Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,595)

Search Parameters:
Keywords = paper properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 (registering DOI) - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

14 pages, 1527 KiB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

16 pages, 343 KiB  
Article
Structured Distance to Normality of Dirichlet–Neumann Tridiagonal Toeplitz Matrices
by Zhaolin Jiang, Hongxiao Chu, Qiaoyun Miao and Ziwu Jiang
Axioms 2025, 14(8), 609; https://doi.org/10.3390/axioms14080609 - 5 Aug 2025
Abstract
This paper conducts a rigorous study on the spectral properties and operator-space distances of perturbed Dirichlet–Neumann tridiagonal (PDNT) Toeplitz matrices, with emphasis on their asymptotic behaviors. We establish explicit closed-form solutions for the eigenvalues and associated eigenvectors, highlighting their fundamental importance for characterizing [...] Read more.
This paper conducts a rigorous study on the spectral properties and operator-space distances of perturbed Dirichlet–Neumann tridiagonal (PDNT) Toeplitz matrices, with emphasis on their asymptotic behaviors. We establish explicit closed-form solutions for the eigenvalues and associated eigenvectors, highlighting their fundamental importance for characterizing matrix stability in the presence of perturbations. By exploiting the structural characteristics of PDNT Toeplitz matrices, we obtain closed-form expressions quantifying the distance to normality, the deviation from normality. Full article
Show Figures

Figure 1

13 pages, 265 KiB  
Article
On LRS Space-Times Admitting Conformal Motions
by Ragab M. Gad, Awatif Al-Jedani and Shahad T. Alsulami
Symmetry 2025, 17(8), 1241; https://doi.org/10.3390/sym17081241 - 5 Aug 2025
Abstract
In this paper, we study the conformal symmetry for locally rotationally symmetric Bianchi type I space-time. New exact conformal solutions of Einstein’s field equations for this space-time were obtained. The space-time geometry of these solutions is found to be non-vacuum, conformally flat, and [...] Read more.
In this paper, we study the conformal symmetry for locally rotationally symmetric Bianchi type I space-time. New exact conformal solutions of Einstein’s field equations for this space-time were obtained. The space-time geometry of these solutions is found to be non-vacuum, conformally flat, and shear-free. We show that in order for LRS Bianchi type I space-time to admit a conformal vector field it must reduce to the FRW space-time. Some physical and kinematic properties of the obtained conformal solutions are also discussed. Full article
(This article belongs to the Section Mathematics)
19 pages, 317 KiB  
Article
New Class of Specific Functions with Fractional Derivatives
by Hatun Özlem Güney and Shigeyoshi Owa
Axioms 2025, 14(8), 608; https://doi.org/10.3390/axioms14080608 - 5 Aug 2025
Abstract
Let An be the class of specific analytic functions [...] Read more.
Let An be the class of specific analytic functions f(z)=z+k=1a1+knz1+kn(nN={1,2,3,}) in the open unit disk U. For f(z)An, fractional derivatives Dzλf(z) and Dzj+λf(z)(0λ<1,jN) are defined by using Gamma functions. Applying such fractional derivatives, we introduce a new subclass An(j,λ,α,β) of An. In this paper, we establish sufficient conditions for f(z) for An(j,λ,α,β), coefficient inequalities for |a1+1n| and |a1+kn|(k=2,3,4,) of f(z)An(j,λ,α,β), and some interesting argument properties of fractional derivatives for f(z)An through an example. Full article
(This article belongs to the Special Issue Recent Advances in Complex Analysis and Related Topics)
20 pages, 2225 KiB  
Article
Network Saturation: Key Indicator for Profitability and Sensitivity Analyses of PRT and GRT Systems
by Joerg Schweizer, Giacomo Bernieri and Federico Rupi
Future Transp. 2025, 5(3), 104; https://doi.org/10.3390/futuretransp5030104 - 4 Aug 2025
Abstract
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as [...] Read more.
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as they are low-emission and able to attract car drivers. The parameterized cost modeling framework developed in this paper has the advantage that profitability of different PRT/GRT systems can be rapidly verified in a transparent way and in function of a variety of relevant system parameters. This framework may contribute to a more transparent, rapid, and low-cost evaluation of PRT/GRT schemes for planning and decision-making purposes. The main innovation is the introduction of the “peak hour network saturation” S: the number of vehicles in circulation during peak hour divided by the maximum number of vehicles running at line speed with minimum time headways. It is an index that aggregates the main uncertainties in the planning process, namely the demand level relative to the supply level. Furthermore, a maximum S can be estimated for a PRT/GRT project, even without a detailed demand estimation. The profit per trip is analytically derived based on S and a series of more certain parameters, such as fares, capital and maintenance costs, daily demand curve, empty vehicle share, and physical properties of the system. To demonstrate the ability of the framework to analyze profitability in function of various parameters, we apply the methods to a single vehicle PRT, a platooned PRT, and a mixed PRT/GRT. The results show that PRT services with trip length proportional fares could be profitable already for S>0.25. The PRT capacity, profitability, and robustness to tripled infrastructure costs can be increased by vehicle platooning or GRT service during peak hours. Full article
Show Figures

