Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = particle self-interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2352 KB  
Article
Dynamic Interaction Mechanism Between Periphytic Algae and Flow in Open Channels
by Ming-Yang Xu, Wei-Jie Wang, Fei Dong, Yu Han, Jun-Li Yu, Feng-Cong Jia and Cai-Ling Zheng
Processes 2025, 13(8), 2551; https://doi.org/10.3390/pr13082551 - 13 Aug 2025
Viewed by 396
Abstract
Periphytic algae, as representative aquatic epiphytic communities, play a vital role in the material cycling and energy flow in rivers. Through physiological processes such as photosynthetic carbon fixation and nutrient absorption, they perform essential ecological functions in water self-purification, maintenance of primary productivity, [...] Read more.
Periphytic algae, as representative aquatic epiphytic communities, play a vital role in the material cycling and energy flow in rivers. Through physiological processes such as photosynthetic carbon fixation and nutrient absorption, they perform essential ecological functions in water self-purification, maintenance of primary productivity, and microhabitat formation. This study investigates the interaction mechanisms between these highly flexible organisms and the hydrodynamic environment, thereby addressing the limitations of traditional hydraulic theories developed for rigid vegetation. By incorporating the coupled effects of biological flexibility and water flow, an innovative nonlinear resistance model with velocity-dependent response is developed. Building upon this model, a coupled governing equation that integrates water flow dynamics, periphytic algae morphology, and layered Reynolds stress is formulated. An analytical solution for the vertical velocity distribution is subsequently derived using analytical methods. Through Particle Image Velocimetry (PIV) measurements conducted under varying flow velocity conditions in an experimental tank, followed by comprehensive error analysis, the accuracy and applicability of the model were verified. The results demonstrate strong agreement between predicted and measured values, with the coefficient of determination R2 greater than 0.94, thereby highlighting the model’s predictive capacity in capturing flow velocity distributions influenced by periphytic algae. The findings provide theoretical support for advancing the understanding of ecological hydrodynamics and establish mechanical and theoretical foundations for river water environment management and vegetation restoration. Future research will build upon the established nonlinear resistance model to investigate the dynamic coupling mechanisms between multi-species periphytic algae communities and turbulence-induced pulsations, aiming to enhance the predictive modelling of biotic–hydrodynamic feedback processes in aquatic ecosystems. Full article
(This article belongs to the Special Issue Advances in Hydrodynamics, Pollution and Bioavailable Transfers)
Show Figures

Figure 1

19 pages, 1476 KB  
Article
Network Design and Content Deployment Optimization for Cache-Enabled Multi-UAV Socially Aware Networks
by Yikun Zou, Gang Wang, Guanyi Chen, Jinlong Wang, Siyuan Yu, Chenxu Wang and Zhiquan Zhou
Drones 2025, 9(8), 568; https://doi.org/10.3390/drones9080568 - 12 Aug 2025
Viewed by 304
Abstract
Unmanned aerial vehicles (UAVs) with high mobility and self-organization capabilities can establish highly connected networks to cache popular content for edge users, which improves network stability and significantly reduces access time. However, an uneven distribution of demand and storage capacity may reduce the [...] Read more.
Unmanned aerial vehicles (UAVs) with high mobility and self-organization capabilities can establish highly connected networks to cache popular content for edge users, which improves network stability and significantly reduces access time. However, an uneven distribution of demand and storage capacity may reduce the utilization of the storage capacity of UAVs without a proper UAV coordination mechanism. This work proposes a multi-UAV-enabled caching socially aware network (SAN) where UAVs can switch roles by adjusting the social attributes, effectively enhancing data interaction within the UAVs. The proposed network breaks down communication barriers at the UAV layer and integrates the collective storage resources by incorporating social awareness mechanisms to mitigate these imbalances. Furthermore, we formulate a multi-objective optimization problem (MOOP) with the objectives of maximizing both the diversity of cached content and the total request probability (RP) of the network, while employing a multi-objective particle swarm optimization (MOPSO) algorithm with a mutation strategy to approximate the Pareto front. Finally, the impact of key parameters on the Pareto front is analyzed under various scenarios. Simulation results validate the benefits of leveraging social attributes for resource allocation and demonstrate the effectiveness and convergence of the proposed algorithm for the multi-UAV caching strategy. Full article
Show Figures

