Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = palm oil wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2179 KiB  
Article
Conversion of Oil Palm Kernel Shell Wastes into Active Biocarbons by N2 Pyrolysis and CO2 Activation
by Aik Chong Lua
Clean Technol. 2025, 7(3), 66; https://doi.org/10.3390/cleantechnol7030066 - 4 Aug 2025
Viewed by 196
Abstract
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed [...] Read more.
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed by CO2 activation, was used to produce the active biocarbon. The optimum pyrolysis conditions that produced the largest BET surface area of 519.1 m2/g were a temperature of 600 °C, a hold time of 2 h, a nitrogen flow rate of 150 cm3/min, and a heating rate of 10 °C/min. The optimum activation conditions to prepare the active biocarbon with the largest micropore surface area or the best micropore/BET surface area combination were a temperature of 950 °C, a CO2 flow rate of 300 cm3/min, a heating rate of 10 °C/min, and a hold time of 3 h, yielding BET and micropore surface areas of 1232.3 and 941.0 m2/g, respectively, and consisting of 76.36% of micropores for the experimental optimisation technique adopted here. This study underscores the importance of optimising both the pyrolysis and activation conditions to produce an active biocarbon with a maximum micropore surface area for gaseous adsorption applications, especially to capture CO2 greenhouse gas, to mitigate global warming and climate change. Such a comprehensive and detailed study on the conversion of oil palm kernel shell into active biocarbon is lacking in the open literature. The research results provide a practical blueprint on the process parameters and technical know-how for the industrial production of highly microporous active biocarbons prepared from oil palm kernel shells. Full article
Show Figures

Graphical abstract

17 pages, 796 KiB  
Article
From Waste to Energy: Cooking Oil Recycling for Biodiesel in Barranquilla, Colombia
by Marylin Santander-Bossio, Jorge Silva-Ortega, Ruben Cantero-Rodelo, Prince Torres-Salazar, Juan Rivera-Alvarado, Christian Moreno-Rocha and Celene Milánes-Batista
Sustainability 2025, 17(14), 6560; https://doi.org/10.3390/su17146560 - 18 Jul 2025
Viewed by 464
Abstract
The environmental impact of first-generation biodiesel production, particularly deforestation and soil degradation caused by palm and soybean cultivation, has raised concerns about sustainability. In contrast, second-generation biodiesel utilizes waste as feedstock, offering a more sustainable alternative. Used cooking oil (UCO), a significant waste [...] Read more.
The environmental impact of first-generation biodiesel production, particularly deforestation and soil degradation caused by palm and soybean cultivation, has raised concerns about sustainability. In contrast, second-generation biodiesel utilizes waste as feedstock, offering a more sustainable alternative. Used cooking oil (UCO), a significant waste stream, represents a viable feedstock for biodiesel production, reducing pollution and mitigating economic, environmental, and social challenges. While Europe has demonstrated successful UCO waste management strategies, many regions lack efficient systems, leading to improper disposal that causes water eutrophication, soil degradation, and increased wastewater treatment costs. This study develops a comprehensive strategy for UCO management to optimize its energy potential in biodiesel production, using Barranquilla, Colombia, as a case study. Transesterification, identified as the most efficient conversion method, achieves conversion rates of up to 90%. A pilot project in the Barranquilla area estimates that 963,070.95 kg of UCO is generated annually, with the potential to produce 902,108.56 kg of biodiesel. These findings contribute to the advancement of circular economy principles, offering an adaptable framework for sustainable biofuel production in other regions. Full article
(This article belongs to the Special Issue Sustainable Strategies for Food Waste Utilization)
Show Figures

