Deciphering the Fasciola hepatica Glycocode and Its Involvement in Host–Parasite Interactions
Abstract
1. Introduction
2. Glycan Machinery: Glycosyltransferases and Glycosidases
2.1. N-Glycan Synthesis
2.2. O-Glycan Synthesis
3. Characterization of Glycans Using Generic Lectins
Life Stage | Glycan Motif | Lectin | Reference |
---|---|---|---|
Egg | (Fuc α1,2)Gal β1,4 Glc | BaSII | [45] |
Miracidium | Oligomannose | ConA, LCA | [46] |
GlcNAc | WGA, LEL | [46] | |
(Fuc α1,2)Gal β1,4 Glc | BaSII | [45] | |
No binding | SBA, HPA, UEA-1 | [46] | |
Sporocyst | Oligomannose | ConA, LCA | [47] |
No binding | WGA, SBA, UEA-I | [47] | |
Rediae | GalNAc/Gal | SBA | [48] |
No binding | ConA, LCA, WGA, UEA-I | [46] | |
Cercariae | No Data | ||
Metacercariae | (Fuc α1,2)Gal β1,4 Glc | BaSII | [45] |
Newly Excysted Juvenile | Oligomannose | ConA, GNL, LCA, PSA | [37,49,50] |
GlcNAc | GLS-II, WGA, S-WGA | [37,49,50] | |
GalNAc/Gal | GSL-I, SBA, DBA, VVL, SJA | [37,50] | |
β-linked Gal | PNA, ECL, Jacalin | [37,50] | |
Fucose | AAL, UEA-I | [37] | |
Complex | PHA-L, PHA-E, | [37] | |
Adult | Oligomannose | NPA, HHA, ConA, PSA, LCA, GNL | [16,43,44,51] |
GlcNAc | GSL-II, WGA, s-WGA, STL | [16,43,44,51] | |
Chitobiose or N-Acetyllactosamine | LEL, DSA | [43,44] | |
GalNAc/Gal | GSL-I, SBA, DBA, VVL, SJA, SNA-II, WFA | [16,43,44,52] | |
β-linked Gal | RCA-I, PNA, PHA-E, Jacalin, ECL, SJA | [16,43,44] | |
Terminal α-linked Gal | GSL-1-B4, MPA, VRA, MOA | [44] | |
Fucose | AAL, LTA, UAE-1 | [43,44,52,53] | |
(Fuc α1,2)Gal β1,4 Glc | BaSII | [45] | |
Complex glycans | PHA-L, PHA-E, CPA | [44] | |
Sialic Acid | SNA-I, MAL-I, MAL-II | [44] |
Extracellular Vesicle (EV) Glycan Topology Determined with Lectin Microarrays
4. Mass Spectrometry (MS) Characterization of Fasciola Hepatica Glycans
4.1. N-Linked Glycans
4.2. O-Linked Glycans
4.3. Glycopeptide Analysis
4.4. Glycolipid Mass Spectrometry
4.5. Concluding Remarks on the Currently Identified Glycan Structures
5. Host–Parasite Immune Interactions
5.1. Dectin-1
5.2. Macrophage Galactose-Type C-Type Lectin (MGL)
5.3. Mannose Receptor
5.4. Dendritic Cell-Specific ICAM-3 Grabbing Non-Integrin (DC-SIGN)
5.5. Galectin
5.6. Serpin
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2-AA | 2-aminobenzoic acid |
AAL | Aleuria aurantia lectin |
ALG | Asparagine-linked glycosylation |
BaSII | Biomphalaria alexandrina lectin two |
BMDCs | Bone marrow derived cells |
CHO | Chinese hamster ovary |
CID | Collision-induced dissociation |
CMP | Cytidine monophosphate |
ConA | Concanavalin A |
CPA | Chickpea lectin |
DBA | Dolichos biflorus agglutinin |
DC-SIGN | Dendritic cell-specific ICAM-3 grabbing non-integrin |
Dol-P | Dolichol phosphate |
DSA | Datura stramonium agglutinin |
ECD | Electron capture dissociation |
ECL | Erythrina cristagalli lectin |
EDT | Electron transfer dissociation |
ELISA | Enzyme-linked immunosorbent assay |
ER | Endoplasmic reticulum |
ERK | Extracellular signal-regulated kinase |
ES | Excretory/secretory |
ESI-MS | Electrospray ionization mass spectrometry |
EVs | Extracellular vesicles |
FhCatB1 | Cathepsin B1 |
FhCatL3 | Cathepsin L3 |
FhES | Fasciola hepatica excretory/secretory |
FhTeg | Fasciola hepatica tegument extract |
FhWWE | Fasciola hepatica whole worm extract |
Fuc | Fucose |
GAG | Glycosaminoglycan |
GalNAc | N-acetylgalactosamine |
GDP-Fuc | Guanosine diphosphate fucose |
GDP-Man | Guanosine diphosphate mannose |
Glc | Glucose |
GlcA | Glucuronic acid |
GlcNAc | N-acetylglucosamines |
GNL | Galanthus nivalis lectin |
GPI | Glycosylphosphatidylinositol |
GSL-1-B4 | Griffonia simplicifolia lectin one isolectin B4 |
GSL-I | Griffonia simplicifolia lectin one |
GSL-II | Griffonia simplicifolia lectin two |
GTP | Guanosine triphosphate |
Hex | Hexose |
HexNAc | N-acetylhexosamine |
H-Gal-GP | Haemonchus-galactose-containing glycoprotein |
HHA | Hippeastrum hybrid (amaryllis) lectin |
IFNϒ | Interferon gamma |
IL | Interleukin |
LacDiNAc | GalNAcβ1-4GlcNAc |
LacNAc | N-acetyllactosamine |
LAP | Leucine aminopeptidase |
LCA | Lens culinaris agglutinin |
LC-MS/MS | Liquid Chromatography–tandem mass spectrometry |
LDNF | Fucosylated LacdiNAc (GalNAcβ1,4(Fucα1,3)GlcNAc-R) |