Figure 1

55 pages, 3080 KB  
Review
Controlling Sedimentation in Magnetorheological Fluids Through Ultrasound–Magnetic Field Coupling: Multiscale Analysis and Applications
by Annunziata Palumbo and Mario Versaci
Mathematics 2025, 13(15), 2540; https://doi.org/10.3390/math13152540 - 7 Aug 2025
Viewed by 434
Abstract
Magnetorheological fluids (MRFs) are multiphase materials whose viscosity can be controlled via magnetic fields. However, particle sedimentation undermines their long-term stability. This review examines stabilization strategies based on the interaction between ultrasonic waves and time-varying magnetic fields, analyzed through advanced mathematical models. The [...] Read more.
Magnetorheological fluids (MRFs) are multiphase materials whose viscosity can be controlled via magnetic fields. However, particle sedimentation undermines their long-term stability. This review examines stabilization strategies based on the interaction between ultrasonic waves and time-varying magnetic fields, analyzed through advanced mathematical models. The propagation of acoustic waves in spherical and cylindrical domains is studied, including effects such as cavitation, acoustic radiation forces, and viscous attenuation. The Biot–Stoll poroelastic model is employed to describe saturated granular media, while magnetic field modulation is investigated as a means to balance gravitational settling. The analysis highlights how acousto-magnetic coupling supports the design of programmable and self-stabilizing intelligent fluids for complex applications. Full article
(This article belongs to the Special Issue Engineering Thermodynamics and Fluid Mechanics)
Show Figures

Figure 1

14 pages, 2448 KB  
Article
Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane
by Bo Wang, Zhanqi He, Jin Lin, Kang Ren, Zhengyang Zhao, Kaihe Lv, Yiting Liu and Jiafeng Jin
Processes 2025, 13(8), 2453; https://doi.org/10.3390/pr13082453 - 3 Aug 2025
Viewed by 387
Abstract
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing [...] Read more.
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing a critical role in determining CBM output. However, during extended horizontal drilling, wellbore instability frequently occurs as a result of drilling fluid invasion into the coal formation, posing significant safety challenges. This instability is primarily caused by the physical intrusion of drilling fluids and their interactions with the coal seam, which alter the mechanical integrity of the formation. To address these challenges, interpenetrating and semi-interpenetrating network (IPN/s-IPN) hydrogels have gained attention due to their superior physicochemical properties. This material offers enhanced sealing and support performance across fracture widths ranging from micrometers to millimeters, making it especially suited for plugging applications in deep CBM reservoirs. A self-degradable interpenetrating double-network hydrogel particle plugging agent (SSG) was developed in this study, using polyacrylamide (PAM) as the primary network and an ionic polymer as the secondary network. The SSG demonstrated excellent thermal stability, remaining intact for at least 40 h in simulated formation water at 120 °C with a degradation rate as high as 90.8%, thereby minimizing potential damage to the reservoir. After thermal aging at 120 °C, the SSG maintained strong plugging performance and favorable viscoelastic properties. A drilling fluid containing 2% SSG achieved an invasion depth of only 2.85 cm in an 80–100 mesh sand bed. The linear viscoelastic region (LVR) ranged from 0.1% to 0.98%, and the elastic modulus reached 2100 Pa, indicating robust mechanical support and deformation resistance. Full article
Show Figures

Figure 1

16 pages, 1681 KB  
Article
Thermal–Condensate Collisional Effects on Atomic Josephson Junction Dynamics
by Klejdja Xhani and Nick P. Proukakis
Atoms 2025, 13(8), 68; https://doi.org/10.3390/atoms13080068 - 22 Jul 2025
Viewed by 569
Abstract
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical [...] Read more.
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical inclusion of collisional processes facilitating the exchange of particles between the condensate and the thermal cloud impacts both the condensate and the thermal currents, demonstrating that their relative importance depends on the system’s dynamical regime. Our study is performed within the full context of the Zaremba–Nikuni–Griffin (ZNG) formalism, which couples a dissipative Gross–Pitaevskii equation for the condensate dynamics to a quantum Boltzmann equation with collisional terms for the thermal cloud. In the Josephson plasma oscillation and vortex-induced dissipative regimes, collisions markedly alter dynamics at intermediate-to-high temperatures, amplifying damping in the condensate imbalance mode and inducing measurable frequency shifts. In the self-trapping regime, collisions destabilize the system even at low temperatures, prompting a transition to Josephson-like dynamics on a temperature-dependent timescale. Our results show the interplay between coherence, dissipation, and thermal effects in a Bose–Einstein condensate at a finite temperature, providing a framework for tailoring Josephson junction dynamics in experimentally accessible regimes. Full article
(This article belongs to the Special Issue Quantum Technologies with Ultracold Atoms)
Show Figures