Figure 1

14 pages, 4079 KiB  
Article
Optimization of Biogas Production from Agricultural Residues Through Anaerobic Co-Digestion and GIS Tools in Colombia
by Alfonso García Álvaro, Carlos Arturo Vides Herrera, Elena Moreno-Amat, César Ruiz Palomar, Aldo Pardo García, Adalberto José Ospino and Ignacio de Godos
Processes 2025, 13(7), 2013; https://doi.org/10.3390/pr13072013 - 25 Jun 2025
Viewed by 369
Abstract
The ongoing global population growth and the corresponding rise in energy demand have contributed to increased greenhouse gas (GHG) emissions. The integration of alternative, locally sourced energy solutions such as biogas presents a promising strategy to partially offset conventional energy consumption. In this [...] Read more.
The ongoing global population growth and the corresponding rise in energy demand have contributed to increased greenhouse gas (GHG) emissions. The integration of alternative, locally sourced energy solutions such as biogas presents a promising strategy to partially offset conventional energy consumption. In this context, countries like Colombia—characterized by a high availability of organic waste such as palm oil mill effluent (POME), rice straw, and pig manure—have the potential to harness these residues for biogas production. This study integrates experimental assays of anaerobic co-digestion tests with the spatial analysis of substrate distribution through GIS tools, enabling the identification of optimal regions for biogas production. Methane yields reached 412 mL CH4/g VS, comparable or superior to those reported in similar studies. In addition to laboratory assays, Geographic Information System (GIS) tools were used to generate a weighted heatmap index based on feedstock availability (POME, rice straw, pig manure) across 40 municipalities in Colombia. This integrated approach supports decentralized renewable energy planning and helps identify optimal locations for biogas plant development. Full article
(This article belongs to the Special Issue Waste Management and Biogas Production Process and Application)
Show Figures

Figure 1

23 pages, 1638 KiB  
Article
A Multi-Objective Optimization Approach for Generating Energy from Palm Oil Wastes
by Hendri Cahya Aprilianto and Hsin Rau
Energies 2025, 18(11), 2947; https://doi.org/10.3390/en18112947 - 3 Jun 2025
Viewed by 454
Abstract
Palm oil production generates substantial underutilized biomass wastes, including empty fruit bunches, fiber, palm kernel shells, and palm oil mill effluent (POME). Waste-to-energy systems offer a viable pathway to convert these residues into electricity and fertilizer, supporting circular economy goals and sustainability targets. [...] Read more.
Palm oil production generates substantial underutilized biomass wastes, including empty fruit bunches, fiber, palm kernel shells, and palm oil mill effluent (POME). Waste-to-energy systems offer a viable pathway to convert these residues into electricity and fertilizer, supporting circular economy goals and sustainability targets. This study takes an example of palm oil waste from the Indragiri Hulu region in Riau Province in Indonesia. It develops a multi-objective optimization framework to evaluate palm oil mill WtE systems from economic, environmental, and energy output. Three scenarios are analyzed: maximal profit (MP), maximal profit with carbon tax (MPCT), and all waste processing (AWP). The MP scenario favors high-return technologies such as gasification and incineration, leading to significant greenhouse gas emissions. The MPCT scenario favors lower-emission technologies like composting and excludes high-emission, low-profit options such as POME digestion. In contrast, the AWP scenario mandates the processing of all wastes, leading to the lowest profits and the highest emissions among all scenarios. The sensitivity analysis reveals that POME processing is not feasible when electricity prices are below the government-set rate, but becomes viable once prices exceed this threshold. These findings offer valuable insights for companies and policymakers seeking to develop and implement effective strategies for optimal waste utilization. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