LEL | Lycopersicon esculentum lectin |
Lex | Lewis X (Galβ1,4(Fucα1,3)GlcNAc-R) |
LGALS-11 | Galectin-11 |
LGALS-14 | Galectin-14 |
LNnT | Lacto-N-neotetrasose |
LPS | Lipopolysaccharides |
LTA | Lotus tetragonolobus lectin |
MALDI-FT-ICR MS | Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry |
MALDI-TOF MS | Matrix-assisted laser desorption ionization–time of flight mass spectrometry |
MALDI-TOF MS/MS | Matrix-assisted laser desorption ionization–time of flight tandem mass spectrometry |
MAL-I | Maackia amurensis lectin one |
MAL-II | Maackia amurensis lectin two |
Man | Mannose |
MHC | Major histocompatibility complex |
MOA | Marasmium oreades agglutinin |
MPA | Maclura pomifera agglutinin |
MR | Mannose receptor |
MS | Mass spectrometry |
MS/MS | Tandem mass spectrometry |
NEJ | Newly excysted juvenile |
Neu5Ac | N-acetylneuraminic acid |
Neu5Gc | N-glycolylneuraminic acid |
NMR | Nuclear magnetic resonance |
NPA | Narcissus pseudonarcissus lectin |
OST | Oligosaccharyltransferase |
PBMCs | Peripheral blood mononuclear cells |
PC | Phosphorylcholine |
PD-L2 | Programmed cell death ligand 2 |
PHA-E | Phaseolus vulgaris agglutinin-E |
PHA-L | Phaseolus vulgaris agglutinin-L |
PNA | Peanut agglutinin |
PNGase A | Peptide:N-glycosidase A |
PNGase F | Peptide:N-glycosidase F |
PRR | Pattern recognition receptors |
PSA | Pisum sativum agglutinin |
RCA-I | Ricinus communis agglutinin |
SBA | Soybean agglutinin |
SJA | Sophora japonica agglutinin |
SNA-I | Sambucus nigra lectin one |
SNA-II | Sambucus nigra lectin two |
STL | Solanum tuberosum lectin |
s-WGA | Succinyl Wheat germ agglutinin |
Syk | Spleen tyrosine kinase |
TCBZ | Triclabendazole |
TGF-β | Transforming growth factor β |
TLR | Toll-like receptor |
Tn antigen | GalNAc Ser/Thr |
TNFα | Tumor necrosis factor alpha |
UDP | Uridine diphosphate |
UEA-1 | Ulex europaeus agglutinin one |
VRA | Vigna radiata Lectin |
VVL | Vicia villosa lectin |
WFA | Wisteria floribunda agglutinin |
WGA | Wheat germ agglutinin |
References
- Bargues, M.; Vigo, M.; Horak, P.; Dvorak, J.; Patzner, R.; Pointier, J.; Jackiewicz, M.; Meier-Brook, C.; Mas-Coma, S. European Lymnaeidae (Mollusca: Gastropoda), intermediate hosts of trematodiases, based on nuclear ribosomal DNA ITS-2 sequences. Infect. Genet. Evol. 2001, 1, 85–107. [Google Scholar] [CrossRef]
- Agatsuma, T.; Arakawa, Y.; Iwagami, M.; Honzako, Y.; Cahyaningsih, U.; Kang, S.-Y.; Hong, S.-J. Molecular evidence of natural hybridization between Fasciola hepatica and F. gigantica. Parasitol. Int. 2000, 49, 231–238. [Google Scholar] [CrossRef]
- Ichikawa-Seki, M.; Peng, M.; Hayashi, K.; Shoriki, T.; Mohanta, U.K.; Shibahara, T.; Itagaki, T. Nuclear and mitochondrial DNA analysis reveals that hybridization between Fasciola hepatica and Fasciola gigantica occurred in China. Parasitology 2017, 144, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Mas-Coma, S. Epidemiology of fascioliasis in human endemic areas. J. Helminthol. 2005, 79, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Spithill, T.W.; Smooker, P.; Coperman, D. Fasciola gigantica: Epidemiology, control, immunology and molecular biology. In Fasciolosis; Dalton, J., Ed.; Commonwealth Agricultural Bureau International (CABI) Publishing: Wallingford, UK, 1999; pp. 465–525. [Google Scholar]
- Piedrafita, D.; Spithill, T.; Smith, R.; Raadsma, H. Improving animal and human health through understanding liver fluke immunology. Parasite Immunol. 2010, 32, 572–581. [Google Scholar] [CrossRef]
- Schweizer, G.; Braun, U.; Deplazes, P.; Torgerson, P. Estimating the financial losses due to bovine fasciolosis in Switzerland. Vet. Rec. 2005, 157, 188–193. [Google Scholar] [CrossRef]
- Kelley, J.M.; Elliott, T.P.; Beddoe, T.; Anderson, G.; Skuce, P.; Spithill, T.W. Current threat of triclabendazole resistance in Fasciola hepatica. Trends Parasitol. 2016, 32, 458–469. [Google Scholar] [CrossRef]
- Toet, H.; Piedrafita, D.M.; Spithill, T.W. Liver fluke vaccines in ruminants: Strategies, progress and future opportunities. Int. J. Parasitol. 2014, 44, 915–927. [Google Scholar] [CrossRef]
- Clery, D.; Torgerson, P.; Mulcahy, G. Immune responses of chronically infected adult cattle to Fasciola hepatica. Vet. Parasitol. 1996, 62, 71–82. [Google Scholar] [CrossRef]