Figure 1

14 pages, 4097 KB  
Article
Preparation and Performance Evaluation of Graphene Oxide-Based Self-Healing Gel for Lost Circulation Control
by Wenzhe Li, Pingya Luo and Xudong Wang
Polymers 2025, 17(15), 1999; https://doi.org/10.3390/polym17151999 - 22 Jul 2025
Viewed by 439
Abstract
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete [...] Read more.
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete particles that progressively swell, accumulate, and self-repair in integrated gel masses to effectively seal fracture networks. Self-healing gels effectively overcome the shortcomings of traditional bridging agents including poor adaptability to fractures, uncontrollable gel formation of conventional downhole crosslinking gels, and the low strength of conventional pre-crosslinked gels. This work employs stearyl methacrylate (SMA) as a hydrophobic monomer, acrylamide (AM) and acrylic acid (AA) as hydrophilic monomers, and graphene oxide (GO) as an inorganic dopant to develop a GO-based self-healing organic–inorganic hybrid plugging material (SG gel). The results demonstrate that the incorporation of GO significantly enhances the material’s mechanical and rheological properties, with the SG-1.5 gel exhibiting a rheological strength of 3750 Pa and a tensile fracture stress of 27.1 kPa. GO enhances the crosslinking density of the gel network through physical crosslinking interactions, thereby improving thermal stability and reducing the swelling ratio of the gel. Under conditions of 120 °C and 6 MPa, SG-1.5 gel demonstrated a fluid loss volume of only 34.6 mL in 60–80-mesh sand bed tests. This gel achieves self-healing within fractures through dynamic hydrophobic associations and GO-enabled physical crosslinking interactions, forming a compact plugging layer. It provides an efficient solution for lost circulation control in drilling fluids. Full article
Show Figures

Figure 1

14 pages, 7478 KB  
Article
Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production
by Junbo Yu, Guiming Ba, Fuhong Bi, Huilin Hu, Jinhua Ye and Defa Wang
Catalysts 2025, 15(7), 691; https://doi.org/10.3390/catal15070691 - 20 Jul 2025
Viewed by 498
Abstract
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly [...] Read more.
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly for enhanced photocatalytic H2 production. SEM and TEM results show that Ta3N5 particles (~300 nm in size) are successfully anchored onto the surface of TCN. The light absorption capability of the Ta3N5/TCN heterojunction is between those of Ta3N5 and TCN. The strong interaction between Ta3N5 and TCN with different energy structures (Fermi levels) by van der Waals force renders the formation of an interfacial electric field to drive the separation and transfer of photogenerated charge carriers in the Ta3N5/TCN heterojunction, as evidenced by the photoluminescence (PL) and photoelectrochemical (PEC) characterization results. Consequently, the optimal Ta3N5/TCN heterojunction exhibits a remarkable H2 production rate of 12.73 mmol g−1 h−1 under visible light irradiation, which is 3.3 and 16.8 times those of TCN and Ta3N5, respectively. Meanwhile, the cyclic experiment demonstrates excellent stability of the Ta3N5/TCN heterojunction upon photocatalytic reaction. Notably, the photocatalytic performance of 15-TaN/TCN outperforms the most previously reported CN-based and Ta3N5-based heterojunctions for H2 production. This work provides a new avenue for the rational design of CN-based van der Waals heterojunction photocatalysts with enhanced photocatalytic activity. Full article
Show Figures