Figure 1

12 pages, 21873 KiB  
Article
Multi-Sensor System for Analysis of Maneuver Performance in Olympic Sailing
by Eirik E. Semb, Erlend Stendal, Karen Dahlhaug and Martin Steinert
Appl. Sci. 2025, 15(15), 8629; https://doi.org/10.3390/app15158629 (registering DOI) - 4 Aug 2025
Abstract
This paper presents a novel multi-sensor system for enhanced maneuver analysis in Olympic dinghy sailing. In the ILCA class, there is an increasing demand for precise in-field measurement and analysis of physical properties beyond well-established velocity and course metrics. The low-cost setup presented [...] Read more.
This paper presents a novel multi-sensor system for enhanced maneuver analysis in Olympic dinghy sailing. In the ILCA class, there is an increasing demand for precise in-field measurement and analysis of physical properties beyond well-established velocity and course metrics. The low-cost setup presented in this study consists of a combination of commercially available sensor systems, such as the AdMos sensor for IMU and GNSS measurement, in combination with custom measurement systems for rudder and mast rotations using fully waterproofed potentiometers. Data streams are synchronized using GNSS time stamping for streamlined analysis. The resulting analysis presents a selection of 12 upwind tacks, with corresponding path overlays, detailed timeseries data, and performance metrics. The system has demonstrated the value of extended data analysis of in situ data with an elite ILCA 7 sailor. The addition of rudder and mast rotations has enabled enhanced analysis of on-water maneuvers for single-handed Olympic dinghies like the ILCA 7, on a level of detail previously reserved for simulated environments. Full article
(This article belongs to the Special Issue Applied Sports Performance Analysis)
Show Figures

Figure 1

22 pages, 12352 KiB  
Article
Sparse Decomposition-Based Anti-Spoofing Framework for GNSS Receiver: Spoofing Detection, Classification, and Position Recovery
by Yuxin He, Xuebin Zhuang and Bing Xu
Remote Sens. 2025, 17(15), 2703; https://doi.org/10.3390/rs17152703 - 4 Aug 2025
Abstract
Achieving reliable navigation is critical for GNSS receivers subject to spoofing attacks. Utilizing the inherent sparsity and inconsistency of spoofing signals, this paper proposes an anti-spoofing framework for GNSS receivers to detect, classify, and recover positions from spoofing attacks without additional devices. A [...] Read more.
Achieving reliable navigation is critical for GNSS receivers subject to spoofing attacks. Utilizing the inherent sparsity and inconsistency of spoofing signals, this paper proposes an anti-spoofing framework for GNSS receivers to detect, classify, and recover positions from spoofing attacks without additional devices. A sparse decomposition algorithm with non-negative constraints limited by signal power magnitudes is proposed to achieve accurate spoofing detections while extracting key features of the received signals. In the classification stage, these features continuously refine each channel of the receiver’s code tracking loop, ensuring that it tracks either the authentic or counterfeit signal components. Moreover, by leveraging the inherent inconsistency of spoofing properties, we incorporate the Hausdorff distance to determine the most overlapped position sets, distinguishing genuine trajectories and mitigating spoofing effects. Experiments on the TEXBAT dataset show that the proposed algorithm detects 98% of spoofing attacks, ensuring stable position recovery with an average RMSE of 6.32 m across various time periods. Full article
Show Figures