- Flynn, R.J.; Mulcahy, G. The roles of IL-10 and TGF-β in controlling IL-4 and IFN-γ production during experimental Fasciola hepatica infection. Int. J. Parasitol. 2008, 38, 1673–1680. [Google Scholar] [CrossRef]
- Dalton, J.P.; Robinson, M.W.; Mulcahy, G.; O’Neill, S.M.; Donnelly, S. Immunomodulatory molecules of Fasciola hepatica: Candidates for both vaccine and immunotherapeutic development. Vet. Parasitol. 2013, 195, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Noya, V.; Rodriguez, E.; Cervi, L.A.; Giacomini, C.; Brossard, N.; Chiale, C.; Carmona, C.; Freire, T. Modulation of dendritic cell maturation by Fasciola hepatica: Implications of glycans and mucins for vaccine development. J. Vaccines Vaccin. 2014, 5, 1000233. [Google Scholar]
- Garcia-Campos, A.; Baird, A.W.; Mulcahy, G. Migration of Fasciola hepatica newly excysted juveniles is inhibited by high-mannose and oligomannose-type N-glycan-binding lectins. Parasitology 2017, 144, 1708–1717. [Google Scholar] [CrossRef] [PubMed]
- Alba, A.; Duval, D.; Sánchez, J.; Pérez, A.B.; Pinaud, S.; Galinier, R.; Vázquez, A.A.; Gourbal, B. The immunobiological interplay between Pseudosuccinea columella resistant/susceptible snails with Fasciola hepatica: Hemocytes in the spotlight. Dev. Comp. Immunol. 2020, 102, 103485. [Google Scholar] [CrossRef]
- Rodríguez, E.; Noya, V.; Cervi, L.; Chiribao, M.L.; Brossard, N.; Chiale, C.; Carmona, C.; Giacomini, C.; Freire, T. Glycans from Fasciola hepatica modulate the host immune response and TLR-induced maturation of dendritic cells. PLoS Negl. Trop. Dis. 2015, 9, e0004234. [Google Scholar] [CrossRef]
- Guasconi, L.; Serradell, M.C.; Garro, A.P.; Iacobelli, L.; Masih, D.T. C-type lectins on macrophages participate in the immunomodulatory response to Fasciola hepatica products. Immunology 2011, 133, 386–396. [Google Scholar] [CrossRef]
- Rodríguez, E.; Kalay, H.; Noya, V.; Brossard, N.; Giacomini, C.; Van Kooyk, Y.; García-Vallejo, J.J.; Freire, T. Fasciola hepatica glycoconjugates immuneregulate dendritic cells through the dendritic cell-specific intercellular adhesion molecule-3-Grabbing Non-integrin inducing T cell anergy. Sci. Rep. 2017, 7, 46748. [Google Scholar] [CrossRef]
- Stanley, P.; Taniguchi, N.; Aebi, M. N-glycans. In Essentials of Glycobiology, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2017. [Google Scholar]
- Geldhof, P.; De Maere, V.; Vercruysse, J.; Claerebout, E. Recombinant expression systems: The obstacle to helminth vaccines? Trends Parasitol. 2007, 23, 527–532. [Google Scholar] [CrossRef]
- Vercruysse, J.; Claerebout, E. Assessment of the efficacy of helminth vaccines. J.Parasitol. 2003, 89, S202–S209. [Google Scholar]
- González-Hernández, A.; Borloo, J.; Peelaers, I.; Casaert, S.; Leclercq, G.; Claerebout, E.; Geldhof, P. Comparative analysis of the immune responses induced by native versus recombinant versions of the ASP-based vaccine against the bovine intestinal parasite Cooperia oncophora. Int. J. Parasitol. 2018, 48, 41–49. [Google Scholar] [CrossRef]
- de Matos, A.F.I.M.; Nobre, C.O.R.; Monteiro, J.P.; Bevilaqua, C.M.L.; Smith, W.D.; Teixeira, M. Attempt to control Haemonchus contortus in dairy goats with Barbervax®, a vaccine derived from the nematode gut membrane glycoproteins. Small Rumin. Res. 2017, 151, 1–4. [Google Scholar] [CrossRef]
- Bassetto, C.; Silva, B.; Newlands, G.; Smith, W.; Amarante, A.d. Protection of calves against Haemonchus placei and Haemonchus contortus after immunization with gut membrane proteins from H. contortus. Parasite Immunol. 2011, 33, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.; Antonopoulos, A.; Haslam, S.M.; Dicker, A.J.; McNeilly, T.N.; Johnston, S.L.; Dell, A.; Knox, D.P.; Britton, C. Novel expression of Haemonchus contortus vaccine candidate aminopeptidase H11 using the free-living nematode Caenorhabditis elegans. Vet. Res. 2013, 44, 111. [Google Scholar] [CrossRef] [PubMed]