Figure 1

18 pages, 6970 KB  
Article
Study on Lateral Erosion Failure Behavior of Reinforced Fine-Grained Tailings Dam Due to Overtopping Breach
by Yun Luo, Mingjun Zhou, Menglai Wang, Yan Feng, Hongwei Luo, Jian Ou, Shangwei Wu and Xiaofei Jing
Water 2025, 17(14), 2088; https://doi.org/10.3390/w17142088 - 12 Jul 2025
Viewed by 428
Abstract
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically [...] Read more.
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically investigates lateral erosion failure patterns of reinforced fine-grained tailings under overtopping flow conditions. Utilizing a self-developed hydraulic initiation test apparatus, with aperture sizes of reinforced geogrids (2–3 mm) and flow rates (4–16 cm/s) as key control variables, the research elucidates the interaction mechanisms of “hydraulic scouring-particle migration-geogrid anti-sliding” during lateral erosion processes. The study revealed that compared to unreinforced specimens, reinforced specimens with varying aperture sizes (2–3 mm) demonstrated systematic reductions in final lateral erosion depths across flow rates (4–16 cm/s): 3.3–5.8 mm (15.6−27.4% reduction), 3.1–7.2 mm (12.8–29.6% reduction), 2.3–11 mm (6.9–32.8% reduction), and 2.5–11.4 mm (6.2–28.2% reduction). Smaller-aperture geogrids (2 mm × 2 mm) significantly enhanced anti-erosion performance through superior particle migration inhibition. Concurrently, a pronounced positive correlation between flow rate and lateral erosion depth was confirmed, where increased flow rates weakened particle erosion resistance and exacerbated lateral erosion severity. The numerical simulation results are in basic agreement with the lateral erosion failure process observed in model tests, revealing the dynamic process of lateral erosion in the overtopping breach of a reinforced tailings dam. These findings provide critical theoretical foundations for optimizing reinforced tailings dam design, construction quality control, and operational maintenance, while offering substantial engineering applications for advancing green mine construction. Full article
Show Figures

Figure 1

23 pages, 697 KB  
Article
Preparation, Physicochemical Properties and Stability of Anthocyanin Nanoliposomes Before and After Double-Layer Modification Using Synanthrin and Pea Protein Isolate
by Lianlian Zhang, Aniya, Shengping Xing, Jing Li, Ying Liu, Chaozhi Li, Jianhang Zhu, Yan Li and Xiaoji Fu
Molecules 2025, 30(14), 2892; https://doi.org/10.3390/molecules30142892 - 8 Jul 2025
Viewed by 448
Abstract
Anthocyanins (ACNs), characterized by their polyhydroxy structures, exhibit high susceptibility to external environmental factors, which significantly limits their application in the food and industrial sectors. To enhance the stability of anthocyanins, anthocyanin nanoliposomes (ACN-NLs) were developed, with encapsulation efficiency, particle size and zeta [...] Read more.
Anthocyanins (ACNs), characterized by their polyhydroxy structures, exhibit high susceptibility to external environmental factors, which significantly limits their application in the food and industrial sectors. To enhance the stability of anthocyanins, anthocyanin nanoliposomes (ACN-NLs) were developed, with encapsulation efficiency, particle size and zeta potential serving as key evaluation parameters. Furthermore, through layer-by-layer self-assembly and electrostatic interactions, ACN-NLs were modified using synanthrin (SY) and pea protein isolate (PPI). Consequently, PPI-modified ACN-NLs (PPI-ACN-NLs) and SY-PPI-modified ACN-NLs (SY-PPI-ACN-NLs) were successfully synthesized. In this study, the structural characteristics of liposomes were investigated using X-ray diffraction (XRD), their in vitro digestibility was evaluated, and their stability under different temperatures, light conditions, and simulated food system conditions was assessed. The results demonstrated that when the mass ratio of soybean lecithin to cholesterol, soybean lecithin to anhydrous ethanol, and drug-to-lipid ratio were set at 5:1, 3:100, and 3:10, respectively, with an ACN concentration of 4 mg/mL, a pea protein solution with pH 3.0, a PPI concentration of 10 mg/mL, and an SY concentration of 8 mg/mL, the prepared ACN-NLs, PPI-ACN-NLs, and SY-PPI-ACN-NLs exhibited optimal performance. Their respective encapsulation efficiencies were 52.59 ± 0.24%, 83.80 ± 0.43%, and 90.38 ± 0.24%; average particle sizes were 134.60 ± 0.76 nm, 213.20 ± 0.41 nm, and 246.60 ± 0.24 nm zeta potentials were −32.4 ± 0.75 mV, −27.46 ± 0.69 mV, and −16.93 ± 0.31 mV. The changes in peak shape observed via X-ray diffraction (XRD), in vitro digestion profiles, and alterations in anthocyanin release rates under different conditions collectively indicated that the modification of ACN-NLs using SY and PPI enhanced the protective effect on the ACNs, improving their biological activity, and providing a robust foundation for the practical application of ACNs. Full article
Show Figures

