Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (427)

Search Parameters:
Keywords = pH-responsive delivery systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1855 KiB  
Article
Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis
by Gyu-Yeon Shim, Seong-Hee Moon, Seong-Jin Shin, Hyun-Jin Kim, Seunghan Oh and Ji-Myung Bae
Polymers 2025, 17(15), 2108; https://doi.org/10.3390/polym17152108 - 31 Jul 2025
Viewed by 98
Abstract
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis [...] Read more.
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis, with minimal inhibitory and minimal bactericidal concentrations of 50 μM. It also suppressed mRNA expression of proinflammatory cytokines [tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6] in lipopolysaccharide-stimulated RAW 264.7 cells. The hydrogel, formulated with poloxamers and carboxymethylcellulose, remained in a liquid state at room temperature and formed a gel at 34 °C, providing sustained drug release for 96 h and demonstrating biocompatibility with human periodontal ligament stem cells while exhibiting antibacterial activity against P. gingivalis. In a rat model of periodontitis, the hydrogel significantly reduced alveolar bone loss and inflammatory responses, as confirmed by micro-computed tomography and reverse transcription quantitative polymerase chain reaction of gingival tissue. The dual antimicrobial and anti-inflammatory properties of emodin, combined with its thermoresponsive delivery system, provide advantages over conventional treatments by maintaining therapeutic concentrations in the periodontal pocket while minimizing systemic exposure. This shows the potential of emodin-loaded thermoresponsive hydrogels as effective local delivery systems for periodontitis treatment. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

13 pages, 982 KiB  
Article
Salivary pH Modulation and Antimicrobial Properties of Oregano-Oil Jelly in Relation to Menstrual and Menopausal Status
by Georgiana Ioana Potra Cicalău, Gabriela Ciavoi, Ioana Scrobota, Ionut Daniel Venter, Madalin Florin Ganea, Marc Cristian Ghitea, Evelin Claudia Ghitea, Maria Flavia Gîtea, Timea Claudia Ghitea, Csaba Nagy, Diana Constanta Pelea, Luciana Dobjanschi, Octavia Gligor, Corina Moisa and Mariana Ganea
Nutrients 2025, 17(15), 2480; https://doi.org/10.3390/nu17152480 - 29 Jul 2025
Viewed by 178
Abstract
Background: Salivary pH plays a critical role in oral health by influencing enamel demineralization, buffering capacity, and the ecology of oral microbiota. Essential oils such as Origanum vulgare (oregano) possess well-documented antimicrobial properties that may reduce acidogenic bacterial activity. However, the effects of [...] Read more.
Background: Salivary pH plays a critical role in oral health by influencing enamel demineralization, buffering capacity, and the ecology of oral microbiota. Essential oils such as Origanum vulgare (oregano) possess well-documented antimicrobial properties that may reduce acidogenic bacterial activity. However, the effects of edible delivery systems like jellies on salivary pH modulation and their potential interactions with hormonal states remain poorly understood. Methods: This study evaluated the in vitro antimicrobial activity of an oregano-oil-based jelly formulation against standard bacterial (Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli) and fungal (Candida albicans) strains using the Kirby–Bauer disc diffusion method. Additionally, a human trial (n = 91) measured salivary pH before and after administration of the oregano-oil jelly. Participants were characterized by age, smoking status, menopausal status, and presence of menstruation. Multiple linear regression was used to identify predictors of final salivary pH. Results: The oregano-oil jelly demonstrated strong in vitro antimicrobial activity, with inhibition zones up to 8 mm for E. coli and C. albicans. In vivo, mean unstimulated salivary pH increased from 6.94 to 7.07 overall, indicating a mild alkalinizing effect. However, menstruating participants showed a significant decrease in final pH (from 7.03 to 6.78). Multiple regression identified menstruation as a significant negative predictor (β = −0.377, p < 0.001) and initial pH as a positive predictor (β = +0.275, p = 0.002). Menopausal status was not a significant predictor, likely due to the small sample size. Conclusions: Oregano-oil jellies may represent a promising natural approach to support oral health by increasing salivary pH and providing strong antimicrobial activity. However, physiological states such as menstruation can significantly modulate this response, underscoring the importance of personalized or phase-aware oral care strategies. Further studies with larger, diverse cohorts and controlled hormonal assessments are needed to validate these findings and optimize product formulations. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