Figure 1

21 pages, 6166 KiB  
Article
Effect of Thermal Cycles on the Compressive Properties of 3D-Printed Polymeric Lattice-Reinforced Cement-Based Materials
by Can Tang, Yujie Zhou, Jing Qiao, Humaira Kanwal, Guoqian Song and Wenfeng Hao
Polymers 2025, 17(15), 2137; https://doi.org/10.3390/polym17152137 - 4 Aug 2025
Abstract
Existing studies have shown that placing 3D-printed lattices in cement matrices can effectively improve the ductility of cement-based composites. However, the influence of thermal fatigue effect on the mechanical properties of 3D-printed lattice-reinforced cement-based composites during service remains to be studied. In this [...] Read more.
Existing studies have shown that placing 3D-printed lattices in cement matrices can effectively improve the ductility of cement-based composites. However, the influence of thermal fatigue effect on the mechanical properties of 3D-printed lattice-reinforced cement-based composites during service remains to be studied. In this paper, cement-based materials without lattices were used as the control group, and the uniaxial compressive mechanical properties of 3D-printed lattice-reinforced cement-based composites after thermal fatigue treatment under a temperature difference of 60 °C were tested. The number of thermal fatigue cycles was set to 45, 90, and 145 times, respectively. During the test, two non-destructive testing technologies, AE and DIC, were used to analyze the strength degradation and deformation law of 3D-printed lattice-reinforced cement-based composites with the increase in cycles. AE adopted the threshold triggering mode, and the channel threshold was 100 mv. The experiment showed that the compressive strength of the control group after 45, 90, and 145 thermal cycles decreased to 72.47% and 49.44% of that of the specimen after 45 thermal cycles, respectively. The strength of RO lattices decreased to 91.07% and 82.14% of that of the specimen after 45 thermal cycles, respectively, while the strength of SO lattices decreased to 83.27% and 77.96% of that of the specimen after 45 thermal cycles, respectively. The compressive strengths of the two types of lattices were higher than that of the control group after three cycles, indicating that 3D-printed lattices can effectively mitigate the influence of environmental thermal fatigue on the mechanical properties of cement-based materials. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

18 pages, 1156 KiB  
Review
Increased Velocity (INVELOX) Wind Delivery System: A Review of Performance Enhancement Advances
by Anesu Godfrey Chitura, Patrick Mukumba and Ngwarai Shambira
Wind 2025, 5(3), 19; https://doi.org/10.3390/wind5030019 - 4 Aug 2025
Abstract
Residential areas are characterized by closely packed buildings which disturb wind flow resulting in low wind speeds (below 2 m/s) with a high turbulence intensity (above 20%). In order to interface between off-the-shelf wind turbines and low-quality wind, the Increased velocity (INVELOX) wind [...] Read more.
Residential areas are characterized by closely packed buildings which disturb wind flow resulting in low wind speeds (below 2 m/s) with a high turbulence intensity (above 20%). In order to interface between off-the-shelf wind turbines and low-quality wind, the Increased velocity (INVELOX) wind delivery system is an attractive wind augmentation option for such regions. The INVELOX setup can harness more energy than conventional bare wind turbines under the same incident wind conditions. However, these systems also have drawbacks and challenges that they face in their operation, which amplify the need to review, understand, and expose gaps and flaws in pursuit of increased power production in low wind quality environments. This paper seeks to review and simplify the advances done by various scholars towards improving the INVELOX delivery system. It provides the mathematical foundation on which these advances are rooted and gives an understanding of how the improvements better the geometric properties of INVELOX. The article concludes by proposing future research directions. Full article
Show Figures

Figure 1

17 pages, 462 KiB  
Article
Fingerprint-Based Secure Query Scheme for Databases over Symmetric Mirror Servers
by Yu Zhang, Rui Zhu, Yin Li and Wenjv Hu
Symmetry 2025, 17(8), 1227; https://doi.org/10.3390/sym17081227 - 4 Aug 2025
Abstract
The Karp and Rabin (KR) fingerprint is a special hash-like function widely utilized for efficient string matching. Recently, Sharma et al.leveraged its linear and symmetric properties to facilitate private database queries. However, their approach mainly protects encrypted or secret-shared databases rather than public [...] Read more.
The Karp and Rabin (KR) fingerprint is a special hash-like function widely utilized for efficient string matching. Recently, Sharma et al.leveraged its linear and symmetric properties to facilitate private database queries. However, their approach mainly protects encrypted or secret-shared databases rather than public databases, where only the query privacy is required. In this paper, we focus explicitly on privacy-preserving queries over public read-only databases. We propose a novel fingerprint-based keyword query scheme using the distributed point function (DPF), which effectively hides users’ data access patterns across two symmetric mirror servers. Moreover, we provide a rigorous analysis of the false positive probability inherent in fingerprinting and discuss strategies for its minimization. Our scheme achieves efficiency close to plaintext methods, significantly reducing deployment complexity. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