Figure 1

13 pages, 3705 KB  
Article
Molecular Simulations of Interface-Driven Crosslinked Network Formation and Mechanical Response in Composite Propellants
by Chen Ling, Xinke Zhang, Xin Li, Guozhu Mou, Xiang Guo, Bing Yuan and Kai Yang
Polymers 2025, 17(13), 1863; https://doi.org/10.3390/polym17131863 - 3 Jul 2025
Viewed by 536
Abstract
Composite solid propellants, which serve as the core energetic materials in aerospace and military propulsion systems, necessitate tailored enhancement of their mechanical properties to ensure operational safety and stability. A critical challenge involves elucidating the interfacial interactions among the multiple propellant components (≥6 [...] Read more.
Composite solid propellants, which serve as the core energetic materials in aerospace and military propulsion systems, necessitate tailored enhancement of their mechanical properties to ensure operational safety and stability. A critical challenge involves elucidating the interfacial interactions among the multiple propellant components (≥6 components, including the polymer binder HTPB, curing agent IPDI, oxidizer particles AP/Al, bonding agents MAPO/T313, plasticizer DOS, etc.) and their influence on crosslinked network formation. In this study, we propose an integrated computational framework that combines coarse-grained simulations with reactive force fields to investigate these complex interactions at the molecular level. Our approach successfully elucidates the two-step reaction mechanism propagating along the AP interface in multicomponent propellants, comprising interfacial self-polymerization of bonding agents followed by the participation of curing agents in crosslinked network formation. Furthermore, we assess the mechanical performance through tensile simulations, systematically investigating both defect formation near the interface and the influence of key parameters, including the self-polymerization time, HTPB chain length, and IPDI content. Our results indicate that the rational selection of parameters enables the optimization of mechanical properties (e.g., ~20% synchronous improvement in tensile modulus and strength, achieved by selecting a side-chain ratio of 20%, a DOS molar ratio of 2.5%, a MAPO:T313 ratio of 1:2, a self-polymerization MAPO time of 260 ns, etc.). Overall, this study provides molecular-level insights into the structure–property relationships of composite propellants and offers a valuable computational framework for guided formulation optimization in propellant manufacturing. Full article
(This article belongs to the Collection Polymerization and Kinetic Studies)
Show Figures

