Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = parasitic layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1449 KB  
Article
Enhanced Cycling Stability of High-Voltage Sodium-Ion Batteries via DFEC-Driven Fluorinated Interface Engineering
by Xin Li, Yali Yao and Xinying Liu
Reactions 2025, 6(4), 52; https://doi.org/10.3390/reactions6040052 - 1 Oct 2025
Abstract
With their considerable capacity and structurally favorable characteristics, layered transition metal oxides have become strong contenders for cathode use in sodium-ion batteries (SIBs). Nevertheless, their practical deployment is challenged by pronounced capacity loss, predominantly induced by unstable cathode–electrolyte interphase (CEI) at elevated voltages. [...] Read more.
With their considerable capacity and structurally favorable characteristics, layered transition metal oxides have become strong contenders for cathode use in sodium-ion batteries (SIBs). Nevertheless, their practical deployment is challenged by pronounced capacity loss, predominantly induced by unstable cathode–electrolyte interphase (CEI) at elevated voltages. In this study, difluoroethylene carbonate (DFEC) is introduced as a functional electrolyte additive to engineer a robust and uniform CEI. The fluorine-enriched CEI effectively suppresses parasitic reactions, mitigates continuous electrolyte decomposition, and facilitates stable Na+ transport. Consequently, Na/NaNi1/3Fe1/3Mn1/3O2 (Na/NFM) cells with 2 wt.% DFEC retain 78.36% of their initial capacity after 200 cycles at 1 C and 4.2 V, demonstrating excellent long-term stability. Density functional theory (DFT) calculations confirm the higher oxidative stability of DFEC compared to conventional solvents, further supporting its interfacial protection role. This work offers valuable insights into electrolyte additive design for high-voltage SIBs and provides a practical route to significantly improve long-term electrochemical performance. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

26 pages, 7979 KB  
Article
Machine Learning-Driven Inspired MTM and Parasitic Ring Optimization for Enhanced Isolation and Gain in 26 GHz MIMO Antenna Arrays
by Linda Chouikhi, Chaker Essid, Bassem Ben Salah, Mongi Ben Moussa and Hedi Sakli
Micromachines 2025, 16(10), 1082; https://doi.org/10.3390/mi16101082 - 25 Sep 2025
Abstract
This paper presents an intelligent design framework for a high-performance 26 GHz MIMO antenna array tailored to 5G applications, built upon a compact single-element patch. The 11.5 mm × 11.5 mm × 1.6 mm microstrip patch on FR4 exhibits near-unity electrical length, an [...] Read more.
This paper presents an intelligent design framework for a high-performance 26 GHz MIMO antenna array tailored to 5G applications, built upon a compact single-element patch. The 11.5 mm × 11.5 mm × 1.6 mm microstrip patch on FR4 exhibits near-unity electrical length, an ultra-deep return loss (S11 < −40 dB at 26 GHz), and a wide operational bandwidth from 24.4 to 31.2 GHz (6.8 GHz, ~26.2%). A two-element array, spaced at λ/2, is first augmented with a inspired metamaterial (MTM) unit cell whose dimensions are optimized via a Multi-Layer Perceptron (MLP) model to maximize gain (+2 dB) while preserving S11. In the second phase, a closed-square parasitic ring is introduced between the elements; its side length, thickness, and position are predicted by a Random Forest (RF) model with Bayesian optimization to minimize mutual coupling (S12) from −25 dB to −58 dB at 26 GHz without significantly degrading S11 (remains below −25 dB). Full-wave simulations and anechoic chamber measurements confirm the ML predictions. The close agreement among predicted, simulated, and measured S-parameters validates the efficacy of the proposed AI-assisted optimization methodology, offering a rapid and reliable route to next-generation millimeter-wave MIMO antenna systems. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