- Newlands, G.; Skuce, P.; Knox, D.; Smith, W. Cloning and expression of cystatin, a potent cysteine protease inhibitor from the gut of Haemonchus contortus. Parasitology 2001, 122, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Adduci, I.; Sajovitz-Grohmann, F.; Wortha, L.N.; Dutkiewicz, Z.; Weidinger, H.; Rohrer, S.B.; Joachim, A.; Wittek, T.; Werling, D.; Wilson, I.B.; et al. Glycoengineering of nematode antigens using insect cells: A promising approach for producing bioactive vaccine antigens of the barber’s pole worm Haemonchus contortus. Glycobiology 2025, 35, cwaf044. [Google Scholar] [CrossRef]
- McVeigh, P.; Cwiklinski, K.; Garcia-Campos, A.; Mulcahy, G.; O’Neill, S.M.; Maule, A.G.; Dalton, J.P. In silico analyses of protein glycosylating genes in the helminth Fasciola hepatica (liver fluke) predict protein-linked glycan simplicity and reveal temporally-dynamic expression profiles. Sci. Rep. 2018, 8, 11700. [Google Scholar] [CrossRef]
- Cwiklinski, K.; Dalton, J.P.; Dufresne, P.J.; La Course, J.; Williams, D.J.; Hodgkinson, J.; Paterson, S. The Fasciola hepatica genome: Gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biol. 2015, 16, 71. [Google Scholar] [CrossRef]
- Breton, C.; Šnajdrová, L.; Jeanneau, C.; Koča, J.; Imberty, A. Structures and mechanisms of glycosyltransferases. Glycobiology 2006, 16, 29R–37R. [Google Scholar] [CrossRef]
- Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H. Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2015. [Google Scholar]
- Nardy, A.F.; Freire-de-Lima, C.G.; Pérez, A.R.; Morrot, A. Role of Trypanosoma cruzi trans-sialidase on the escape from host immune surveillance. Front. Microbiol. 2016, 7, 348. [Google Scholar] [CrossRef]
- Samuelson, J.; Robbins, P.W. Effects of N-glycan precursor length diversity on quality control of protein folding and on protein glycosylation. Semin. Cell Dev. Biol. 2015, 41, 121–128. [Google Scholar] [CrossRef]
- Kelleher, D.J.; Gilmore, R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 2006, 16, 47R–62R. [Google Scholar] [CrossRef]
- Wuhrer, M.; Grimm, C.; Dennis, R.D.; Idris, M.A.; Geyer, R. The parasitic trematode Fasciola hepatica exhibits mammalian-type glycolipids as well as Gal (β1-6) Gal-terminating glycolipids that account for cestode serological cross-reactivity. Glycobiology 2004, 14, 115–126. [Google Scholar] [CrossRef]
- Ravidà, A.; Aldridge, A.M.; Driessen, N.N.; Heus, F.A.; Hokke, C.H.; O’Neill, S.M. Fasciola hepatica surface coat glycoproteins contain mannosylated and phosphorylated N-glycans and exhibit immune modulatory properties independent of the mannose receptor. PLoS Negl. Trop. Dis. 2016, 10, e0004601. [Google Scholar] [CrossRef]
- Garcia-Campos, A.; Ravida, A.; Nguyen, D.L.; Cwiklinski, K.; Dalton, J.P.; Hokke, C.H.; O’Neill, S.; Mulcahy, G. Tegument glycoproteins and cathepsins of newly excysted juvenile Fasciola hepatica carry mannosidic and paucimannosidic N-glycans. PLoS Negl. Trop. Dis. 2016, 10, e0004688. [Google Scholar] [CrossRef]
- Brockhausen, I.; Schachter, H.; Stanley, P. O-GalNAc glycans. In Essentials of Glycobiology, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2009. [Google Scholar]
- Freire, T.; Casaravilla, C.; Carmona, C.; Osinaga, E. Mucin-type O-glycosylation in Fasciola hepatica: Characterisation of carcinoma-associated Tn and sialyl-Tn antigens and evaluation of UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase activity. Int. J. Parasitol. 2003, 33, 47–56. [Google Scholar] [CrossRef]
- Ju, T.; Cummings, R.D. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 β3-galactosyltransferase. Proc. Natl. Acad. Sci. USA 2002, 99, 16613–16618. [Google Scholar] [CrossRef]
- Cwiklinski, K.; Jewhurst, H.; McVeigh, P.; Barbour, T.; Maule, A.G.; Tort, J.; O’Neill, S.M.; Robinson, M.W.; Donnelly, S.; Dalton, J.P. Infection by the helminth parasite Fasciola hepatica requires rapid regulation of metabolic, virulence, and invasive factors to adjust to its mammalian host. Mol. Cell. Proteom. 2018, 17, 792–809. [Google Scholar] [CrossRef]
- Threadgold, L. Fasciola hepatica: Ultrastructure and histochemistry of the glycocalyx of the tegument. Exp. Parasitol. 1976, 39, 119–134. [Google Scholar] [CrossRef]
- McAllister, H.; Nisbet, A.; Skuce, P.; Knox, D. Using lectins to identify hidden antigens in Fasciola hepatica. J. Helminthol. 2011, 85, 121–127. [Google Scholar] [CrossRef]