Figure 1

17 pages, 4994 KB  
Article
3D Printability of Lysine-Modified Myofibrillar Protein Emulsions
by Lin Liao, Zilan Feng, Yoon-Yen Yow, Yajie Song, Yuxiao Liu, Lixiang Qin, Xiaofei Wu, Zhisheng Pei and Changfeng Xue
Foods 2025, 14(12), 2138; https://doi.org/10.3390/foods14122138 - 19 Jun 2025
Viewed by 489
Abstract
This study explores the potential of lysine (Lys) and tilapia myofibrillar protein (MP) composite particles in the formulation of highly inwardly directed emulsions (HIPEs). Infrared spectroscopy, potentiometric analysis, and molecular docking studies revealed that the interaction between Lys and MP is primarily governed [...] Read more.
This study explores the potential of lysine (Lys) and tilapia myofibrillar protein (MP) composite particles in the formulation of highly inwardly directed emulsions (HIPEs). Infrared spectroscopy, potentiometric analysis, and molecular docking studies revealed that the interaction between Lys and MP is primarily governed by hydrogen bonding and electrostatic forces. The incorporation of Lys significantly influenced the particle size, secondary and tertiary structures, solubility, and turbidity of MP. Lys-MP-stabilized HIPEs can form highly stable denser self-supporting gel network structures. Rheological analysis of HIPEs stabilized by MP showed a low energy storage modulus (G’ 110.66 Pa) and water–oil separation, therefore preventing 3D printing. However, HIPEs stabilized by Lys (especially 1.5 wt%) significantly improved the energy storage modulus (G’ 1002.10 Pa), increased viscoelasticity and thixotropic recovery, and reduced droplet size (10.84 μm), facilitating the use of HIPE inks for 3D printing. Furthermore, HIPEs stabilized with 1.5 wt% Lys-MP demonstrated superior print accuracy (91.36%), resolution, and clarity in 3D printing applications. Overall, these findings offer a promising strategy for developing Lys-MP composite particle-stabilized HIPEs tailored for advanced 3D printing technologies. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 337 KB  
Communication
Quantization on the Ideal Boundary and the Finite Widths of Resonances
by Simon Davis
Quantum Rep. 2025, 7(2), 27; https://doi.org/10.3390/quantum7020027 - 12 Jun 2025
Viewed by 880
Abstract
Conformal field theory is quantized on the ideal boundary of a Riemann surface, and the effect on the widths of the resonances of the quantum states is evaluated. The resonances on a surface can be recast in terms of eigenfunctions of a differential [...] Read more.
Conformal field theory is quantized on the ideal boundary of a Riemann surface, and the effect on the widths of the resonances of the quantum states is evaluated. The resonances on a surface can be recast in terms of eigenfunctions of a differential operator on the Mandelstam plane. Cusps in this plane, representing Landau singularities, reflect a divergence in the coupling. A cusp on the Riemann surface similarly causes a divergence in the scattering amplitude. The interpretation of the string diagram indicates that the self-interaction of the string in the vicinity of the cusp causes it to implode, which would require an infinite coupling. A consistent physical interpretation of cusps on surfaces requires supersymmetry. The study of unitary minimal models and N = 2 superminimal models indicates that there can exist a set of resonances at the cusps and ends of the surfaces. The uncertainty in the masses of six types of particles at a finite set of cusps is infinitesimal. Tachyon condensation on the ideal boundary would introduce an uncertainty in the mass of a charged particle. The widths of charged particle resonances at the ends of infinite-genus surfaces is not negligible and can be traced to the coupling with tachyons. Full article
28 pages, 6876 KB  
Article
Research on the Power Generation Performance of Solid–Liquid Triboelectric Nanogenerator Based on Surface Microstructure Modification
by Wei Wang, Ge Chen, Jin Yan, Gaoyong Zhang, Zihao Weng, Xianzhang Wang, Hongchen Pang, Lijun Wang and Dapeng Zhang
Nanomaterials 2025, 15(11), 872; https://doi.org/10.3390/nano15110872 - 5 Jun 2025
Cited by 1 | Viewed by 827
Abstract
Since 2015, research on liquid–solid triboelectric nanogenerators (L-S TENGs) has shown steady growth, with the primary focus on application domains such as engineering, physics, materials science, and chemistry. These applications have underscored the significant attention L-S TENGs have garnered in areas like human–nature [...] Read more.
Since 2015, research on liquid–solid triboelectric nanogenerators (L-S TENGs) has shown steady growth, with the primary focus on application domains such as engineering, physics, materials science, and chemistry. These applications have underscored the significant attention L-S TENGs have garnered in areas like human–nature interaction, energy harvesting, data sensing, and enhancing living conditions. Presently, doping composite dielectric materials and surface modification techniques are the predominant methods for improving the power generation capacity of TENGs, particularly L-S TENGs. However, studies exploring the combined effects of these two approaches to enhance the power generation capacity of TENGs remain relatively scarce. Following a review of existing literature on the use of composite material doping and surface modification to improve the power generation performance of L-S TENGs, this paper proposes an experimental framework termed “self-assembled surface TENG@carbonyl iron particle doping (SAS-TENG@CIP)” to investigate the integrated power generation effects of L-S TENGs when combining these two methods. Research cases and data results indicate that, for TENGs exhibiting capacitor-like properties, the enhancement of power generation performance through composite material doping and superhydrophobic surface modification is not limitless. Each process possesses its own inherent threshold. When these thresholds are surpassed, the percolation of current induced by material doping and electrostatic breakdown (EB) triggered by surface modification can lead to a notable decline in the power output capacity of L-S TENGs. Consequently, in practical applications moving forward, fully realizing the synergistic potential of these methods necessitates a profound understanding of the underlying scientific mechanisms. The conclusions and insights presented in this paper may facilitate their complex integration and contribute to enhancing power generation efficiency in future research. Full article
(This article belongs to the Special Issue Advanced Technology in Nanogenerators and Self-Powered Sensors)
Show Figures

