto Marinucci, Nicola Fossati, Omar Ferrari, Elena Beretta and Elisabetta Riva
Animals 2025, 15(5), 644; https://doi.org/10.3390/ani15050644 - 23 Feb 2025
Cited by 6 | Viewed by 2664
Abstract
Devices for assessing the quality of animal environments are important for maintaining production animals, thus improving animal well-being and mitigating pollutant emissions. Therefore, an IoT system was developed and preliminarily assessed across various livestock housing types, including those for pigs, dairy cows, and [...] Read more.
Devices for assessing the quality of animal environments are important for maintaining production animals, thus improving animal well-being and mitigating pollutant emissions. Therefore, an IoT system was developed and preliminarily assessed across various livestock housing types, including those for pigs, dairy cows, and rabbits. This system measures and transmits key parameters, such as ambient temperature; relative humidity; light intensity; sound pressure; levels of carbon dioxide, ammonia, and hydrogen sulfide; and particulate matter and volatile organic compound concentrations. These data are sent from the sensors to a gateway and then displayed on a dashboard for monitoring. A preliminary evaluation of the system’s performance in controlled conditions revealed that the device’s accuracy and precision were within 2.7% and 3.3% of the measured values, respectively. The system was deployed in three case studies involving rabbit, pig, and dairy cow farms. The results demonstrated its effectiveness in assessing pollutant emissions and identifying critical situations where gas concentrations exceeded threshold levels, thus posing a risk to the animals. By systematically applying this technology on livestock farms to obtain a detailed understanding of the microclimatic and air quality conditions in which the animals live, animal welfare can be significantly improved. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

24 pages, 7985 KiB  
Article
CO2 and O2 Separation Dual-Phase Membranes for Diesel Heavy-Duty Vehicles Applications
by Eirini Zagoraiou, Luca Cappai, Anastasia Maria Moschovi, Gabriele Mulas and Iakovos Yakoumis
Membranes 2025, 15(2), 49; https://doi.org/10.3390/membranes15020049 - 5 Feb 2025
Cited by 1 | Viewed by 1115
Abstract
Diesel-engine Heavy-Duty Vehicle (HDV) exhaust gas mixture contains pollutants including unburned hydrocarbons, carbon monoxide, nitrogen oxides, and particulate matter. A catalyst-based emission control system is commonly used to eliminate the above pollutants. However, the excess of oxygen that exists in the exhaust gasses [...] Read more.
Diesel-engine Heavy-Duty Vehicle (HDV) exhaust gas mixture contains pollutants including unburned hydrocarbons, carbon monoxide, nitrogen oxides, and particulate matter. A catalyst-based emission control system is commonly used to eliminate the above pollutants. However, the excess of oxygen that exists in the exhaust gasses of diesel engines hinders the efficient and selective reduction of nitrogen oxides over conventional catalytic converters. The AdBlue® solution, which is currently used to eliminate nitrogen oxides, is based on ammonia. The latter is toxic in high concentrations. The aim of this work is to develop an Oxygen Reduction System (ORS) to remove oxygen from the exhaust gas of diesel engines, allowing the successful catalytic reduction of nitrogen oxides on a reduction catalyst without the need for ammonia. The ORS device consists of dense composite dual-phase membranes that allow the permeation of oxygen and carbon dioxide. Even though the oxygen concentration gradient across the membranes favors oxygen spontaneous diffusion from the atmosphere to the exhaust gas, the carbonate ion-based technology proposed herein utilizes the big difference in the concentration of carbon dioxide across the membrane to remove oxygen without any power consumption requirement. The results of this study are promising for the application of O2 reduction in diesel HDVs. Full article
(This article belongs to the Section Membrane Applications for Gas Separation)
Show Figures