- Ravidà, A.; Cwiklinski, K.; Aldridge, A.M.; Clarke, P.; Thompson, R.; Gerlach, J.Q.; Kilcoyne, M.; Hokke, C.H.; Dalton, J.P.; O’Neill, S.M. Fasciola hepatica surface tegument: Glycoproteins at the interface of parasite and host. Mol. Cell. Proteom. 2016, 15, 3139–3153. [Google Scholar] [CrossRef]
- Abdul-Salam, F.; Mansour, M.H. Identification and localization of a schistosome-associated fucosyllactose determinant expressed by Fasciola hepatica. Comp. Immunol. Microbiol. Infect. Dis. 2000, 23, 99–111. [Google Scholar] [CrossRef]
- Georgieva, K.; Georgieva, S.; Mizinska, Y.; Stoitsova, S. Fasciola hepatica miracidia: Lectin binding and stimulation of in vitro miracidium-to-sporocyst transformation. Acta Parasitol. 2012, 57, 46–52. [Google Scholar] [CrossRef]
- Georgieva, K.; Yoneva, A.; Popov, I.; Mizinska-Boevska, Y.; Stoitsova, S. Lectin-binding properties of the surface of Fasciola hepatica sporocysts. Comptes Rendus Acad. Bulg. Des Sci. 2005, 58, 973. [Google Scholar]
- Georgieva, K.; Yoneva, A.; Mizinska-Boevska, Y. Lectin binding characteristics of Fasciola hepatica rediae. Comptes Rendus Acad. Bulg. Des Sci. 2007, 60, 315. [Google Scholar]
- Creaney, J.; Wilson, L.; Dosen, M.; Sandeman, R.M.; Spithill, T.W.; Parsons, J.C. Fasciola hepatica: Irradiation-induced alterations in carbohydrate and cathepsin-B protease expression in newly excysted juvenile liver fluke. Exp. Parasitol. 1996, 83, 202–215. [Google Scholar] [CrossRef]
- De Marco Verissimo, C.; Cwiklinski, K.; Nilsson, J.; Mirgorodskaya, E.; Jin, C.; Karlsson, N.G.; Dalton, J.P. Glycan Complexity and Heterogeneity of Glycoproteins in Somatic Extracts and Secretome of the Infective Stage of the Helminth Fasciola hepatica. Mol. Cell. Proteom. 2023, 22, 100684. [Google Scholar] [CrossRef] [PubMed]
- Rogan, M.; Threadgold, L. Fasciola hepatica: Tegumental alterations as a consequence of lectin binding. Exp. Parasitol. 1984, 57, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Kwame Nyame, A.; Debose-Boyd, R.; Long, T.D.; Tsang, V.C.; Cummings, R.D. Expression of Lex antigen in Schistosoma japonicum and S. haematobium and immune responses to Lex in infected animals: Lack of Lex expression in other trematodes and nematodes. Glycobiology 1998, 8, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, E.; Carasi, P.; Frigerio, S.; da Costa, V.; van Vliet, S.; Noya, V.; Brossard, N.; van Kooyk, Y.; García-Vallejo, J.J.; Freire, T. Fasciola hepatica immune regulates CD11c+ Cells by interacting with the macrophage Gal/GalNAc lectin. Front. Immunol. 2017, 8, 264. [Google Scholar] [CrossRef]
- Cwiklinski, K.; de la Torre-Escudero, E.; Trelis, M.; Bernal, D.; Dufresne, P.J.; Brennan, G.P.; O’Neill, S.; Tort, J.; Paterson, S.; Marcilla, A.; et al. The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis. Mol. Cell. Proteom. 2015, 14, 3258–3273. [Google Scholar] [CrossRef]
- Marcilla, A.; Trelis, M.; Cortés, A.; Sotillo, J.; Cantalapiedra, F.; Minguez, M.T.; Valero, M.L.; Sánchez del Pino, M.M.; Muñoz-Antoli, C.; Toledo, R.; et al. Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS ONE 2012, 7, e45974. [Google Scholar] [CrossRef]
- Murphy, A.; Cwiklinski, K.; Lalor, R.; O’Connell, B.; Robinson, M.W.; Gerlach, J.; Joshi, L.; Kilcoyne, M.; Dalton, J.P.; O’Neill, S.M. Fasciola hepatica extracellular vesicles isolated from excretory-secretory products using a gravity flow method modulate dendritic cell phenotype and activity. PLoS Negl. Trop. Dis. 2020, 14, e0008626. [Google Scholar] [CrossRef]
- de la Torre-Escudero, E.; Gerlach, J.Q.; Bennett, A.P.; Cwiklinski, K.; Jewhurst, H.L.; Huson, K.M.; Joshi, L.; Kilcoyne, M.; O’Neill, S.; Dalton, J.P. Surface molecules of extracellular vesicles secreted by the helminth pathogen Fasciola hepatica direct their internalisation by host cells. PLoS Negl. Trop. Dis. 2019, 13, e0007087. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, M.; Gerlach, J.Q.; Wendt, G.R.; Collins, J.J., 3rd; Atkinson, L.E.; Mousley, A.; Geary, T.G.; Long, T. Analysis of Schistosoma mansoni Extracellular Vesicles Surface Glycans Reveals Potential Immune Evasion Mechanism and New Insights on Their Origins of Biogenesis. Pathogens 2021, 10, 1401. [Google Scholar] [CrossRef] [PubMed]
