Mechanical Properties and Energy Absorption Characteristics of a Combined Gradient BCC Lattice Structure: A Numerical Study
Abstract
1. Introduction
2. Design Architecture for Combined Gradient Lattice Structures
2.1. Naming Convention
2.2. Relative Density
2.3. The Design and Construction of the Combined Gradient Lattice Structure
2.3.1. Combined Lattice Structure Consisting of Two Single-Cell Types
2.3.2. Design of Combined Gradient Lattice Structures
3. Finite Element Modeling Setup
4. Results and Discussion
4.1. Feasibility Verification of the Finite Element Simulation Results
4.2. Compression Response and Failure Modes
4.3. Mechanical and Energy Absorption Properties
4.4. Numerical Simulation Results of Combined Gradient Lattice Structure and Nanomechanical Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Yield stress (MPa) |
B | Strain hardening coefficient (MPa) |
C | Strain rate hardening coefficient |
n | Strain hardening exponent |
m | Thermal softening exponent |
d1 | Initial failure strain |
d2 | Exponential factor |
d3 | Triaxiality factor |
d4 | Strain rate factor |
d5 | Temperature factor |
σe | Initial peak stress |
σp | Plateau stress |
σb | Compressive strength of the lattice structure |
εd | Strain at the onset of lattice structure densification |
ρ | Density of the lattice structure |
δSC | Relative error |
E | Elastic modulus of the lattice structure |
l | Length of an inclined strut |
Vcylindricity | Total volume of cylindrical rods within the single cell |
Vspace volume | Volume occupied by the single cell in space |
θ | Angle between the inclined strut and the horizontal plane in a single cell |
References
- Yuan, S.Y.; Song, B.K.; Liu, G.; Yang, B.Q.; Dai, M.Q.; Gao, Z.T.; Cao, S.; Zhao, M. Enhanced Compressive Mechanical Properties of Bio-Inspired Lattice Metamaterials with Taper Struts. Materials 2025, 18, 29. [Google Scholar] [CrossRef]
- Ren, C.H.; Yang, D.Q.; Qin, H.X. Mechanical Performance of Multidirectional Buckling-Based Negative Stiffness Metamaterials: An Analytical and Numerical Study. Materials 2018, 11, 1078. [Google Scholar] [CrossRef]
- Gao, D.W.; Zhang, J.H.; Zhang, C.W.; You, Y. Dynamic Compressive and Flexural Behaviour of Re-Entrant Auxetics: A Numerical Study. Materials 2023, 16, 5219. [Google Scholar] [CrossRef]
- Liovic, D.; Krscanski, S.; Franulovic, M.; Kozak, D.; Turkalj, G.; Vaglio, E.; Sortino, M.; Totis, G.; Scalzo, F.; Gubeljak, N. A Study on the Compressive Behavior of Additively Manufactured AlSi10Mg Lattice Structures. Materials 2024, 17, 5188. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.Y.; Dong, X.Y.; Zhang, Q.K.; Chi, D.Q.; Zhang, Y.; Cheng, Z.J.; Lv, T.; Xie, Z.M.; Xu, Y.J.; Zhang, D.J.; et al. Intelligent Reversible Reconfigurable Metamaterials Based on a Two-Way Shape Memory Polymer. Acs Appl. Mater. Interfaces 2024, 16, 54627–54635. [Google Scholar] [CrossRef]
- Arjunan, A.; Baroutaji, A.; Robinson, J.; Vance, A.; Arafat, A. Acoustic metamaterials for sound absorption and insulation in buildings. Build. Environ. 2024, 251, 111250. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhao, J.; Wang, X.F.; Liu, P.B.; Gong, J.; Huang, Y. Multi-functional metamaterial based on overdamping effect: Design, investigation, optimization. Int. J. Mech. Sci. 2025, 286, 109890. [Google Scholar] [CrossRef]