Figure 1

20 pages, 4825 KiB  
Article
Multi-Sensor Platform in Precision Livestock Farming for Air Quality Measurement Based on Open-Source Tools
by Victor Danev, Tatiana Atanasova and Kristina Dineva
Appl. Sci. 2024, 14(18), 8113; https://doi.org/10.3390/app14188113 - 10 Sep 2024
Cited by 3 | Viewed by 1977
Abstract
Monitoring air quality in livestock farming facilities is crucial for ensuring the health and well-being of both animals and workers. As livestock farming can contribute to the emission of various gaseous and particulate pollutants, there is a pressing need for advanced air quality [...] Read more.
Monitoring air quality in livestock farming facilities is crucial for ensuring the health and well-being of both animals and workers. As livestock farming can contribute to the emission of various gaseous and particulate pollutants, there is a pressing need for advanced air quality monitoring systems to manage and mitigate these emissions effectively. This study introduces a multi-sensor air quality monitoring system designed specifically for livestock farming environments. Utilizing open-source tools and low-cost sensors, the system can measure multiple air quality parameters simultaneously. The system architecture is based on SOLID principles to ensure robustness, scalability, and ease of maintenance. Understanding a trend of evolution of air quality monitoring from single-parameter measurements to a more holistic approach through the integration of multiple sensors, a multi-sensor platform is proposed in this work. This shift towards multi-sensor systems is driven by the recognition that a comprehensive understanding of air quality requires consideration of diverse pollutants and environmental factors. The aim of this study is to construct a multi-sensor air quality monitoring system with the use of open-source tools and low-cost sensors as a tool for Precision Livestock Farming (PLF). Analysis of the data collected by the multi-sensor device reveals some insights into the environmental conditions in the monitored barn. Time-series and correlation analyses revealed significant interactions between key environmental parameters, such as strong positive correlations between ammonia and hydrogen sulfide, and between total volatile organic compounds and carbon dioxide. These relationships highlight the critical impact of these odorants on air quality, emphasizing the need for effective barn environmental controls to manage these factors. Full article
(This article belongs to the Special Issue Recent Advances in Precision Farming and Digital Agriculture)
Show Figures

Figure 1

10 pages, 4044 KiB  
Article
Development and Performance Evaluation Experiment of a Device for Simultaneous Reduction of SOx and PM
by Kyeong-Ju Kong and Sung-Chul Hwang
Energies 2024, 17(13), 3337; https://doi.org/10.3390/en17133337 - 8 Jul 2024
Viewed by 1481
Abstract
Mitigating air pollutants such as SOx and PM emitted from ships is an important task for marine environmental protection and improving air quality. To address this, exhaust gas after-treatment devices have been introduced, but treating pollutants like SOx and PM individually [...] Read more.
Mitigating air pollutants such as SOx and PM emitted from ships is an important task for marine environmental protection and improving air quality. To address this, exhaust gas after-treatment devices have been introduced, but treating pollutants like SOx and PM individually poses challenges due to spatial constraints on ships. Consequently, a Total Gas Cleaning System (TGCS) capable of simultaneously reducing sulfur oxides and particulate matter has been developed. The TGCS combines a cyclone dust collector and a wet scrubber system. The cyclone dust collector is designed to maintain a certain distance from the bottom of the wet scrubber, allowing exhaust gases entering from the bottom to rise as sulfur oxides are adsorbed. Additionally, the exhaust gases descending through the space between the cyclone dust collector and the wet scrubber collide with the scrubbing solution before entering the bottom of the wet scrubber, facilitating the absorption of SOx. In this study, the efficiency of the developed TGCS was evaluated, and the reduction effects based on design parameters were investigated. Furthermore, the impact of this device on ship engines was analyzed to assess its practical applicability. Experimental results showed that increasing the volume flow rate of the cleaning solution enhanced the PM reduction effect. Particularly, when the height of the Pall ring was 1000 mm and the volume flow rate was 35 L/min, the sulfur oxide reduction effect met the standards for Sulfur Emission Control Areas (SECA). Based on these findings, suggestions for effectively controlling atmospheric pollutants from ships were made, with the expectation of contributing to the development of systems combining various after-treatment devices. Full article
Show Figures