9 pages, 2176 KB  
Article
High Power Density X-Band GaN-on-Si HEMTs with 10.2 W/mm Used by Low Parasitic Gold-Free Ohmic Contact
by Jiale Du, Hao Lu, Bin Hou, Ling Yang, Meng Zhang, Mei Wu, Kaiwen Chen, Tianqi Pan, Yifan Chen, Hailin Liu, Qingyuan Chang, Xiaohua Ma and Yue Hao
Micromachines 2025, 16(9), 1067; https://doi.org/10.3390/mi16091067 - 22 Sep 2025
Viewed by 186
Abstract
To enhance the RF power properties of CMOS-compatible gold-free GaN devices, this work introduces a kind of GaN-on-Si HEMT with a low parasitic regrown ohmic contact technology. Attributed to the highly doped n+ InGaN regrown layer and smooth morphology of gold-free ohmic [...] Read more.
To enhance the RF power properties of CMOS-compatible gold-free GaN devices, this work introduces a kind of GaN-on-Si HEMT with a low parasitic regrown ohmic contact technology. Attributed to the highly doped n+ InGaN regrown layer and smooth morphology of gold-free ohmic stacks, the lowest ohmic contact resistance (Rc) was presented as 0.072 Ω·mm. More importantly, low RF loss and low total dislocation density (TDD) of the Si-based GaN epitaxy were achieved by a designed two-step-graded (TSG) transition structure for the use of scaling-down devices in high-frequency applications. Finally, the fabricated GaN HEMTs on the Si substrate presented a maximum drain current (Idrain) of 1206 mA/mm, a peak transconductance (Gm) of 391 mS/mm, and a breakdown voltage (VBR) of 169 V. The outstanding material and DC performances strongly encourage a maximum output power density (Pout) of 10.2 W/mm at 8 GHz and drain voltage (Vdrain) of 50 V in active pulse mode, which, to our best knowledge, updates the highest power level for gold-free GaN devices on Si substrates. The power results reflect the reliable potential of low parasitic regrown ohmic contact technology for future large-scale CMOS-integrated circuits in RF applications. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

15 pages, 3560 KB  
Article
Calprotectin Expression in Adventitial Layer of Cattle and Sheep Echinococcus granulosus sensu stricto Cysts
by María Soledad Baquedano, Caroll Stoore, Christian Hidalgo, Ismael Pereira and Rodolfo Paredes
Int. J. Mol. Sci. 2025, 26(18), 9236; https://doi.org/10.3390/ijms26189236 - 22 Sep 2025
Viewed by 175
Abstract
Cystic echinococcosis (CE) is a globally distributed zoonotic disease caused by Echinococcus granulosus sensu lato, forming fluid-filled cysts in humans and livestock. These cysts consist of three layers: an inner germinal layer and a middle laminar layer of parasitic origin, and an outer [...] Read more.
Cystic echinococcosis (CE) is a globally distributed zoonotic disease caused by Echinococcus granulosus sensu lato, forming fluid-filled cysts in humans and livestock. These cysts consist of three layers: an inner germinal layer and a middle laminar layer of parasitic origin, and an outer adventitial layer derived from the host’s immune response. The adventitial layer typically contains immune cells such as T and B lymphocytes, macrophages, and other inflammatory cells. Notably, differences have been reported in the cellular composition of this layer depending on the host species. However, the variation in calprotectin expression—a protein specific to phagocytes—between cattle and sheep CE cysts has not been previously described. This study assessed calprotectin expression using immunohistochemistry with anti-calprotectin antibodies on adventitial tissue sections from cattle and sheep CE cysts. The results showed a significantly higher calprotectin expression in the adventitial layer of cattle cysts compared to sheep. This difference was not associated with the fertility or anatomical location of the cysts. These findings suggest that the host species influences the level of calprotectin expression in the adventitial layer, contributing to our understanding of host-specific immune responses in CE. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Immunology in Chile, 2nd Edition)
Show Figures