17 pages, 4429 KiB  
Article
Design of a Technical Decision-Making Strategy to Collect Biomass Waste from the Palm Oil Industry as a Renewable Energy Source: Case Study in Colombia
by Jader Alean, Marlon Bastidas, Efraín Boom-Cárcamo, Juan C. Maya, Farid Chejne, Say Ramírez, Diego Nieto, Carlos Ceballos, Adonis Saurith and Marlon Córdoba-Ramirez
Environments 2025, 12(5), 165; https://doi.org/10.3390/environments12050165 - 16 May 2025
Viewed by 669
Abstract
This work presents an effective design of a strategy to manage biomass waste (empty fruit bunch—EFB, kernel shell, and fiber) available from the processing of oil palm (Elaeis guineensis) in Colombia as a renewable energy source. This type of study is [...] Read more.
This work presents an effective design of a strategy to manage biomass waste (empty fruit bunch—EFB, kernel shell, and fiber) available from the processing of oil palm (Elaeis guineensis) in Colombia as a renewable energy source. This type of study is conducted for the first time in the country, and the proposed strategy is structured in four phases. Firstly, an inventory of available biomass waste was prepared based on information from 45 African palm oil companies of the approximately 70 that exist in the country. It was determined that the country had about 2762 kt of available waste (63.64% EFB, 12.55% kernel shell, and 23.81% fiber) for the year 2023. The estimates were conducted using a model that correlates processing capacity, the biomass generated, and the biomass demanded. The validation was performed using national reports. Subsequently, the minimum number (six) of storage centers in Colombia, where the largest amount of biomass can be stored, was determined. The center of gravity method was used to find the geographical location of each bulk storage center (municipality of Aracataca, Agustín Codazzi, San Martín, Puerto Wilches, Castilla La Nueva, and Cabuyaru). The next step was to determine the transportation costs as a decision criterion to select the best bulk storage center. When the required storage capacity does not exceed 211 kt·year−1, Agustín Codazzi is the best option because it has the lowest transportation cost (USD 1.01·t−1). When the storage capacity requirements exceed 211 kt·year−1 but are less than 423 kt·year−1, then Puerto Wilches and/or Aracataca are the best options (transportation cost of USD 1.7·t−1). In all cases, Cabuyaru has the highest costs (USD 6.56·t−1). Finally, an energy potential of 50,196 × 106 GJ·year−1 for the collected biomass was estimated, which makes this kind of waste an environmental alternative that could replace coal in Colombia. Full article
Show Figures

Figure 1

2 pages, 134 KiB  
Retraction
RETRACTED: Alrshoudi et al. Sustainable Use of Waste Polypropylene Fibers and Palm Oil Fuel Ash in the Production of Novel Prepacked Aggregate Fiber-Reinforced Concrete. Sustainability 2020, 12, 4871
by Fahed Alrshoudi, Hossein Mohammadhosseini, Mahmood Md. Tahir, Rayed Alyousef, Hussam Alghamdi, Yousef R. Alharbi and Abdulaziz Alsaif
Sustainability 2025, 17(9), 3975; https://doi.org/10.3390/su17093975 - 28 Apr 2025
Viewed by 338
Abstract
Our journal, Sustainability, retracts the article “Sustainable Use of Waste Polypropylene Fibers and Palm Oil Fuel Ash in the Production of Novel Prepacked Aggregate Fiber-Reinforced Concrete” [...] Full article
18 pages, 3548 KiB  
Article
Effect of Waste Palm Oil Reclaiming Agent on Viscoelastic and Mechanical Properties of Hot-in-Place Recycled Mixture
by Xuekai Gao, Fansheng Kong, Huailei Cheng, Yancong Zhang, Chenyang Xue and Zhiqiang Cheng
Appl. Sci. 2025, 15(8), 4156; https://doi.org/10.3390/app15084156 - 10 Apr 2025
Viewed by 319
Abstract
A new type of reclaiming agent was prepared by adding a plasticizer and an anti-aging agent to waste palm oil. A dynamic shear rheological test, bending beam rheological test, dynamic modulus test, static creep test, and road performance test were used to compare [...] Read more.
A new type of reclaiming agent was prepared by adding a plasticizer and an anti-aging agent to waste palm oil. A dynamic shear rheological test, bending beam rheological test, dynamic modulus test, static creep test, and road performance test were used to compare and analyze the viscoelastic characteristics of vegetable oil (WPO) and a traditional petrochemical reclaiming agent (PCO). The results showed that the WPO has better low-temperature crack resistance compared with the PCO, and the optimal dosage is about 12% of the mass fraction of aged asphalt. The addition of a regenerator reduces the dynamic modulus of the reclaimed asphalt mixture (RAP) under study and increases the phase angle. The improved CAM model showed good fit with the dynamic modulus and phase angle of recycled asphalt mixtures with the development of frequency. When the loading frequency was higher than 10 Hz, the dynamic modulus of the waste palm oil recycled asphalt mixture was lower, and the phase angle was higher. Conversely, when the loading frequency was lower than 0.01 Hz, the waste palm oil regenerant showed better temperature sensitivity. The waste palm oil recycled asphalt mixture demonstrated a higher steady creep rate and strain magnitude, lower stress relaxation time, and higher dissipation energy ratio under low-temperature conditions, thus improving the low-temperature crack resistance. Furthermore, the road performance test results of the asphalt mixtures indicated that the waste palm oil reclaimed asphalt mixture has excellent high-temperature rutting resistance, low-temperature cracking resistance, and water damage resistance, which confirms the reliability of the above analysis results. Therefore, the waste palm oil regenerant has great potential application prospects with wide source availability, low price, and outstanding mechanical properties. Full article
(This article belongs to the Special Issue Sustainable Asphalt Pavement Technologies)
Show Figures