- Li, N.; Pang, S.M.; Chen, S.G.; Liu, Y.L.; Aiyiti, W.; Chen, Z.W. Design and application of hybrid lattice metamaterial structures with high energy absorption and compressive resistance. J. Mater. Res. Technol. 2024, 33, 7100–7112. [Google Scholar] [CrossRef]
- Dikici, Y.; Daltorio, K.; Akkus, O. Nodes for modes: Nodal honeycomb metamaterial enables a soft robot with multimodal locomotion. Bioinspiration Biomim. 2024, 19, 046002. [Google Scholar] [CrossRef]
- You, J.H.; Park, K. Design and additive manufacturing of thermal metamaterial with high thermal resistance and cooling capability. Addit. Manuf. 2021, 41, 101947. [Google Scholar] [CrossRef]
- Osman, M.M.; Shazly, M.; El-Danaf, E.A.; Jamshidi, P.; Attallah, M.M. Compressive behavior of stretched and composite microlattice metamaterial for energy absorption applications. Compos. Part B-Eng. 2020, 184, 107715. [Google Scholar] [CrossRef]
- Danilov, A.; Tselikov, G.; Wu, F.; Kravets, V.G.; Ozerov, I.; Bedu, F.; Grigorenko, A.N.; Kabashin, A.V. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. Biosens. Bioelectron. 2018, 104, 102–112. [Google Scholar] [CrossRef]
- Wang, M.Z.; Wang, Y.Z.; Wu, J.J.; Wang, W.D. Experiment and numerical investigation on bio-inspired tube-plate hybrid lattice structure with dual-stress plateaus and enhanced energy absorption. Virtual Phys. Prototyp. 2025, 20, e2500116. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.Y.; Huang, M.H.; Qin, R.X.; Chen, B.Z. Multifunctional strut-plate composite lattice metamaterial for integrated acoustic, energy, and vibration management. Virtual Phys. Prototyp. 2025, 20, e2499469. [Google Scholar] [CrossRef]
- Zhou, J.H.; Liu, Y.H.; Deng, Z.Y.; Jiang, X.A.; Xiao, W.H.; Yu, B.; Lun, Y.Z.; Meng, L.; Tang, G.; Zhang, Z.; et al. Atomic lattice-mimic design and optimization of the auxetic metamaterial inspired by the Ti crystal. Acta Mech. Sin. 2025, 41, 424488. [Google Scholar] [CrossRef]
- Maier, M.; Stangl, C.; Saage, H.; Huber, O. Lightweight Potential of Anisotropic Plate Lattice Metamaterials. Materials 2024, 17, 2354. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.M.; Yang, F.; Li, L.B.; Wu, J.C. Bio-Inspired Curved-Elliptical Lattice Structures for Enhanced Mechanical Performance and Deformation Stability. Materials 2024, 17, 4191. [Google Scholar] [CrossRef] [PubMed]
- Li, F.Y.; Zhang, Q.; Shi, H.M.; Liu, Z. A Modified Three-Dimensional Negative-Poisson-Ratio Metal Metamaterial Lattice Structure. Materials 2022, 15, 3752. [Google Scholar] [CrossRef] [PubMed]
- Al Sabouni-Zawadzka, A. Extreme Mechanical Properties of Regular Tensegrity Unit Cells in 3D Lattice Metamaterials. Materials 2020, 13, 4845. [Google Scholar] [CrossRef]
- Zhang, P.J.; Chen, X.Y.; Yu, P.H.; Zhao, K.; Ma, H.X.; Liu, S.Q.; Tan, H.F.; Laude, V.; Kadic, M. Grid hollow octet truss lattices that are stable at low relative density. J. Mech. Phys. Solids 2025, 197, 106068. [Google Scholar] [CrossRef]