Figure 1

12 pages, 9031 KB  
Article
A Novel Wideband 1 × 8 Array Dual-Polarized Reconfigurable Beam-Scanning Antenna
by Jie Wu, Zihan Zhang, Yang Hong and Guoda Xie
Electronics 2025, 14(18), 3689; https://doi.org/10.3390/electronics14183689 - 18 Sep 2025
Viewed by 242
Abstract
A novel polarization-reconfigurable 1 × 8 array beam-scanning antenna based on a switchable vertically crossed balanced feed (VCBF) structure is presented. The designed VCBF structure can provide a stable 180° phase difference by utilizing spatial symmetry, enabling the synthesis of two linear polarizations [...] Read more.
A novel polarization-reconfigurable 1 × 8 array beam-scanning antenna based on a switchable vertically crossed balanced feed (VCBF) structure is presented. The designed VCBF structure can provide a stable 180° phase difference by utilizing spatial symmetry, enabling the synthesis of two linear polarizations (LP). The parasitic patch layer loaded directly above the VCBF can effectively enhance the operating frequency bandwidth of the antenna. In the array design, by controlling the amplitude and phase input at each port, scanning angles of ±45°, ±40°, and ±30° can be achieved under two LP at 3.0, 3.5, and 4.0 GHz. The simulation and measurement results indicate that the designed antenna has a wideband characteristic with a relative bandwidth of 28.6% and stable polarization reconfigurability. Benefiting from the advantages of polarization reconfigurability and beam-scanning capabilities, the antenna is highly suitable for applications in wireless communication systems that require polarization anti-interference. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 1705 KB  
Article
Morphological and Molecular Description of Sarcocystis meriones n. sp. from the Libyan Jird (Meriones libycus) in Kuwait
by Fatemah A. M. Aryan, Osama M. E. El-Azazy, Evelina Juozaitytė-Ngugu, Donatas Šneideris, Laila M. A. Tahrani, Dalius Butkauskas and Petras Prakas
Animals 2025, 15(17), 2575; https://doi.org/10.3390/ani15172575 - 2 Sep 2025
Viewed by 605
Abstract
Sarcocystis is a genus of heteroxenous, globally distributed coccidian parasites. Limited research has been conducted on the natural infection of Sarcocystis in rodents in the Middle East. In this study, the Libyan jird (Meriones libycus) was identified as the natural intermediate [...] Read more.
Sarcocystis is a genus of heteroxenous, globally distributed coccidian parasites. Limited research has been conducted on the natural infection of Sarcocystis in rodents in the Middle East. In this study, the Libyan jird (Meriones libycus) was identified as the natural intermediate host of the new species Sarcocystis meriones, based on morphological and molecular data. Microscopic sarcocysts were detected in the thigh muscles of 8.5% (4/47) of Libyan jirds captured from a semi-desert area in Amghara, Eastern Kuwait. Under the light microscope, sarcocysts were filamentous with blunt ends and thin walls, measuring 1550 × 89 µm. Transmission electron microscopy analysis showed the densely packed protrusions measure 1.2 × 0.5 µm and resemble thuja or a cylinder and having lateral microvilli, while the ground substance layer was 0.5–0.6 µm thick and type 22-like. Based on four genetic loci (18S rRNA, 28S rRNA, ITS1, and cox1), S. meriones was genetically most similar to S. myodes and S. ratti, infecting voles and mice of the genus Apodemus and black rats (Rattus rattus), respectively. Phylogenetic results suggest predatory mammals as potential definitive hosts of S. meriones. Further studies are needed to reveal host specificity, geographical distribution, and the impact of the parasite on the host’s health of the newly described Sarcocystis species. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