Figure 1

12 pages, 10429 KiB  
Article
DATIV—Remote Enhancement of Smart Aerosol Measurement System Using Raspberry Pi-Based Distributed Sensors
by Gazi Hasanuzzaman, Tom Buchwald, Christoph Schunk, Christoph Egbers, Andreas Schröder and Uwe Hampel
Sensors 2024, 24(13), 4314; https://doi.org/10.3390/s24134314 - 2 Jul 2024
Viewed by 1522
Abstract
Enclosed public spaces are hotspots for airborne disease transmission. To measure and maintain indoor air quality in terms of airborne transmission, an open source, low cost and distributed array of particulate matter sensors was developed and named Dynamic Aerosol Transport for Indoor Ventilation, [...] Read more.
Enclosed public spaces are hotspots for airborne disease transmission. To measure and maintain indoor air quality in terms of airborne transmission, an open source, low cost and distributed array of particulate matter sensors was developed and named Dynamic Aerosol Transport for Indoor Ventilation, or DATIV, system. This system can use multiple particulate matter sensors (PMSs) simultaneously and can be remotely controlled using a Raspberry Pi-based operating system. The data acquisition system can be easily operated using the GUI within any common browser installed on a remote device such as a PC or smartphone with a corresponding IP address. The software architecture and validation measurements are presented together with possible future developments. Full article
Show Figures

Figure 1

21 pages, 6824 KiB  
Article
A Multisensor Device Intended as an IoT Element for Indoor Environment Monitoring
by Andrzej Szczurek, Dawid Gonstał and Monika Maciejewska
Sensors 2024, 24(5), 1461; https://doi.org/10.3390/s24051461 - 23 Feb 2024
Cited by 7 | Viewed by 2866
Abstract
This work presents a multisensor device which is intended as an element of IoT for indoor environment (IE) monitoring. It is a portable, small-size, lightweight, energy-efficient direct-reading instrument. The device has an innovative design and construction. It offers real-time measurements of a wide [...] Read more.
This work presents a multisensor device which is intended as an element of IoT for indoor environment (IE) monitoring. It is a portable, small-size, lightweight, energy-efficient direct-reading instrument. The device has an innovative design and construction. It offers real-time measurements of a wide spectrum of physical and chemical quantities (light intensity, temperature, relative humidity, pressure, CO2 concentration, content of volatile organic compounds including formaldehyde, NO2, and particulate matter), data storage (microSD; server as an option), transmission (WiFi; GSM and Ethernet as options), and visualization (smartphone application; PC as an option). Commercial low-cost sensors were utilized, which have been arranged in the individual sensing modules. In the case of gas sensors, dynamic exposure was chosen to ensure a minimum response time. The MQTT protocol was applied for data transmission and communication with other devices, as well as with the user. The multisensor device can collect huge amounts of data about the indoor environment to provide the respective information to the IoT. The device can be configured to control actuators of various auxiliary devices and equipment including external systems used for ventilation, heating, and air conditioning. The prototype is fully operational. The exemplary results of IE monitoring were shown. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Graphical abstract

32 pages, 10642 KiB  
Review
A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches
by Gang Wu, Guoda Feng, Yuelin Li, Tao Ling, Xuejun Peng, Zhilai Su and Xiaohuan Zhao
Energies 2024, 17(3), 584; https://doi.org/10.3390/en17030584 - 25 Jan 2024
Cited by 9 | Viewed by 3650
Abstract
The DOC (diesel oxidation catalyst), DPF (diesel particulate filter), SCR (selective catalytic reduction), and ASC (ammonia slip catalyst) are widely used in diesel exhaust after-treatment systems. The thermal management of after-treatment systems using DOC, DPF, SCR, and ASC were investigated to improve the [...] Read more.
The DOC (diesel oxidation catalyst), DPF (diesel particulate filter), SCR (selective catalytic reduction), and ASC (ammonia slip catalyst) are widely used in diesel exhaust after-treatment systems. The thermal management of after-treatment systems using DOC, DPF, SCR, and ASC were investigated to improve the efficiency of these devices. This paper aims to identify the challenges of this topic and seek novel methods to control the temperature. Insulation methods and catalysts decrease the energy required for thermal management, which improves the efficiency of thermal management. Thermal insulation decreases the heat loss of the exhaust gas, which can reduce the after-treatment light-off time. The DOC light-off time was reduced by 75% under adiabatic conditions. A 400 W microwave can heat the DPF to the soot oxidation temperature of 873 K at a regeneration time of 150 s. An SCR burner can decrease NOx emissions by 93.5%. Electrically heated catalysts can decrease CO, HC, and NOx emissions by 80%, 80%, and 66%, respectively. Phase-change materials can control the SCR temperature with a two-thirds reduction in NOx emissions. Pt-Pd application in the catalyst can decrease the CO light-off temperature to 113 °C. Approaches of catalysts can enhance the efficiency of the after-treatment systems and reduce the energy consumption of thermal management. Full article
(This article belongs to the Special Issue Advanced Thermal Management Technologies and Heat Transfer)
Show Figures