- Doyle, L.; Terrones, H.; González, C. On the Rigidity and Mechanical Behavior of Triply Periodic Minimal Surfaces-Based Lattices: Insights from Extensive Experiments and Simulations. Adv. Eng. Mater. 2025, 27, 2402495. [Google Scholar] [CrossRef]
- Schiantella, M.; Cluni, F.; Gusella, V. Effect of mechanical imperfections on the onset of yielding in lattice structures. Mech. Adv. Mater. Struct. 2025, 1–12. [Google Scholar] [CrossRef]
- Park, K.; Kim, S. Design and thermal performance evaluation of airfoil strut body-centered cubic lattice structure. Int. J. Heat Mass Transf. 2025, 247, 127104. [Google Scholar] [CrossRef]
- Ku, M.H.; Chuang, Y.T.; Yu, S.J.; Setchi, R.; Peng, J.; Wang, X.X.; Wang, P.; Wu, M.W. Superior compressive performance of selective laser melted Al-8.3Fe-1.3V-1.8Si alloy lattice. Mater. Res. Bull. 2025, 190, 113527. [Google Scholar] [CrossRef]
- Wang, P.; Yang, F.; Zhao, J.F. Compression Behaviors and Mechanical Properties of Modified Face-Centered Cubic Lattice Structures under Quasi-Static and High-Speed Loading. Materials 2022, 15, 1949. [Google Scholar] [CrossRef]
- Song, X.H.; Zeng, C.J.; Hu, J.Q.; Zhao, W.; Liu, L.W.; Liu, Y.J.; Leng, J.S. Compressive behavior and energy absorption of novel body-centered cubic lattice metamaterials incorporating simple cubic truss units. Compos. Struct. 2025, 367, 119230. [Google Scholar] [CrossRef]
- Chen, Z.; Sahoo, S.; Pérez-Prado, M.T.; Mordehai, D. The extended scaling laws of the mechanical properties of additively manufactured body-centered cubic lattice structures under large compressive strains. Mech. Mater. 2024, 196, 105075. [Google Scholar] [CrossRef]
- Guo, Z.K.; Zhu, D.; Jiang, G.Q.; Zheng, J.Y.; Wang, Y.X.; Yang, J.H. Wave propagation characteristics of controllable gyroscopic chiral metamaterials. Mech. Syst. Signal Process. 2025, 233, 112811. [Google Scholar] [CrossRef]
- Liu, T.F.; Lei, Z. Low-frequency bandgap and tension-compression to twist mode transition of a novel pull-rotation chiral structure. J. Phys. D-Appl. Phys. 2025, 58, 225301. [Google Scholar] [CrossRef]
- Tikani, V.; Ziaei-Rad, S. Optimization and experimental validation of anti-tri chiral lattice metamaterial for broadband vibration suppression. Int. J. Solids Struct. 2025, 316, 113384. [Google Scholar] [CrossRef]
- Reinbold, J.; Frenzel, T.; Münchinger, A.; Wegener, M. The Rise of (Chiral) 3D Mechanical Metamaterials. Materials 2019, 12, 3527. [Google Scholar] [CrossRef]
- Yu, Z.; Savinov, R.; Matura, M.; Zhang, P.; Shi, J. Current research status on advanced lattice structures for impact and energy absorption applications: A systematic review. Thin-Walled Struct. 2025, 215, 113490. [Google Scholar] [CrossRef]
- Coluccia, A.; Meyer, G.; Liseni, S.; Mittelstedt, C.; De Pasquale, G. Functionally graded lattice structures for energy absorption: Numerical analysis and experimental validation. Compos. Struct. 2025, 360, 119013. [Google Scholar] [CrossRef]
- Daynes, S.; Feih, S. Functionally graded lattice structures with tailored stiffness and energy absorption. Int. J. Mech. Sci. 2025, 285, 109861. [Google Scholar] [CrossRef]