25 pages, 13557 KiB  
Article
Mechanical Properties and Energy Absorption Characteristics of a Combined Gradient BCC Lattice Structure: A Numerical Study
by Xiangheng Zhao, Xiaoqiang Wang and Yunmiao Shang
Materials 2025, 18(15), 3652; https://doi.org/10.3390/ma18153652 - 4 Aug 2025
Abstract
As a new functional graded lattice structure construction strategy, the relative density gradient strategy has a promising future due to its ease of realization in various lattice structures. This paper proposes a BCC lattice structure combining two different lattice single cells. Based on [...] Read more.
As a new functional graded lattice structure construction strategy, the relative density gradient strategy has a promising future due to its ease of realization in various lattice structures. This paper proposes a BCC lattice structure combining two different lattice single cells. Based on this, the single cells of different structures are assigned different relative density gradients, resulting in 18 combined gradient lattice structures. Based on proving the experimental feasibility of numerical simulation, the mechanical properties and energy absorption characteristics of the combined gradient lattice structure are investigated by numerical simulation. When applied to composite lattice structures, the proposed wave-like gradient design significantly improves mechanical properties. Among the various gradient strategies examined, several have achieved mechanical performance close to that of uniform lattice structures. To some extent, this approach mitigates the common drawback of gradient lattice structures—where the relative density of the weakest layer is consistently lower than the interlayer relative density of uniform lattice structures—resulting in varying degrees of mechanical performance degradation compared to their uniform counterparts. The proposed linearly enhanced gradient strategy (Strategy-LE) possesses higher SEA and CLE values when the lattice structure is subjected to compressive loading, with an improvement of 6.36% in SEA and 61.6% in CLE over the uniform structure. Through the relative density gradient design, the adaptability of the BCC lattice structure in actual complex application scenarios is greatly enhanced, and the energy-absorbing properties of the lattice structure are greatly improved. Full article
Show Figures

Figure 1

33 pages, 4961 KiB  
Article
Study on Grinding Optimization of Cassiterite Polymetallic Sulfide Ore Based on Single-Factor Test Method
by Jinlin Yang, Pengyan Zhu, Xingjian Deng, Hengjun Li, Shaojian Ma and Dingzheng Wang
Minerals 2025, 15(8), 827; https://doi.org/10.3390/min15080827 (registering DOI) - 3 Aug 2025
Viewed by 42
Abstract
Cassiterite polymetallic sulfide ore exhibits a complex mineral composition and significant variations in mineral properties, which frequently lead to issues such as the over-grinding of cassiterite and under-grinding of sulfide minerals during the grinding process. These issues consequently impair liberation performance in subsequent [...] Read more.
Cassiterite polymetallic sulfide ore exhibits a complex mineral composition and significant variations in mineral properties, which frequently lead to issues such as the over-grinding of cassiterite and under-grinding of sulfide minerals during the grinding process. These issues consequently impair liberation performance in subsequent beneficiation stages. Among these factors, the grinding media ratios stand as one of the critical factors influencing grinding efficiency. Based on these, the paper adopts the single-factor test method to systematically study the influence law of factors such as grinding time, mill rotational rate, and mill filling rate on the particle size composition of ore grinding products and the grinding technology efficiency under different media conditions; in addition, it is compared with the influence law of different conditions of media ratios on the grinding efficiency of ore. The results show that the optimal parameters of the grinding operation are obtained at the grinding time of 4 min, the mill rotational rate of 60%, and the filling rate of 35%. The grinding time and mill filling rate have a relatively more significant effect on the product particle size distribution, while the effect of the mill rotational rate is relatively less significant. When the parameters of grinding operations are optimal, the yield of qualified particle size and grinding technical efficiency are used as the evaluation indices, respectively. Overall, the order of the grinding effect of different media conditions was as follows: steel ball combination of Φ20 mm and Φ25 mm > steel balls of three single sizes > steel ball combination of Φ20 mm and Φ30 mm. The optimal grinding media ratios are Φ20 mm and Φ25 mm (the percentage of the Φ20 mm ball is 90%). The reasonable media ratios will effectively coordinate the optimal grinding effect between different media. The research results can provide the necessary basic data for the subsequent grinding optimization of cassiterite polymetallic sulfide ores. Full article
Show Figures