Figure 1

29 pages, 6413 KiB  
Article
Model-Based Calibration and Control of Tailpipe Nitrogen Oxide Emissions in a Light-Duty Diesel Engine and Its Assessment through Model-In-The-Loop
by Stefano d’Ambrosio, Cosimo Di Dio and Roberto Finesso
Energies 2023, 16(24), 8030; https://doi.org/10.3390/en16248030 - 12 Dec 2023
Cited by 1 | Viewed by 1557
Abstract
The present paper investigates two different strategies for model-based calibration and control of tailpipe nitrogen oxide emissions in a light-duty 3.0 L diesel engine equipped with an aftertreatment system (ATS). The latter includes a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), [...] Read more.
The present paper investigates two different strategies for model-based calibration and control of tailpipe nitrogen oxide emissions in a light-duty 3.0 L diesel engine equipped with an aftertreatment system (ATS). The latter includes a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and an underfloor selective catalytic reduction (SCR) device, in which the injection of diesel exhaust fluid (DEF), marketed as ‘AdBlue’, is also taken into account. The engine was modeled in the GT-SUITE environment, and a previously developed model-based combustion controller was integrated in the model, which is capable of adjusting the start of injection of the main pulse and the total injected fuel mass, in order to achieve desired targets of engine-out nitrogen oxide emissions (NOx) and brake mean effective pressure (BMEP). First, a model-based calibration strategy consisting of the minimization of an objective function that takes into account fuel consumption and AdBlue injection was developed and assessed by exploring different weight factors. Then, a direct model-based controller of tailpipe nitrogen oxide emissions was designed, which exploits the real-time value of the SCR efficiency to define engine-out NOx emission targets for the combustion controller. Both strategies exploit the model-based combustion controller and were tested through a Model-in-the-Loop (MiL) under steady-state and transient conditions. The advantages in terms of tailpipe NOx emissions, fuel consumption, and AdBlue injection were finally discussed. Full article
(This article belongs to the Special Issue Vehicle Engines and Powertrains: Performance, Combustion and Emission)
Show Figures

Figure 1

24 pages, 5979 KiB  
Article
The Performance of Reinforcement Learning for Indoor Climate Control Devices according to the Level of Outdoor Air Particulate Matters
by Sun Ho Kim and Hyeun Jun Moon
Buildings 2023, 13(12), 3062; https://doi.org/10.3390/buildings13123062 - 8 Dec 2023
Cited by 1 | Viewed by 1841
Abstract
As people spend more than 90% of their time indoors, indoor environmental quality (IEQ) has become an important factor in maintaining a healthy space for the occupants. There are many indoor climate control devices for improving IEQ. However, it is difficult to maintain [...] Read more.
As people spend more than 90% of their time indoors, indoor environmental quality (IEQ) has become an important factor in maintaining a healthy space for the occupants. There are many indoor climate control devices for improving IEQ. However, it is difficult to maintain an appropriate IEQ with changing outdoor air conditions and occupant behavior in a building. This study proposes a reinforcement learning (RL) algorithm to maintain indoor air quality (IAQ) with low energy consumption in a residential environment by optimally operating indoor climate control devices such as ventilation systems, air purifiers, and kitchen hoods. The proposed artificial intelligence algorithm (AI2C2) employs DDQN (double deep Q-network) to determine the optimal operation of various indoor climate control devices, reflecting IAQ and energy consumption via different outdoor levels of particulate matter. This approach considers the outdoor air condition and occupant activities in training the developed algorithm, which are the most significant factors affecting IEQ and building energy performance. A co-simulation platform using Python and EnergyPlus is applied to train and evaluate the model. As a result, the proposed approach reduced energy consumption and maintained good IAQ. The developed RL algorithm for energy and IAQ showed different performances based on the outdoor PM 2.5 level. The results showed the RL-based control can be more effective when the outdoor PM 2.5 level is higher (or unhealthy) compared to moderate (or healthy) conditions. Full article
(This article belongs to the Special Issue AI and Data Analytics for Energy-Efficient and Healthy Buildings)
Show Figures