25 pages, 1701 KB  
Review
Deciphering the Fasciola hepatica Glycocode and Its Involvement in Host–Parasite Interactions
by Jaclyn Swan, Timothy C. Cameron, Terry W. Spithill and Travis Beddoe
Biomolecules 2025, 15(9), 1235; https://doi.org/10.3390/biom15091235 - 26 Aug 2025
Viewed by 536
Abstract
The zoonotic disease fasciolosis poses a significant global threat to both humans and livestock. The causative agent of fasciolosis is Fasciola hepatica, which is commonly referred to as liver fluke. The emergence of drug resistance has underscored the urgent need for new [...] Read more.
The zoonotic disease fasciolosis poses a significant global threat to both humans and livestock. The causative agent of fasciolosis is Fasciola hepatica, which is commonly referred to as liver fluke. The emergence of drug resistance has underscored the urgent need for new therapeutic treatments against F. hepatica. The tegument surface of F. hepatica is characterized by a dynamic syncytial layer surrounded by a glycocalyx, which serves as a crucial interface in host–parasite interactions, facilitating functions such as nutrient absorption, sensory input, and defense against the host immune response. Despite its pivotal role, only recently have we delved deeper into understanding glycans at the host–parasite interface and the glycosylation of hidden antigens. These glycan antigens have shown promise for vaccine development or as targets for drug manipulation across various pathogenic species. This review aims to consolidate current knowledge on the glycosylation of F. hepatica, exploring glycan motifs identified through generic lectin probing and mass spectrometry. Additionally, it examines the interaction of glycoconjugates with lectins from the innate immune systems of both ruminant and human host species. An enhanced understanding of glycans’ role in F. hepatica biology and their critical involvement in host–parasite interactions will be instrumental in developing novel strategies to combat these parasites effectively. In the future, a more comprehensive approach may be adopted in selecting and designing potential vaccine targets, integrating insights from glycosylation studies to improve efficacy. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

11 pages, 2391 KB  
Article
A Major Facilitator Superfamily Transporter Is Critical for the Metabolism and Biogenesis of the Apicoplast
by Yumeng Liang, Wei Qi, Jiawen Fu and Honglin Jia
Pathogens 2025, 14(8), 763; https://doi.org/10.3390/pathogens14080763 - 1 Aug 2025
Viewed by 513
Abstract
The apicoplast is a highly specialized organelle in the biosynthesis of essential metabolites in most of the apicomplexan protozoa. This organelle is surrounded by four layers of membranes. However, the molecular mechanisms mediating transmembrane transport are not yet fully understood. In this study, [...] Read more.
The apicoplast is a highly specialized organelle in the biosynthesis of essential metabolites in most of the apicomplexan protozoa. This organelle is surrounded by four layers of membranes. However, the molecular mechanisms mediating transmembrane transport are not yet fully understood. In this study, we conducted a phenotypic analysis to investigate the role of a major facilitator superfamily transporter (TgApMFS1) in the survival of the parasite. The results indicated that TgApMFS1 is critical for the survival of Toxoplasma gondii in cell culture conditions. Further analysis indicated that these transporters are crucial for the biogenesis of organelles and the metabolic processes of parasite. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

13 pages, 2423 KB  
Article
A Stepped-Spacer FinFET Design for Enhanced Device Performance in FPGA Applications
by Meysam Zareiee, Mahsa Mehrad and Abdulkarim Tawfik
Micromachines 2025, 16(8), 867; https://doi.org/10.3390/mi16080867 - 27 Jul 2025
Viewed by 485
Abstract
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled [...] Read more.
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled nodes. In this work, we propose a novel Stepped-Spacer Structured FinFET (S3-FinFET) that incorporates a three-layer HfO2/Si3N4/HfO2 spacer configuration designed to enhance electrostatics and suppress parasitic effects. Using 2D TCAD simulations, the S3-FinFET is evaluated in terms of key performance metrics, including transfer/output characteristics, ON/OFF current ratio, subthreshold swing (SS), drain-induced barrier lowering (DIBL), gate capacitance, and cut-off frequency. The results show significant improvements in leakage control and high-frequency behavior. These enhancements make the S3-FinFET particularly well-suited for Field-Programmable Gate Arrays (FPGAs), where power efficiency, speed, and signal integrity are critical to performance in reconfigurable logic environments. Full article
Show Figures