19 pages, 14428 KiB  
Article
Bivalent Oral Vaccine Using Attenuated Salmonella Gallinarum Delivering HA and NA-M2e Confers Dual Protection Against H9N2 Avian Influenza and Fowl Typhoid in Chickens
by Muhammad Bakhsh, Amal Senevirathne, Jamal Riaz, Jun Kwon, Ram Prasad Aganja, Jaime C. Cabarles, Sang-Ik Oh and John Hwa Lee
Vaccines 2025, 13(8), 790; https://doi.org/10.3390/vaccines13080790 - 25 Jul 2025
Viewed by 346
Abstract
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lon [...] Read more.
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lonpagLasd) as a delivery system for H9N2 antigens to induce an immunoprotective response against both H9N2 and FT. To enhance immune protection against H9N2, a prokaryotic and eukaryotic dual expression plasmid, pJHL270, was employed. The hemagglutinin (HA) consensus sequence from South Korean avian influenza A virus (AIV) was cloned under the Ptrc promoter for prokaryotic expression, and the B cell epitope of neuraminidase (NA) linked with matrix protein 2 (M2e) was placed for eukaryotic expression. In vitro and in vivo expressions of the H9N2 antigens were validated by qRT-PCR and Western blot, respectively. Results: Oral immunization with JOL3121 induced a significant increase in SG and H9N2-specific serum IgY and cloacal swab IgA antibodies, confirming humoral and mucosal immune responses. Furthermore, FACS analysis showed increased CD4+ and CD8+ T cell populations. On day 28 post-immunization, there was a substantial rise in the hemagglutination inhibition titer in the immunized birds, demonstrating neutralization capabilities of immunization. Both IFN-γ and IL-4 demonstrated a significant increase, indicating a balance of Th1 and Th2 responses. Intranasal challenge with the H9N2 Y280 strain resulted in minimal to no clinical signs with significantly lower lung viral titer in the JOL3121 group. Upon SG wildtype challenge, the immunized birds in the JOL3121 group yielded 20% mortality, while 80% mortality was recorded in the PBS control group. Additionally, bacterial load in the spleen and liver was significantly lower in the immunized birds. Conclusions: The current vaccine model, designed with a host-specific pathogen, SG, delivers a robust immune boost that could enhance dual protection against FT and H9N2 infection, both being significant diseases in poultry, as well as ensure public health. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Graphical abstract