- Tangvoranuntakul, P.; Gagneux, P.; Diaz, S.; Bardor, M.; Varki, N.; Varki, A.; Muchmore, E. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. USA 2003, 100, 12045–12050. [Google Scholar] [CrossRef] [PubMed]
- Banda, K.; Gregg, C.J.; Chow, R.; Varki, N.M.; Varki, A. Metabolism of vertebrate amino sugars with N-glycolyl groups: Mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid. J. Biol. Chem. 2012, 287, 28852–28864. [Google Scholar] [CrossRef]
- Bardor, M.; Nguyen, D.H.; Diaz, S.; Varki, A. Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J. Biol. Chem. 2005, 280, 4228–4237. [Google Scholar] [CrossRef]
- Wuhrer, M.; Grimm, C.; Zähringer, U.; Dennis, R.D.; Berkefeld, C.M.; Idris, M.A.; Geyer, R. A novel GlcNAca1-HPO3-6Gal (1-1) ceramide antigen and alkylated inositol-phosphoglycerolipids expressed by the liver fluke Fasciola hepatica. Glycobiology 2003, 13, 129–137. [Google Scholar] [CrossRef]
- Wuhrer, M.; Berkefeld, C.; Dennis, R.D.; Idris, M.A.; Geyer, R. The liver flukes Fasciola gigantica and Fasciola hepatica express the leucocyte cluster of differentiation marker CD77 (globotriaosylceramide) in their tegument. Biol. Chem. 2001, 382, 195–207. [Google Scholar] [CrossRef]
- Luh, D.; Ghezellou, P.; Heiles, S.; Gramberg, S.; Haeberlein, S.; Spengler, B. Glycolipidomics of Liver Flukes and Host Tissues during Fascioliasis: Insights from Mass Spectrometry Imaging. ACS Infect. Dis. 2024, 10, 4233–4245. [Google Scholar] [CrossRef]
- Sloan, T.; Dooge, D.; Joyce, P. Identification of phosphorylcholine containing antigens of Fasciola hepatica—Successful tolerization against this epitope in experimental animals. Parasite Immunol. 1991, 13, 447–455. [Google Scholar] [CrossRef]
- Al-Riyami, L.; Harnett, W. Immunomodulatory properties of ES-62, a phosphorylcholine-containing glycoprotein secreted by Acanthocheilonema viteae. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 45–52. [Google Scholar] [CrossRef]
- Pineda, M.A.; Lumb, F.; Harnett, M.M.; Harnett, W. ES-62, a therapeutic anti-inflammatory agent evolved by the filarial nematode Acanthocheilonema viteae. Mol. Biochem. Parasitol. 2014, 194, 1–8. [Google Scholar] [CrossRef]
- Mickum, M.L.; Prasanphanich, N.S.; Heimburg-Molinaro, J.; Leon, K.E.; Cummings, R.D. Deciphering the glycogenome of schistosomes. Front. Genet. 2014, 5, 262. [Google Scholar] [CrossRef]
- Prasanphanich, N.S.; Leon, K.; Secor, W.E.; Shoemaker, C.B.; Heimburg-Molinaro, J.; Cummings, R.D. Anti-schistosomal immunity to core xylose/fucose in N-glycans. Front. Mol. Biosci. 2023, 10, 1142620. [Google Scholar] [CrossRef]
- Riley, N.M.; Bertozzi, C.R.; Pitteri, S.J. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol. Cell. Proteom. 2021, 20, 100029. [Google Scholar] [CrossRef] [PubMed]
- Merry, C.L.; Lindahl, U.; Couchman, J.; Esko, J.D. Proteoglycans and sulfated glycosaminoglycans. In Essentials of Glycobiology, 4th ed.; Varki, A., Cummings, R., Esko, J., Stanley, P., Hart, G., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N., Prestegard, J., et al., Eds.; Cold Spring Harbor: New York, NY, USA, 2022. [Google Scholar]
- Vanbeselaere, J.; Yan, S.; Joachim, A.; Paschinger, K.; Wilson, I.B. The parasitic nematode Oesophagostomum dentatum synthesizes unusual glycosaminoglycan-like O-glycans. Glycobiology 2018, 28, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D. Dectin-1: A signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Guasconi, L.; Burstein, V.L.; Beccacece, I.; Mena, C.; Chiapello, L.S.; Masih, D.T. Dectin-1 on macrophages modulates the immune response to Fasciola hepatica products through the ERK signaling pathway. Immunobiology 2018, 223, 834–838. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, J.; Luo, Y.; Hickford, J.G. Variation in the ovine C-type lectin dectin-1 gene (CLEC7A). Dev. Comp. Immunol. 2010, 34, 246–249. [Google Scholar] [CrossRef]
- Daley, D.; Mani, V.R.; Mohan, N.; Akkad, N.; Ochi, A.; Heindel, D.W.; Lee, K.B.; Zambirinis, C.P.; Pandian, G.S.B.; Savadkar, S. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 2017, 23, 556. [Google Scholar] [CrossRef]