Figure 1

12 pages, 10100 KB  
Article
Surface Microstructure Engineering for Enhancing Li-Ion Diffusion and Structure Stability of Ni-Rich Cathode Materials
by Huanming Zhuo, Shuangshuang Zhao, Ruijie Xu, Lu Zhou, Ye Li, Yuehuan Peng, Xuelong Rao, Yuqiang Tao and Xing Ou
Nanomaterials 2025, 15(15), 1144; https://doi.org/10.3390/nano15151144 - 24 Jul 2025
Viewed by 567
Abstract
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an [...] Read more.
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an example, a surface heterojunction structure construction strategy to enhance the interface characteristics of high-nickel materials by introducing interfacial ZnO sites has been designed (NCA@ZnO). Impressively, this heterointerface creates a strong built-in electric field, which significantly improves electron/Li-ion diffusion kinetics. Concurrently, the ZnO layer acts as an effective physical barrier against electrolyte corrosion, notably suppressing interfacial parasitic reactions and ultimately optimizing the structure stability of NCA@ZnO. Benefiting from synchronous optimization of interface stability and kinetics, NCA@ZnO exhibits advanced cycling performance with the capacity retention of 83.7% after 160 cycles at a superhigh rate of 3 C during 3.0–4.5 V. The prominent electrochemical performance effectively confirms that the surface structure design provides a critical approach toward obtaining high-performance cathode materials with enhanced long-cycling stability. Full article
Show Figures

Graphical abstract

15 pages, 2413 KB  
Article
Soil Inoculated with Streptomyces rochei D74 Invokes the Defense Mechanism of Helianthus annuus Against Orobanche cumana
by Jiao Xi, Tengqi Xu, Zanbo Ding, Chongsen Li, Siqi Han, Ruina Liang, Yongqing Ma, Quanhong Xue and Yanbing Lin
Agriculture 2025, 15(14), 1492; https://doi.org/10.3390/agriculture15141492 - 11 Jul 2025
Viewed by 2729
Abstract
Orobanche cumana Wallr. is a root parasitic plant that causes considerable yield losses of up to 50% in sunflower Helianthus annuus plantations. The holoparasite fulfills its entire demand for water, minerals, and organic nutrients from the host’s vascular system. Agronomic practices alone are [...] Read more.
Orobanche cumana Wallr. is a root parasitic plant that causes considerable yield losses of up to 50% in sunflower Helianthus annuus plantations. The holoparasite fulfills its entire demand for water, minerals, and organic nutrients from the host’s vascular system. Agronomic practices alone are not effective in controlling this pest. This study investigated the mechanism of a verified plant growth-promoting strain, Streptomyces rochei D74, on the inhibition of the parasitism of O. cumana in a co-culture experiment. We conducted potted and sterile co-culture experiments using sunflower, O. cumana, and S. rochei D74. Our results suggest that the inoculated bacteria invoked the sunflower systemic resistance (SAR and ISR) by increasing the activity of resistance-related enzymes (SOD, POD, PPO, and PAL), the gene expression of systemic resistance marker genes (PR-1 and NPR1), ethylene synthesis genes (HACS. 1 and ACCO1), and JA synthesis genes (pin2 and lox). The expression levels of ISR marker genes (lox, HACS. 1, ACCO1, and pin2) increased by 1.66–7.91-fold in the seedling stage. Simultaneously, S. rochei D74 formed a protective layer on the sunflower root surface, preventing O. cumana from connecting to the vascular system of the sunflower roots. In addition, S. rochei D74 reduced 5DS synthesis of the strigol precursor substance, resulting in a reduction in O. cumana germination. These results demonstrated that the S. rochei D74 strain improved systemic resistance and decreased seed germination to prevent O. cumana parasitism. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