Figure 1

18 pages, 7618 KiB  
Article
A Comparative Analysis of Axial Bearing Behaviour in Steel Pipe Piles and PHC Piles for Port Engineering
by Runze Zhang, Yizhi Liu, Lei Wang, Weiming Gong and Zhihui Wan
Buildings 2025, 15(15), 2738; https://doi.org/10.3390/buildings15152738 - 3 Aug 2025
Viewed by 57
Abstract
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the [...] Read more.
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the context of the Yancheng Dafeng Port Security Facilities Project. A self-balanced static load numerical model for PHC piles was developed using Plaxis 3D, enabling the simulation of load-displacement responses, axial force transfer, and side resistance distribution. The accuracy of the model was verified through a comparison with field static load test data. With the verified model parameters, the internal force distribution of steel pipe piles was analysed by modifying material properties and adjusting boundary conditions. A comparative analysis of the two pile types was conducted under identical working conditions. The results reveal that the ultimate bearing capacities of the 1# steel pipe pile and the 2# PHC pile are 6734 kN and 6788 kN, respectively. Despite the PHC pile having a 20% larger diameter, its ultimate bearing capacity is comparable to that of the steel pipe pile, suggesting a more efficient utilisation of material strength in the latter. Further numerical simulations indicate that, under the same working conditions, the ultimate bearing capacity of the steel pipe pile exceeds that of the PHC pile by 18.43%. Additionally, the axial force distribution along the steel pipe pile shaft is more uniform, and side resistance is mobilised more effectively. The reduction in side resistance caused by construction disturbances, combined with the slenderness ratio (L/D = 41.7) of the PHC pile, results in 33.87% of the pile’s total bearing capacity being attributed to tip resistance. The findings of this study provide crucial insights into the selection of optimal pile types for terminal foundations, considering factors such as bearing capacity, environmental conditions, and economic viability. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 2845 KiB  
Review
Silicon-Based Polymer-Derived Ceramics as Anode Materials in Lithium-Ion Batteries
by Liang Zhang, Han Fei, Chenghuan Wang, Hao Ma, Xuan Li, Pengjie Gao, Qingbo Wen, Shasha Tao and Xiang Xiong
Materials 2025, 18(15), 3648; https://doi.org/10.3390/ma18153648 - 3 Aug 2025
Viewed by 137
Abstract
In most commercial lithium-ion batteries, graphite remains the primary anode material. However, its theoretical specific capacity is only 372 mAh∙g−1, which falls short of meeting the demands of high-performance electronic devices. Silicon anodes, despite boasting an ultra-high theoretical specific capacity of [...] Read more.
In most commercial lithium-ion batteries, graphite remains the primary anode material. However, its theoretical specific capacity is only 372 mAh∙g−1, which falls short of meeting the demands of high-performance electronic devices. Silicon anodes, despite boasting an ultra-high theoretical specific capacity of 4200 mAh∙g−1, suffer from significant volume expansion (>300%) during cycling, leading to severe capacity fade and limiting their commercial viability. Currently, silicon-based polymer-derived ceramics have emerged as a highly promising next-generation anode material for lithium-ion batteries, thanks to their unique nano-cluster structure, tunable composition, and low volume expansion characteristics. The maximum capacity of the ceramics can exceed 1000 mAh∙g−1, and their unique synthesis routes enable customization to align with diverse electrochemical application requirements. In this paper, we present the progress of silicon oxycarbide (SiOC), silicon carbonitride (SiCN), silicon boron carbonitride (SiBCN) and silicon oxycarbonitride (SiOCN) in the field of LIBs, including their synthesis, structural characteristics and electrochemical properties, etc. The mechanisms of lithium-ion storage in the Si-based anode materials are summarized as well, including the key role of free carbon in these materials. Full article
Show Figures

Figure 1

Back to TopTop