Figure 1

31 pages, 3309 KB  
Article
Optimal Placement and Sizing of Distributed PV-Storage in Distribution Networks Using Cluster-Based Partitioning
by Xiao Liu, Pu Zhao, Hanbing Qu, Ning Liu, Ke Zhao and Chuanliang Xiao
Processes 2025, 13(6), 1765; https://doi.org/10.3390/pr13061765 - 3 Jun 2025
Cited by 1 | Viewed by 572
Abstract
Conventional approaches for distributed generation (DG) planning often fall short in addressing operational demands and regional control requirements within distribution networks. To overcome these limitations, this paper introduces a cluster-oriented DG planning method. In terms of cluster partitioning, this study breaks through the [...] Read more.
Conventional approaches for distributed generation (DG) planning often fall short in addressing operational demands and regional control requirements within distribution networks. To overcome these limitations, this paper introduces a cluster-oriented DG planning method. In terms of cluster partitioning, this study breaks through the limitations of traditional methods that solely focus on electrical parameters or single functions. Innovatively, it partitions the distribution network by comprehensively considering multiple critical factors such as system grid structure, nodal load characteristics, electrical coupling strength, and power balance, thereby establishing a unique multi-level grid structure of **distribution network—cluster—node**. This partitioning approach not only effectively reduces inter-cluster reactive power transmission and enhances regional power self-balancing capabilities but also lays a solid foundation for the precise planning of subsequent distributed energy resources. It represents a functional expansion that existing cluster partitioning methods have not fully achieved. In the construction of the planning model, a two-layer coordinated siting and sizing planning model for distributed photovoltaics (DPV) and energy storage systems (ESS) is proposed based on cluster partitioning. In contrast to traditional models, this model for the first time considers the interaction between power source planning and system operation across different time scales. The upper layer aims to minimize the annual comprehensive cost by optimizing the capacity and power allocation of DPV and ESS in each cluster. The lower layer focuses on minimizing system network losses to precisely determine the PV connection capacity of each node within the cluster and the grid connection locations of ESS, achieving comprehensive optimization from macro to micro levels. For the solution algorithm, a two-layer iterative hybrid particle swarm algorithm (HPSO) embedded with power flow calculation is designed. Compared to traditional single particle swarm algorithms, HPSO integrates power flow calculations, allowing for a more accurate consideration of the actual operating conditions of the power grid and avoiding the issue in traditional methods where the current and voltage distribution are often neglected in the optimization process. Additionally, HPSO, through its two-layer iterative approach, is able to better balance global and local search, effectively improving the solution efficiency and accuracy. This algorithm integrates the advantages of the particle swarm optimization algorithm and the binary particle swarm optimization algorithm, achieving iterative solutions through efficient information exchange between the two layers of particle swarms. Compared with conventional particle swarm algorithms and other related algorithms, it represents a qualitative leap in computational efficiency and accuracy, enabling faster and more accurate handling of complex planning problems. Case studies on a real 10 kV distribution network validate the practicality of the proposed framework and the robustness of the solution technique. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 10642 KB  
Article
Rose Bengal–Chitosan Nanocomposites for Oral Administration
by Sara Demartis, Camila J. Picco, Octavio E. Fandiño, Eneko Larrañeta, Ryan F. Donnelly, Paolo Giunchedi, Giovanna Rassu and Elisabetta Gavini
Nanomaterials 2025, 15(10), 706; https://doi.org/10.3390/nano15100706 - 8 May 2025
Viewed by 582
Abstract
Rose Bengal (RB) holds promise for therapeutic applications in the gastrointestinal (GI) tract but faces significant limitations due to poor bioavailability and stability in the GI environment. This in vitro proof-of-concept study aimed to develop an oral drug delivery system using self-assembled RB–chitosan [...] Read more.
Rose Bengal (RB) holds promise for therapeutic applications in the gastrointestinal (GI) tract but faces significant limitations due to poor bioavailability and stability in the GI environment. This in vitro proof-of-concept study aimed to develop an oral drug delivery system using self-assembled RB–chitosan (RBCS) nanocomposites formed via electrostatic interactions. RBCS nanocomposites exhibited high drug loading efficiency (87%) and a uniform particle size (~443 nm), with physicochemical analyses confirming molecular interactions and structural stability. However, in vitro studies revealed poor and highly variable drug release in simulated gastric fluids (SGFs), underlining the need for further optimization. To address these limitations, RBCS nanocomposites were encapsulated within well-established alginate beads (AlgBs). Among the tested systems, RBCS20-AlgBs were selected as the optimal one, forming a gastroresistant platform. Encapsulation mitigated burst release, enhanced structural integrity, and enabled sustained RB release under intestinal conditions. Swelling studies demonstrated that RBCS20-AlgBs maintained controlled hydration, preventing premature disintegration. Mathematical modeling indicated a matrix relaxation-driven release mechanism, with RBCS20-AlgBs demonstrating improved reproducibility compared to RB-loaded AlgBs (RB-AlgBs). Future studies should focus on evaluating in vivo performance to confirm the system’s efficacy for oral administration. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

Back to TopTop