Figure 1

21 pages, 8367 KiB  
Article
Design and Implementation of a Crowdsensing-Based Air Quality Monitoring Open and FAIR Data Infrastructure
by Paolo Diviacco, Massimiliano Iurcev, Rodrigo José Carbajales, Alberto Viola and Nikolas Potleca
Processes 2023, 11(7), 1881; https://doi.org/10.3390/pr11071881 - 23 Jun 2023
Cited by 6 | Viewed by 1538
Abstract
This work reports on the development of a real-time vehicle sensor network (VSN) system and infrastructure devised to monitor particulate matter (PM) in urban areas within a participatory paradigm. The approach is based on the use of multiple vehicles where sensors, acquisition and [...] Read more.
This work reports on the development of a real-time vehicle sensor network (VSN) system and infrastructure devised to monitor particulate matter (PM) in urban areas within a participatory paradigm. The approach is based on the use of multiple vehicles where sensors, acquisition and transmission devices are installed. PM values are measured and transmitted using standard mobile phone networks. Given the large number of acquisition platforms needed in crowdsensing, sensors need to be low-cost (LCS). This sets limitations in the precision and accuracy of measurements that can be mitigated using statistical methods on redundant data. Once data are received, they are automatically quality controlled, processed and mapped geographically to produce easy-to-understand visualizations that are made available in almost real time through a dedicated web portal. There, end users can access current and historic data and data products. The system has been operational since 2021 and has collected over 50 billion measurements, highlighting several hotspots and trends of air pollution in the city of Trieste (north-east Italy). The study concludes that (i) this perspective allows for drastically reduced costs and considerably improves the coverage of measurements; (ii) for an urban area of approximately 100,000 square meters and 200,000 inhabitants, a large quantity of measurements can be obtained with a relatively low number (5) of public buses; (iii) a small number of private cars, although less easy to organize, can be very important to provide infills in areas where buses are not available; (iv) appropriate corrections for LCS limitations in accuracy can be calculated and applied using reference measurements taken with high-quality standardized devices and methods; and that (v) analyzing the dispersion of measurements in the designated area, it is possible to highlight trends of air pollution and possibly associate them with traffic directions. Crowdsensing and open access to air quality data can provide very useful data to the scientific community but also have great potential in fostering environmental awareness and the adoption of correct practices by the general public. Full article
(This article belongs to the Special Issue Air Quality Monitoring for Smart Cities and Industrial Applications)
Show Figures

Figure 1

24 pages, 7058 KiB  
Review
Chitosan-Based Particulate Carriers: Structure, Production and Corresponding Controlled Release
by Jiaqi Weng, Alain Durand and Stéphane Desobry
Pharmaceutics 2023, 15(5), 1455; https://doi.org/10.3390/pharmaceutics15051455 - 10 May 2023
Cited by 11 | Viewed by 2231
Abstract
The state of the art in the use of chitosan (CS) for preparing particulate carriers for drug delivery applications is reviewed. After evidencing the scientific and commercial potentials of CS, the links between targeted controlled activity, the preparation process and the kinetics of [...] Read more.
The state of the art in the use of chitosan (CS) for preparing particulate carriers for drug delivery applications is reviewed. After evidencing the scientific and commercial potentials of CS, the links between targeted controlled activity, the preparation process and the kinetics of release are detailed, focusing on two types of particulate carriers: matrix particles and capsules. More precisely, the relationship between the size/structure of CS-based particles as multifunctional delivery systems and drug release kinetics (models) is emphasized. The preparation method and conditions greatly influence particle structure and size, which affect release properties. Various techniques available for characterizing particle structural properties and size distribution are reviewed. CS particulate carriers with different structures can achieve various release patterns, including zero-order, multi-pulsed, and pulse-triggered. Mathematical models have an unavoidable role in understanding release mechanisms and their interrelationships. Moreover, models help identify the key structural characteristics, thus saving experimental time. Furthermore, by investigating the close relation between preparation process parameters and particulate structural characteristics as well as their effect on release properties, a novel “on-demand” strategy for the design of drug delivery devices may be developed. This reverse strategy involves designing the production process and the related particles’ structure based on the targeted release pattern. Full article
Show Figures