Figure 1

16 pages, 4756 KiB  
Article
Carbon Composite Derived from Spent Bleaching Earth for Rubbery Wastewater Treatment
by Nur Fatihah Binti Tamin, Yin Fong Yeong, Joni Agustian, Lilis Hermida and Lih Xuan Liew
J. Compos. Sci. 2025, 9(3), 126; https://doi.org/10.3390/jcs9030126 - 10 Mar 2025
Viewed by 1242
Abstract
The industrial production of palm oil generates substantial amounts of Spent Bleaching Earth (SBE), a waste byproduct from the bleaching process. In Malaysia and Indonesia, SBE is typically landfilled, causing environmental risks such as greenhouse gas emissions and contamination. Wastewater from the rubber [...] Read more.
The industrial production of palm oil generates substantial amounts of Spent Bleaching Earth (SBE), a waste byproduct from the bleaching process. In Malaysia and Indonesia, SBE is typically landfilled, causing environmental risks such as greenhouse gas emissions and contamination. Wastewater from the rubber industry also contains harmful pollutants that require effective treatment. This study proposes a sustainable solution by converting SBE into carbon composites (CCs) for treating rubber industry wastewater. Characterization of CCs using XRD, BET, FESEM, and FTIR revealed its porous structure, high surface area, and functional groups, contributing to excellent adsorption properties. Response Surface Methodology (RSM) optimized treatment conditions, determining 90.56 min of contact time and 0.75 g of adsorbent weight as optimal for maximum chemical oxygen demand (COD) and turbidity removal. Quadratic models showed R2 values of 0.8828 for COD removal and 0.8336 for turbidity reduction, with numerical optimization achieving 90.30% COD reduction and 49.02% turbidity removal. Verification experiments confirmed model reliability with minimal deviation (0.37%). These findings demonstrate the potential of SBE-derived CCs as an eco-friendly solution for environmental challenges in the palm oil and rubber industries. Full article
(This article belongs to the Section Carbon Composites)
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
From Waste to Value: Banana-Peel-Derived Adsorbents for Efficient Removal of Polar Compounds from Used Palm Oil
by Duangdao Channei, Panatda Jannoey, Punyanuch Thammaacheep, Wilawan Khanitchaidecha and Auppatham Nakaruk
Appl. Sci. 2025, 15(4), 2205; https://doi.org/10.3390/app15042205 - 19 Feb 2025
Viewed by 2196
Abstract
The banana chip industry generates significant quantities of waste, including banana peels and used palm oil, which present both environmental and economic challenges. This study explored converting banana peel waste into porous adsorbents via chemical and thermal activation using sulfuric acid (S-BP) and [...] Read more.
The banana chip industry generates significant quantities of waste, including banana peels and used palm oil, which present both environmental and economic challenges. This study explored converting banana peel waste into porous adsorbents via chemical and thermal activation using sulfuric acid (S-BP) and 5% w/v acetic acid (A-BP) as activating agents. Characterization using field emission scanning electron microscopy (FESEM) and Brunauer–Emmett–Teller (BET) analysis revealed notable morphological distinctions and enhanced porosity. The BET surface areas of S-BP and A-BP were 338.959 m2/g and 201.722 m2/g, respectively, significantly higher than that of calcined banana peel (C-BP) at 3.202 m2/g. Despite the higher surface area of S-BP, A-BP, prepared under milder acetic acid conditions, was further investigated for adsorption studies. A-BP effectively reduced the free fatty acids (FFAs) in used palm oil from 3.108% to 1.69% within 30 min. Adsorption isotherms favored the Freundlich model (R2 = 0.9115), indicating multilayer adsorption behavior. The adsorption energy derived from the Dubinin–Radushkevich (D–R) model was determined to be 2.61 J/mol, indicating that the adsorption process primarily occurs through physisorption. This study highlights a sustainable approach to waste management and resource recovery, promoting circular economy principles in the banana chip industry. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends)
Show Figures