- Emir, E.; Bahçe, E. Compressive behavior of functional graded hybrid lattice structure. Int. J. Adv. Manuf. Technol. 2025, 138, 1605–1620. [Google Scholar] [CrossRef]
- Hao, B.; Zhu, Z.M.; Zhao, Y.X.; Zhang, L. Network-Based Radial-Gradient Al-Si10-Mg Gyroid Lattice Structures: Manufacture, Mechanical Response and Energy Absorption. Int. J. Struct. Stab. Dyn. 2024, 2550265. [Google Scholar] [CrossRef]
- Sereshk, M.R.V.; Faierson, E.J. Concept development for innovative functionally graded lattice structures to absorb desired energy and impact. Adv. Manuf. 2025, 1–14. [Google Scholar] [CrossRef]
- Veeman, D.; Dutta, H.; Vellaisamy, M.; Jeevaraj, K. Functionally graded sustainable lattice structures: Insights into material grading and lattice hybridization. Mater. Lett. 2025, 379, 137713. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, X.Y.; Sun, L.; Hu, Q.D.; Li, N. Optimisation of Selective Laser Melted Ti6Al4V Functionally Graded Lattice Structures Accounting for Structural Safety. Materials 2022, 15, 9072. [Google Scholar] [CrossRef]
- Xiao, S.; Li, Q.; Jia, H.; Wang, F.; Gao, J.; Lv, W.; Qi, J.; Duan, S.; Wang, P.; Lei, H. Mechanical responses and energy absorption characteristics of a novel functionally graded voxel lattice structure. Thin-Walled Struct. 2023, 193, 111244. [Google Scholar] [CrossRef]
- Rahimi, S.; Asghari, M. Design and evaluation of two proposed hybrid FCC-BCC lattice structures for enhanced mechanical performance. Heliyon 2025, 11, e40911. [Google Scholar] [CrossRef]
- Nirmal, R.R.; Patnaik, B.S.V.; Jayaganthan, R. FEM Simulation of High Speed Impact Behaviour of Additively Manufactured AlSi10Mg Alloy. J. Dyn. Behav. Mater. 2021, 7, 469–484. [Google Scholar] [CrossRef]
- Güden, M.; Erten, H.İ.; Gorguluarslan, R.M.; Gülletutan, U.C.; Dağkolu, A.; Gökdağ, İ.; Gunaydın, A.C.; Altınok, S.; Erol, H.İ.; Namazov, S. A comprehensive study on the effectiveness of the stress and damage model parameters in predicting the compression fracture behavior of Selective Laser Melted AlSi10Mg BCC lattices. Mech. Mater. 2025, 208, 105395. [Google Scholar] [CrossRef]
- Kaya, G.; Yıldız, F.; Solak, K.; Orhan, S.N. An experimental and FEA investigation of deformation characteristics of additively manufactured Ti6Al4V lattice structures. Eur. J. Mech.–A/Solids 2025, 112, 105657. [Google Scholar] [CrossRef]
- Kilic, A.S.; Hafizoglu, H.; Babacan, N. Investigation of ballistic performance of selective laser-melted AlSi10Mg alloy lattice structures by experimental and numerical studies. Mater. Today Commun. 2025, 44, 112032. [Google Scholar] [CrossRef]
- He, J.; Kushwaha, S.; Abueidda, D.; Jasiuk, I. Exploring the structure-property relations of thin-walled, 2D extruded lattices using neural networks. Comput. Struct. 2023, 277–278, 106940. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, F.; Zhou, H.; Zhang, T.; Zhang, D.Z.; Fu, G. Effect of the direction of the gradient on the mechanical properties and energy absorption of additive manufactured Ti-6Al-4 V functionally graded lattice structures. J. Alloys Compd. 2023, 968, 171874. [Google Scholar] [CrossRef]