23 pages, 1410 KB  
Article
PneumoNet: Artificial Intelligence Assistance for Pneumonia Detection on X-Rays
by Carlos Antunes, João M. F. Rodrigues and António Cunha
Appl. Sci. 2025, 15(13), 7605; https://doi.org/10.3390/app15137605 - 7 Jul 2025
Viewed by 1140
Abstract
Pneumonia is a respiratory condition caused by various microorganisms, including bacteria, viruses, fungi, and parasites. It manifests with symptoms such as coughing, chest pain, fever, breathing difficulties, and fatigue. Early and accurate detection is crucial for effective treatment, yet traditional diagnostic methods often [...] Read more.
Pneumonia is a respiratory condition caused by various microorganisms, including bacteria, viruses, fungi, and parasites. It manifests with symptoms such as coughing, chest pain, fever, breathing difficulties, and fatigue. Early and accurate detection is crucial for effective treatment, yet traditional diagnostic methods often fall short in reliability and speed. Chest X-rays have become widely used for detecting pneumonia; however, current approaches still struggle with achieving high accuracy and interpretability, leaving room for improvement. PneumoNet, an artificial intelligence assistant for X-ray pneumonia detection, is proposed in this work. The framework comprises (a) a new deep learning-based classification model for the detection of pneumonia, which expands on the AlexNet backbone for feature extraction in X-ray images and a new head in its final layers that is tailored for (X-ray) pneumonia classification. (b) GPT-Neo, a large language model, which is used to integrate the results and produce medical reports. The classification model is trained and evaluated on three publicly available datasets to ensure robustness and generalisability. Using multiple datasets mitigates biases from single-source data, addresses variations in patient demographics, and allows for meaningful performance comparisons with prior research. PneumoNet classifier achieves accuracy rates between 96.70% and 98.70% in those datasets. Full article
(This article belongs to the Special Issue Research on Machine Learning in Computer Vision)
Show Figures

Figure 1

18 pages, 6277 KB  
Article
Fabrication and Characterization of a PZT-Based Touch Sensor Using Combined Spin-Coating and Sputtering Methods
by Melih Ozden, Omer Coban and Tevhit Karacali
Sensors 2025, 25(13), 3938; https://doi.org/10.3390/s25133938 - 24 Jun 2025
Cited by 1 | Viewed by 548
Abstract
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional [...] Read more.
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional layer formed via RF sputtering. The resulting multilayer structure was annealed at 700 °C for 2 h to improve crystallinity. Comprehensive material characterization was conducted using XRD, SEM, cross-sectional SEM, EDX, and UV–VIS absorbance spectroscopy. The analyses confirmed the formation of a well-crystallized perovskite phase, a uniform surface morphology, and an optical band gap of approximately 3.55 eV, supporting its suitability for sensing applications. Building upon these findings, a multilayer PZT-based touch sensor was fabricated and electrically characterized. Low-frequency I–V measurements demonstrated consistent and repeatable polarization behavior under cyclic loading conditions. In addition, |Z|–f measurements were performed to assess the sensor’s dynamic electrical behavior. Although expected dielectric responses were observed, the absence of distinct anti-resonance peaks suggested non-idealities linked to Ag+ ion diffusion from the electrode layers. To account for these effects, the classical Butterworth–Van Dyke (BVD) equivalent circuit model was extended with additional inductive and resistive components representing parasitic pathways. This modified model provided excellent agreement with the measured impedance and phase data, offering deeper insight into the interplay between material degradation and electrical performance. Overall, the developed sensor structure exhibits strong potential for use in piezoelectric sensing applications, particularly for tactile and pressure-based interfaces. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