Figure 1

24 pages, 11332 KiB  
Article
Sustainable Aluminosilicate Coatings from Palm Oil Waste for Enhanced Thermal and Microstructure Properties
by Mohd Afdhal Shamsudin, Faizal Mustapha, Mohd Na’im Abdullah and Mazli Mustapha
Materials 2025, 18(4), 821; https://doi.org/10.3390/ma18040821 - 13 Feb 2025
Viewed by 770
Abstract
Geopolymers have emerged as promising materials for their superior thermal and mechanical properties, offering sustainable alternatives to conventional coatings. This study investigates the potential of Palm Oil Fuel Ash (POFA) as a raw material for fire-resistant geopolymer coatings. Through the optimization of POFA-to-alkaline [...] Read more.
Geopolymers have emerged as promising materials for their superior thermal and mechanical properties, offering sustainable alternatives to conventional coatings. This study investigates the potential of Palm Oil Fuel Ash (POFA) as a raw material for fire-resistant geopolymer coatings. Through the optimization of POFA-to-alkaline activator (AA) ratios, NaOH concentrations, and curing temperatures, POFA-based coatings were synthesized and applied to mild steel substrates. Fire resistance testing revealed that the optimal formulation (0.35 POFA ratio, 8 M NaOH concentration, and curing at 65 °C) achieved a temperature at equilibrium (TAE) of 151.2 °C, significantly outperforming other compositions by reducing heat transfer during fire exposure. Thermal imaging and SEM analysis demonstrated that the optimized coating (GP-POFA8) exhibited a more uniform and stable intumescent layer, leading to lower peak temperatures (909 °C) compared to less optimized samples. Thermogravimetric Analysis (TGA) further confirmed that GP-POFA8 retained approximately 80% of its original mass at temperatures beyond 600 °C, highlighting its superior thermal stability. These findings underscore the potential of POFA-based geopolymers as effective, eco-friendly solutions for fire-resistant applications in construction and industrial sectors, contributing to sustainable waste management. Full article
Show Figures

Graphical abstract

36 pages, 6468 KiB  
Review
Sustainable Extraction of Critical Minerals from Waste Batteries: A Green Solvent Approach in Resource Recovery
by Afzal Ahmed Dar, Zhi Chen, Gaixia Zhang, Jinguang Hu, Karim Zaghib, Sixu Deng, Xiaolei Wang, Fariborz Haghighat, Catherine N. Mulligan, Chunjiang An, Antonio Avalos Ramirez and Shuhui Sun
Batteries 2025, 11(2), 51; https://doi.org/10.3390/batteries11020051 - 28 Jan 2025
Cited by 5 | Viewed by 4251
Abstract
This strategic review examines the pivotal role of sustainable methodologies in battery recycling and the recovery of critical minerals from waste batteries, emphasizing the need to address existing technical and environmental challenges. Through a systematic analysis, it explores the application of green organic [...] Read more.
This strategic review examines the pivotal role of sustainable methodologies in battery recycling and the recovery of critical minerals from waste batteries, emphasizing the need to address existing technical and environmental challenges. Through a systematic analysis, it explores the application of green organic solvents in mineral processing, advocating for establishing eco-friendly techniques aimed at clipping waste and boosting resource utilization. The escalating demand for and shortage of essential minerals including copper, cobalt, lithium, and nickel are comprehensively analyzed and forecasted for 2023, 2030, and 2040. Traditional extraction techniques, including hydrometallurgical, pyrometallurgical, and bio-metallurgical processes, are efficient but pose substantial environmental hazards and contribute to resource scarcity. The concept of green extraction arises as a crucial step towards ecological conservation, integrating sustainable practices to lessen the environmental footprint of mineral extraction. The advancement of green organic solvents, notably ionic liquids and deep eutectic solvents, is examined, highlighting their attributes of minimal toxicity, biodegradability, and superior efficacy, thus presenting great potential in transforming the sector. The emergence of organic solvents such as palm oil, 1-octanol, and Span 80 is recognized, with advantageous low solubility and adaptability to varying temperatures. Kinetic (mainly temperature) data of different deep eutectic solvents are extracted from previous studies and computed with machine learning techniques. The coefficient of determination and mean squared error reveal the accuracy of experimental and computed data. In essence, this study seeks to inspire ongoing efforts to navigate impediments, embrace technological advancements including artificial intelligence, and foster an ethos of environmental stewardship in the sustainable extraction and recycling of critical metals from waste batteries. Full article
Show Figures