- Zhao, M.; Ji, B.; Zhang, D.Z.; Li, H.; Zhou, H. Design and mechanical performances of a novel functionally graded sheet-based lattice structure. Addit. Manuf. 2022, 52, 102676. [Google Scholar] [CrossRef]
- Yang, L.; Mertens, R.; Ferrucci, M.; Yan, C.; Shi, Y.; Yang, S. Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties. Mater. Des. 2019, 162, 394–404. [Google Scholar] [CrossRef]
- Magazzù, A.; Marcuello, C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials 2023, 13, 963. [Google Scholar] [CrossRef]
- Braun, M.; Aranda-Ruiz, J.; Fernández-Sáez, J. Mixed Mode Crack Propagation in Polymers Using a Discrete Lattice Method. Polymers 2021, 13, 1290. [Google Scholar] [CrossRef] [PubMed]
Johnson–Cook plasticity | A /MPa | B /MPa | n | m | Melting Temp/K | Transition Temp/K |
331.17 | 579.647 | 0.99 | 0.945 | 843 | 298 | |
Johnson–Cook damage | d1 | d2 | d3 | d4 | d5 | Reference Strain Rate |
0.04704 | 1.155 | −0.841 | −0.042 | 0 | 1 |
Specific Modulus (MPa/(g/cm3)) | Specific Compressive Strengths (MPa/(g/cm3)) | ||
---|---|---|---|
Type1 | LE | 860.656 | 14.685 |
DI | 816.549 | 14.634 | |
ID | 778.641 | 14.115 | |
Type2 | WLB | 990.742 | 17.552 |
WLS | 989.371 | 17.244 | |
LE | 928.275 | 16.292 | |
ID | 900.520 | 16.659 | |
Type3 | WLB | 885.015 | 17.461 |
WLS | 1002.118 | 18.050 | |
LE | 1010.233 | 17.698 | |
DI | 962.902 | 17.246 | |
Type4 | WLB | 989.048 | 18.293 |
ID | 930.715 | 17.454 | |
DI | 952.321 | 17.344 | |
Type5 | WLS | 942.463 | 17.570 |
ID | 980.051 | 17.511 | |
DI | 993.995 | 17.660 | |
Type6 | UN | 1075.480 | 19.890 |
SEA (J/g) | CLE | ||
---|---|---|---|
Type1 | LE | 14.411 | 1.559 |
DI | 11.748 | 1.238 | |
ID | 11.771 | 1.287 | |
Type2 | WLB | 8.820 | 0.861 |
WLS | 9.556 | 0.884 | |
LE | 10.729 | 1.059 | |
ID | 9.306 | 0.941 | |
Type3 | WLB | 7.874 | 0.793 |
WLS | 9.238 | 0.810 | |
LE | 11.157 | 0.964 | |
DI | 10.168 | 0.897 | |
Type4 | WLB | 7.675 | 0.810 |
ID | 8.802 | 0.867 | |
DI | 8.212 | 0.810 | |
Type5 | WLS | 10.190 | 0.903 |
ID | 8.163 | 0.775 | |
DI | 6.464 | 0.781 | |
Type6 | UN | 13.549 | 0.965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wang, X.; Shang, Y. Mechanical Properties and Energy Absorption Characteristics of a Combined Gradient BCC Lattice Structure: A Numerical Study. Materials 2025, 18, 3652. https://doi.org/10.3390/ma18153652
Zhao X, Wang X, Shang Y. Mechanical Properties and Energy Absorption Characteristics of a Combined Gradient BCC Lattice Structure: A Numerical Study. Materials. 2025; 18(15):3652. https://doi.org/10.3390/ma18153652
Chicago/Turabian StyleZhao, Xiangheng, Xiaoqiang Wang, and Yunmiao Shang. 2025. "Mechanical Properties and Energy Absorption Characteristics of a Combined Gradient BCC Lattice Structure: A Numerical Study" Materials 18, no. 15: 3652. https://doi.org/10.3390/ma18153652
APA StyleZhao, X., Wang, X., & Shang, Y. (2025). Mechanical Properties and Energy Absorption Characteristics of a Combined Gradient BCC Lattice Structure: A Numerical Study. Materials, 18(15), 3652. https://doi.org/10.3390/ma18153652