18 pages, 1812 KB  
Review
Cadmium-Free Buffer Layer Materials for Kesterite Thin-Film Solar Cells: An Overview
by Nafees Ahmad and Guangbao Wu
Energies 2025, 18(12), 3198; https://doi.org/10.3390/en18123198 - 18 Jun 2025
Cited by 2 | Viewed by 820
Abstract
Kesterite (CZTS/CZTSSe) thin-film solar cells are considered an eco-friendly, earth-abundant, and low-cost photovoltaic technology that can fulfill our future energy needs. Due to its outstanding properties including tunable bandgap and high absorption coefficient, the power conversion efficiency (PCE) has reached over 14%. However, [...] Read more.
Kesterite (CZTS/CZTSSe) thin-film solar cells are considered an eco-friendly, earth-abundant, and low-cost photovoltaic technology that can fulfill our future energy needs. Due to its outstanding properties including tunable bandgap and high absorption coefficient, the power conversion efficiency (PCE) has reached over 14%. However, toxic cadmium sulfide (CdS) is commonly used as an n-type buffer layer in kesterite thin-film solar cells (KTFSCs) to form a better p–n junction with the p-type CZTS/CZTSSe absorber. In addition to its toxicity, the CdS buffer layer shows parasitic absorption at low wavelengths (400–500 nm) owing to its low bandgap (2.4 eV). For the last few years, several efforts have been made to substitute CdS with an eco-friendly, Cd-free, cost-effective buffer layer with alternative large-bandgap materials such as ZnSnO, Zn (O, S), In2Se3, ZnS, ZnMgO, and TiO2, which showed significant advances. Herein, we summarize the key findings of the research community using a Cd-free buffer layer in KTFSCs to provide a current scenario for future work motivating researchers to design new materials and strategies to achieve higher performance. Full article
Show Figures

Figure 1

11 pages, 2225 KB  
Article
Electrochemical Performance of Diamond-like Carbon (DLC)-Coated Zn Anodes for Application to Aqueous Zinc-Ion Batteries
by Jinyoung Lee, Eunseo Lee and Sungwook Mhin
Batteries 2025, 11(6), 228; https://doi.org/10.3390/batteries11060228 - 12 Jun 2025
Viewed by 813
Abstract
The increasing demand for safe, cost-effective, and sustainable energy storage solutions has spotlighted aqueous zinc-ion batteries (AZIBs) as promising alternatives to lithium-ion systems. However, the practical deployment of AZIBs remains hindered by dendritic growth, hydrogen evolution, and surface corrosion at the zinc metal [...] Read more.
The increasing demand for safe, cost-effective, and sustainable energy storage solutions has spotlighted aqueous zinc-ion batteries (AZIBs) as promising alternatives to lithium-ion systems. However, the practical deployment of AZIBs remains hindered by dendritic growth, hydrogen evolution, and surface corrosion at the zinc metal anode, which severely compromise electrochemical stability. In this study, we propose an interfacial engineering strategy involving ultrathin diamond-like carbon (DLC) coatings applied to Zn anodes. The DLC films serve as conformal, ion-permeable barriers that mitigate parasitic side reactions and facilitate uniform Zn plating/stripping behavior. Materials characterizations of the DLC layer on the Zn anodes revealed the tunability of sp2/sp3 hybridization and surface morphology depending on DLC thickness. Electrochemical impedance spectroscopy demonstrated a significant reduction in interfacial resistance, particularly in the optimally coated sample (DLC2, ~20 nm), which achieved a favorable balance between mechanical integrity and ionic transport. Symmetric-cell tests confirmed enhanced cycling stability over 160 h, while full-cell configurations with an ammonium vanadate nanofiber-based cathode exhibited superior capacity retention over 900 cycles at 2 A g−1. The DLC2-coated Zn anodes demonstrated the most effective performance, attributable to its moderate surface roughness, reduced disorder, and minimized charge-transfer resistance. These results provide insight into the importance of fine-tuning the DLC thickness and carbon bonding structure for suppressing dendrite formation and enhancing electrochemical stability. Full article
Show Figures

Graphical abstract

Back to TopTop