Graphical abstract

13 pages, 2589 KiB  
Article
Lipid Production from Palm Acid Oil (PAO) as a Sole Carbon Source by Meyerozyma guilliermondii
by Noor-Afiqah Ahmad Zain, Kar Ling Tan, Prihardi Kahar and Chiaki Ogino
Processes 2025, 13(2), 311; https://doi.org/10.3390/pr13020311 - 23 Jan 2025
Cited by 1 | Viewed by 1107
Abstract
Meyerozyma guilliermondii is an interesting oleaginous yeast with considerable potential for biotechnological applications. This yeast demonstrates the ability to utilize palm acid oil (PAO), a low-cost and renewable feedstock, as a carbon source, making it a sustainable candidate for single-cell oil production. Under [...] Read more.
Meyerozyma guilliermondii is an interesting oleaginous yeast with considerable potential for biotechnological applications. This yeast demonstrates the ability to utilize palm acid oil (PAO), a low-cost and renewable feedstock, as a carbon source, making it a sustainable candidate for single-cell oil production. Under optimal conditions with 4% of PAO, M. guilliermondii can accumulate lipids to approximately 45% of its cell dry weight (CDW). Notably, the expression level of PEX14, a gene associated with peroxisomal biogenesis, increases with higher PAO concentrations, coinciding with the formation of multiple small lipid bodies. These findings highlight the metabolic adaptability of M. guilliermondii and its potential for industrial lipid production using waste-derived feedstocks. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Oil Palm Bagasse as a Treatment for Soils Contaminated with Total Petroleum Hydrocarbons
by Jennifer Alexandra Orejuela-Romero, Luis Miguel Santillán-Quiroga, Zayda Vanessa Herrera Cuadrado, Daniel Alejandro Heredia Jara, María Soledad Núñez Moreno, Marcos Barahona, Seleni Prado and Michelle Elisa Zurita Ordóñez
Sustainability 2025, 17(2), 422; https://doi.org/10.3390/su17020422 - 8 Jan 2025
Viewed by 1374
Abstract
Soil contamination from oil spills in the canton of Francisco de Orellana in Ecuador is the biggest contamination problem in the region. It affects the quality of resources and poses health risks to the surrounding communities. To find an economical and efficient alternative [...] Read more.
Soil contamination from oil spills in the canton of Francisco de Orellana in Ecuador is the biggest contamination problem in the region. It affects the quality of resources and poses health risks to the surrounding communities. To find an economical and efficient alternative for the remediation of soils contaminated with total petroleum hydrocarbons (TPHs), the application of oil palm bagasse was proposed. This is a locally available industrial waste. The methodology of the study was based on the application of six treatments (G-A, G-B, O-A, O-B, M-A, M-B) belonging to the bagasse of Elaeis guineensis and Elaeis oleifera, in two percentages of concentration, 98:2 and 96:4, during a period of 20 days. To determine the efficacy of the treatments, the bagasse of the two palms was characterized. In addition, the initial physicochemical characterization of the soil and the final characterization after the treatments were carried out. Soil characterization included analyses of macronutrients, micronutrients, metals, pH, EC and TPH. The results of the initial characterization revealed that the concentrations of electrical conductivity and TPH were more than 70 and 50 times the values established in the 97-A ministerial agreement, respectively. However, after the final characterization, the effectiveness of the treatments in reducing metal concentrations was observed. Likewise, conductivity levels were reduced by more than 10 times. As for TPH, the G-B treatment stood out by achieving a 56% removal of this pollutant. Full article
Show Figures