Graphical abstract

11 pages, 4205 KiB  
Article
A Real-Time Approach to Detect PM2.5 in a Seriously Polluted Environment Based on Pressure Drop
by Jialin Li, Lina Zheng, Peng Xuan and Ruiyan Huo
Atmosphere 2022, 13(8), 1237; https://doi.org/10.3390/atmos13081237 - 4 Aug 2022
Cited by 3 | Viewed by 3020
Abstract
A differential pressure-based low-cost PM2.5 detection system was developed for particulate matter measurement in polluted environments. The PM2.5 monitor consists of a sampling device, a pump, a pressure sensor, and a control circuit. Two sampling devices including a foam penetration-filter tube [...] Read more.
A differential pressure-based low-cost PM2.5 detection system was developed for particulate matter measurement in polluted environments. The PM2.5 monitor consists of a sampling device, a pump, a pressure sensor, and a control circuit. Two sampling devices including a foam penetration-filter tube and a cyclone-filter holder were applied. Tests were conducted in a haze environment and laboratory particle chambers with varying PM2.5 concentration. The pressure data were related to the PM2.5 concentration recorded by Dusttrak to show the calibration process and the performance of this instrument. Results showed the concentration information given by the instrument was consistent with the actual concentration in the experiment, and this instrument was more suitable for seriously polluted environment detection. Concentration oscillation of the pressure-based PM2.5 monitor caused by turbulent flow could be reduced by a longer calculation interval and data averaging in the calculation process. As a low-cost sensor, the pressure-based PM2.5 monitor still has good performance and application value for detecting high-concentration PM2.5 in atmospheric environments or workplaces. Full article
(This article belongs to the Special Issue Control and Purification of Particulate Matter)
Show Figures

Figure 1

14 pages, 6437 KiB  
Article
Effect of a Plasma Burner on NOx Reduction and Catalyst Regeneration in a Marine SCR System
by Jaehwan Jang, Seongyool Ahn, Sangkyung Na, Jinhee Koo, Heehwan Roh and Gyungmin Choi
Energies 2022, 15(12), 4306; https://doi.org/10.3390/en15124306 - 12 Jun 2022
Cited by 8 | Viewed by 2386
Abstract
The problem of environmental pollution by the combustion of fossil fuels in diesel engines, to which NOx emission is a dominant culprit, has accelerated global environmental pollution and global and local health problems such as lung disease, cancer, and acid rain. Among various [...] Read more.
The problem of environmental pollution by the combustion of fossil fuels in diesel engines, to which NOx emission is a dominant culprit, has accelerated global environmental pollution and global and local health problems such as lung disease, cancer, and acid rain. Among various De-NOx technologies, SCR (Selective Catalytic Reduction) systems are known to be the most effective technology for actively responding to environmental regulations set by the IMO (International Maritime Organization) in marine diesel applications. The ammonia mixes with the exhaust gas and reacts with the NOx molecules on the catalyst surface to form harmless N2 and H2O. However, since the denitrification efficiency of NOx can be rapidly changed depending on the operating temperature from 250 °C to 350 °C at 0.1% sur contents of the catalyst used in the SCR, a device capable of controlling the exhaust gas temperature is essential for the normal operation of the catalyst. In addition, when the catalyst is exposed to SOx in a low exhaust gas temperature environment, the catalyst is unable to reduce the oxidation reaction of the catalyst, thereby remarkably lowering the De-NOx efficiency. However, if the exhaust gas temperature is set to a high temperature of 360–410 °C, the poisoned catalyst can be regenerated through a reduction process, so that a burner capable of producing a high temperature condition is essential. In this study, a plasma burner system was applied to control the exhaust gas temperature, improving the De-NOx efficiency from the engine and regenerating catalysts from PM (Particulate Matter), SOOT and ABS (ammonia bisulfate), i.e., catalyst poisoning. Through the burner system, the optimum De-NOx performance was experimentally investigated by controlling the temperature to the operating region of the catalyst, and it was shown that the regeneration efficiency in each high temperature (360/410 °C) environment was about 95% or more as compared with the initial performance. From the results of this study, it can be concluded that this technology can positively contribute to the enhancement of catalyst durability and De-NOx performance. Full article
Show Figures

Figure 1

Back to TopTop