- Schnaar, R.L. Glycobiology simplified: Diverse roles of glycan recognition in inflammation. J. Leukoc. Biol. 2016, 99, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Guasconi, L.; Chiapello, L.S.; Masih, D.T. Fasciola hepatica excretory-secretory products induce CD4+ T cell anergy via selective up-regulation of PD-L2 expression on macrophages in a Dectin-1 dependent way. Immunobiology 2015, 220, 934–939. [Google Scholar] [CrossRef] [PubMed]
- van Kooyk, Y.; Ilarregui, J.M.; van Vliet, S.J. Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL. Immunobiology 2015, 220, 185–192. [Google Scholar] [CrossRef] [PubMed]
- van Liempt, E.; van Vliet, S.J.; Engering, A.; Vallejo, J.J.G.; Bank, C.M.; Sanchez-Hernandez, M.; van Kooyk, Y.; van Die, I. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol. Immunol. 2007, 44, 2605–2615. [Google Scholar] [CrossRef]
- Klaver, E.J.; Kuijk, L.M.; Laan, L.C.; Kringel, H.; van Vliet, S.J.; Bouma, G.; Cummings, R.D.; Kraal, G.; van Die, I. Trichuris suis-induced modulation of human dendritic cell function is glycan-mediated. Int. J. Parasitol. 2013, 43, 191–200. [Google Scholar] [CrossRef]
- Montero-Barrera, D.; Valderrama-Carvajal, H.; Terrazas, C.A.; Rojas-Hernández, S.; Ledesma-Soto, Y.; Vera-Arias, L.; Carrasco-Yépez, M.; Gómez-García, L.; Martínez-Saucedo, D.; Becerra-Díaz, M. The macrophage galactose-type lectin-1 (MGL1) recognizes Taenia crassiceps antigens, triggers intracellular signaling, and is critical for resistance to this infection. BioMed Res. Int. 2015, 2015, 615865. [Google Scholar] [CrossRef]
- Rojas, C.A.A.; Ansell, B.R.; Hall, R.S.; Gasser, R.B.; Young, N.D.; Jex, A.R.; Scheerlinck, J.-P.Y. Transcriptional analysis identifies key genes involved in metabolism, fibrosis/tissue repair and the immune response against Fasciola hepatica in sheep liver. Parasites Vectors 2015, 8, 124. [Google Scholar] [CrossRef]
- East, L.; Isacke, C.M. The mannose receptor family. Biochim. Biophys. Acta 2002, 1572, 364–386. [Google Scholar] [CrossRef]
- Aldridge, A.; O’Neill, S.M. Fasciola hepatica tegumental antigens induce anergic-like T cells via dendritic cells in a mannose receptor-dependent manner. Eur. J. Immunol. 2016, 46, 1180–1192. [Google Scholar] [CrossRef]
- van Liempt, E.; Bank, C.M.; Mehta, P.; Garcıá-Vallejo, J.J.; Kawar, Z.S.; Geyer, R.; Alvarez, R.A.; Cummings, R.D.; van Kooyk, Y.; van Die, I. Specificity of DC-SIGN for mannose-and fucose-containing glycans. FEBS Lett. 2006, 580, 6123–6131. [Google Scholar] [CrossRef]
- van Die, I.; van Vliet, S.J.; Nyame, A.K.; Cummings, R.D.; Bank, C.M.; Appelmelk, B.; Geijtenbeek, T.B.; van Kooyk, Y. The dendritic cell–specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x. Glycobiology 2003, 13, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Colmenares, M.; Corbí, A.L.; Turco, S.J.; Rivas, L. The dendritic cell receptor DC-SIGN discriminates among species and life cycle forms of Leishmania. J. Immunol. 2004, 172, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Gringhuis, S.I.; Kaptein, T.M.; Wevers, B.A.; Van Der Vlist, M.; Klaver, E.J.; Van Die, I.; Vriend, L.E.; De Jong, M.A.; Geijtenbeek, T.B. Fucose-based PAMPs prime dendritic cells for follicular T helper cell polarization via DC-SIGN-dependent IL-27 production. Nat. Commun. 2014, 5, 5074. [Google Scholar] [CrossRef]
- Popa, S.J.; Stewart, S.E.; Moreau, K. Unconventional secretion of annexins and galectins. Semin. Cell Dev. Biol. 2018, 83, 42–50. [Google Scholar] [CrossRef]
- Rabinovich, G.A.; Toscano, M.A. Turning ’sweet’ on immunity: Galectin–glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 2009, 9, 338–352. [Google Scholar] [CrossRef]
- Preston, S.; Dunphy, J.; Beddoe, T.; Meeusen, E.; Young, A. Evaluation of the role of galectins in parasite immunity. In Galectins; Springer: Berlin/Heidelberg, Germany, 2015; pp. 371–395. [Google Scholar]
- Dunphy, J.L.; Balic, A.; Barcham, G.J.; Horvath, A.J.; Nash, A.D.; Meeusen, E.N. Isolation and characterization of a novel inducible mammalian galectin. J. Biol. Chem. 2000, 275, 32106–32113. [Google Scholar] [CrossRef]
- Dunphy, J.L.; Barcham, G.J.; Bischof, R.J.; Young, A.R.; Nash, A.; Meeusen, E.N. Isolation and characterization of a novel eosinophil-specific galectin released into the lungs in response to allergen challenge. J. Biol. Chem. 2002, 277, 14916–14924. [Google Scholar] [CrossRef]