Figure 1

33 pages, 5583 KiB  
Article
Bibliometric and Co-Occurrence Study of the Production of Bioethanol and Hydrogen from African Palm Rachis (2003–2023)
by Luis Ángel Castillo-Gracia, Néstor Andrés Urbina-Suarez and Ángel Darío González-Delgado
Sustainability 2025, 17(1), 146; https://doi.org/10.3390/su17010146 - 27 Dec 2024
Cited by 1 | Viewed by 1392
Abstract
Today, the world is increasingly concerned about energy and environmental challenges, and the search for renewable energy sources has become an unavoidable priority. In this context, Elaeis guineensis (better known as the African oil palm) has been placed in the spotlight due to [...] Read more.
Today, the world is increasingly concerned about energy and environmental challenges, and the search for renewable energy sources has become an unavoidable priority. In this context, Elaeis guineensis (better known as the African oil palm) has been placed in the spotlight due to its great potential and specific characteristics for the production of alternative fuels in the search for sustainable energy solutions. In the present study, bibliometric and co-occurrence analyses are proposed to identify trends, gaps, future directions, and challenges related to the production of bioethanol and hydrogen from oil palm rachis, using VOSviewer v.1.6.20 as a tool to analyze data obtained from SCOPUS. A mapping of several topics related to bioethanol and hydrogen production from oil palm bagasse or rachis is provided, resulting in contributions to the topic under review. It is shown that research is trending towards the use of oil palm rachis as a raw material for hydrogen production, consolidating its position as a promising renewable energy source. The field of hydrogen production from renewable sources has undergone constant evolution, and it is expected to continue growing and playing a significant role in the transition towards cleaner and more sustainable energy sources, potentially involving the adoption of innovative technologies such as solar-powered steam generation. From an economic point of view, developing a circular economy approach to bioethanol and hydrogen production from oil palm rachis and waste management will require innovations in material design, recycling technologies, and the development of effective life cycle strategies that can be evaluated through computer-assisted process simulation. Additionally, the extraction and purification of other gases during the dark fermentation method contribute to reducing greenhouse gas emissions and minimizing energy consumption. Ultimately, the sustainability assessment of bioethanol production processes is crucial, employing various methodologies such as life cycle assessment (LCA), techno-economic analysis, techno-economic resilience, and environmental risk assessment (ERA). This research is original in that it evaluates not only the behavior of the scientific community on these topics over the past 20 years but also examines a less-studied biofuel, namely bioethanol. Full article
(This article belongs to the Special Issue Sustainable Waste Management and Recovery)
Show Figures

Figure 1

36 pages, 1072 KiB  
Review
Applicability of Agro-Waste Materials in Structural Systems for Building Construction: A Scoping Review
by Hediye Kumbasaroglu and Atila Kumbasaroglu
Appl. Sci. 2025, 15(1), 71; https://doi.org/10.3390/app15010071 - 25 Dec 2024
Cited by 3 | Viewed by 2614
Abstract
This article presents the results of a systematic review investigating the potential of agricultural wastes as sustainable and low-carbon alternatives in reinforced concrete (RC) production. Background: The depletion of natural resources and the environmental burden of conventional construction materials necessitate innovative solutions to [...] Read more.
This article presents the results of a systematic review investigating the potential of agricultural wastes as sustainable and low-carbon alternatives in reinforced concrete (RC) production. Background: The depletion of natural resources and the environmental burden of conventional construction materials necessitate innovative solutions to reduce the carbon footprint of construction. Agricultural wastes, including coconut shells (CSs), rice husk ash (RHA), and palm oil (PO) fuel ash, emerge as promising materials due to their abundance and mechanical benefits. Objective: This review evaluates the potential of agricultural wastes to improve sustainability and enhance the mechanical properties of RC structural elements while reducing carbon emissions. Design: Studies were systematically analyzed to explore the sources, classification, and material properties of agro-wastes (AWs), with a particular focus on their environmental benefits and performance in concrete. Results: Key findings demonstrate that AWs enhance compressive strength, tensile strength, and modulus of elasticity while reducing the carbon footprint of construction. However, challenges such as variability in material properties, limited long-term durability data, and lack of standardized guidelines hinder their broader adoption. Conclusions: AWs hold significant potential as sustainable additives for RC elements, aligning with global sustainability goals. Future research should address material optimization, lifecycle assessments, and regulatory integration to facilitate their mainstream adoption in construction. Full article
Show Figures

Figure 1

Back to TopTop