- Young, A.R.; Barcham, G.J.; McWilliam, H.E.; Piedrafita, D.M.; Meeusen, E.N. Galectin secretion and binding to adult Fasciola hepatica during chronic liver fluke infection of sheep. Vet. Immunol. Immunopathol. 2012, 145, 362–367. [Google Scholar] [CrossRef]
- Rojas, C.A.A.; Scheerlinck, J.-P.; Ansell, B.R.; Hall, R.S.; Gasser, R.B.; Jex, A.R. Time-course study of the transcriptome of peripheral blood mononuclear cells (PBMCs) from sheep infected with Fasciola hepatica. PLoS ONE 2016, 11, e0159194. [Google Scholar] [CrossRef]
- Swan, J.; Sakthivel, D.; Cameron, T.C.; Faou, P.; Downs, R.; Rajapaksha, H.; Piedrafita, D.; Beddoe, T. Proteomic identification of galectin-11 and-14 ligands from Fasciola hepatica. Int. J. Parasitol. 2019, 49, 921–932. [Google Scholar] [CrossRef]
- Young, A.R.; Barcham, G.J.; Kemp, J.M.; Dunphy, J.L.; Nash, A.; Meeusen, E.N. Functional characterization of an eosinophil-specific galectin, ovine galectin-14. Glycoconj. J. 2009, 26, 423–432. [Google Scholar] [CrossRef]
- Wilson, R.A.; Wright, J.M.; de Castro-Borges, W.; Parker-Manuel, S.J.; Dowle, A.A.; Ashton, P.D.; Young, N.D.; Gasser, R.B.; Spithill, T.W. Exploring the Fasciola hepatica tegument proteome. Int. J. Parasitol. 2011, 41, 1347–1359. [Google Scholar] [CrossRef]
- De Marco Verissimo, C.; Jewhurst, H.L.; Dobó, J.; Gál, P.; Dalton, J.P.; Cwiklinski, K. Fasciola hepatica is refractory to complement killing by preventing attachment of mannose binding lectin (MBL) and inhibiting MBL-associated serine proteases (MASPs) with serpins. PLoS Pathog. 2022, 18, e1010226. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Goto, Y. Parasitomimetics: Can we utilize parasite-derived immunomodulatory molecules for interventions to immunological disorders? Front. Immunol. 2022, 13, 824695. [Google Scholar] [CrossRef] [PubMed]
- Luyai, A.E.; Heimburg-Molinaro, J.; Prasanphanich, N.S.; Mickum, M.L.; Lasanajak, Y.; Song, X.; Nyame, A.K.; Wilkins, P.; Rivera-Marrero, C.A.; Smith, D.F. Differential expression of anti-glycan antibodies in schistosome-infected humans, rhesus monkeys and mice. Glycobiology 2014, 24, 602–618. [Google Scholar] [CrossRef] [PubMed]
- van Diepen, A.; Smit, C.H.; van Egmond, L.; Kabatereine, N.B.; de Moira, A.P.; Dunne, D.W.; Hokke, C.H. Differential anti-glycan antibody responses in Schistosoma mansoni-infected children and adults studied by shotgun glycan microarray. PLoS Negl. Trop. Dis. 2012, 6, e1922. [Google Scholar] [CrossRef]
- Yang, Y.M.; Li, X.H.; Brzezicka, K.; Reichardt, N.-C.; Wilson, R.A.; van Diepen, A.; Hokke, C.H. Specific anti-glycan antibodies are sustained during and after parasite clearance in Schistosoma japonicum-infected rhesus macaques. PLoS Negl. Trop. Dis. 2017, 11, e0005339. [Google Scholar] [CrossRef]
- Smit, C.H.; Kies, C.L.; McWilliam, H.E.; Meeusen, E.N.; Hokke, C.H.; Van Diepen, A. Local antiglycan antibody responses to skin stage and migratory schistosomula of Schistosoma japonicum. Infect. Immun. 2016, 84, 21–33. [Google Scholar] [CrossRef]
- Martini, F.; Eckmair, B.; Štefanić, S.; Jin, C.; Garg, M.; Yan, S.; Jiménez-Castells, C.; Hykollari, A.; Neupert, C.; Venco, L. Highly modified and immunoactive N-glycans of the canine heartworm. Nat. Commun. 2019, 10, 75. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swan, J.; Cameron, T.C.; Spithill, T.W.; Beddoe, T. Deciphering the Fasciola hepatica Glycocode and Its Involvement in Host–Parasite Interactions. Biomolecules 2025, 15, 1235. https://doi.org/10.3390/biom15091235
Swan J, Cameron TC, Spithill TW, Beddoe T. Deciphering the Fasciola hepatica Glycocode and Its Involvement in Host–Parasite Interactions. Biomolecules. 2025; 15(9):1235. https://doi.org/10.3390/biom15091235
Chicago/Turabian StyleSwan, Jaclyn, Timothy C. Cameron, Terry W. Spithill, and Travis Beddoe. 2025. "Deciphering the Fasciola hepatica Glycocode and Its Involvement in Host–Parasite Interactions" Biomolecules 15, no. 9: 1235. https://doi.org/10.3390/biom15091235
APA StyleSwan, J., Cameron, T. C., Spithill, T. W., & Beddoe, T. (2025). Deciphering the Fasciola hepatica Glycocode and Its Involvement in Host–Parasite Interactions. Biomolecules, 15(9), 1235. https://doi.org/10.3390/biom15091235