80 pages, 962 KiB  
Review
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
by Adina-Elena Segneanu, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă and Eugen Radu Boia
Polymers 2025, 17(15), 2026; https://doi.org/10.3390/polym17152026 - 24 Jul 2025
Viewed by 831
Abstract
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, [...] Read more.
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, examining their structural properties, fabrication methods, and broad biomedical applications, including drug delivery systems, tissue engineering, wound healing, and regenerative medicine. Natural hydrogels derived from sources such as alginate, gelatin, and chitosan are highlighted for their biodegradability and biocompatibility, though often limited by poor mechanical strength and batch variability. Conversely, synthetic hydrogels offer precise control over physical and chemical characteristics via advanced polymer chemistry, enabling customization for specific biomedical functions, yet may present challenges related to bioactivity and degradability. The review also explores intelligent hydrogel systems with stimuli-responsive and bioactive functionalities, emphasizing their role in next-generation healthcare solutions. In modern medicine, temperature-, pH-, enzyme-, light-, electric field-, magnetic field-, and glucose-responsive hydrogels are among the most promising “smart materials”. Their ability to respond to biological signals makes them uniquely suited for next-generation therapeutics, from responsive drug systems to adaptive tissue scaffolds. Key challenges such as scalability, clinical translation, and regulatory approval are discussed, underscoring the need for interdisciplinary collaboration and continued innovation. Overall, this review fosters a comprehensive understanding of hydrogel technologies and their transformative potential in enhancing patient care through advanced, adaptable, and responsive biomaterial systems. Full article
16 pages, 5151 KiB  
Article
Design and Characterization of Curcumin-Modified Polyurethane Material with Good Mechanical, Shape-Memory, pH-Responsive, and Biocompatible Properties
by Man Wang, Hongying Liu, Wei Zhao, Huafen Wang, Yuwei Zhuang, Jie Yang, Zhaohui Liu, Jing Zhu, Sichong Chen and Jinghui Cheng
Biomolecules 2025, 15(8), 1070; https://doi.org/10.3390/biom15081070 - 24 Jul 2025
Viewed by 226
Abstract
In the context of critical challenges in curcumin-modified polyurethane synthesis—including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility—a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft [...] Read more.
In the context of critical challenges in curcumin-modified polyurethane synthesis—including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility—a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft segment and curcumin was employed as the chain extender. The experimental results demonstrate that with the increase in Cur units, the crystallinity of the Cur-PU material decreases from 32.6% to 5.3% and that the intensities of the diffraction peaks at 2θ = 21.36°, 21.97°, and 23.72° in the XRD pattern gradually diminish. Concomitantly, tensile strength decreased from 35.5 MPa to 19.3 MPa, and Shore A hardness declined from 88 HA to 65 HA. These observations indicate that the sterically hindered benzene ring structure of Cur imposes restrictions on HO-PCL-OH crystallization, leading to lower crystallinity and retarded crystallization kinetics in Cur-PU. As a consequence, the material’s tensile strength and hardness are diminished. Except for the Cur-PU-3 sample, all other variants exhibited exceptional shape-memory functionality, with Rf and Rr exceeding 95%, as determined by three-point bending method. Analogous to pure curcumin solutions, Cur-PU solutions demonstrated pH-responsive chromatic transitions: upon addition of hydroxide ion (OH) solutions at increasing concentrations, the solutions shifted from yellow-green to dark green and finally to orange-yellow, enabling sensitive pH detection across alkaline gradients. Hydrolytic degradation studies conducted over 15 weeks in air, UPW, and pH 6.0/8.0 phosphate buffer solutions revealed mass loss <2% for Cur-PU films. Surface morphological analysis showed progressive etching with the formation of micro-to-nano-scale pores, indicative of a surface-erosion degradation mechanism consistent with pure PCL. Biocompatibility assessments via L929 mouse fibroblast co-culture experiments demonstrated ≥90% cell viability after 72 h, while relative red blood cell hemolysis rates remained below 5%. Collectively, these findings establish Cur-PU as a biocompatible material with tunable mechanical properties, and pH responsiveness, underscoring its translational potential for biomedical applications such as drug delivery systems and tissue engineering scaffolds. Full article
Show Figures

Figure 1

17 pages, 2607 KiB  
Article
One-Pot Synthesis of Phenylboronic Acid-Based Microgels for Tunable Gate of Glucose-Responsive Insulin Release at Physiological pH
by Prashun G. Roy, Jiangtao Zhang, Koushik Bhattacharya, Probal Banerjee, Jing Shen and Shuiqin Zhou
Molecules 2025, 30(15), 3059; https://doi.org/10.3390/molecules30153059 - 22 Jul 2025
Viewed by 277
Abstract
Glucose-responsive insulin delivery systems that effectively regulate insulin retention and release in response to real-time fluctuation of glucose levels are highly desirable for diabetes care with minimized risk of hypoglycemia. Herein, we report a class of glucose-sensitive copolymer microgels, prepared from a simple [...] Read more.
Glucose-responsive insulin delivery systems that effectively regulate insulin retention and release in response to real-time fluctuation of glucose levels are highly desirable for diabetes care with minimized risk of hypoglycemia. Herein, we report a class of glucose-sensitive copolymer microgels, prepared from a simple one-pot precipitation copolymerization of 4-vinylphenylboronic acid (VPBA), 2-(dimethylamino) ethyl acrylate (DMAEA), and oligo(ethylene glycol) methyl ether methacrylate (Mw = 300, MEO5MA), for gated glucose-responsive insulin release within the physiologically desirable glucose level range. The composition of the p(VPBA-DMAEA-MEO5MA) copolymer microgels were analyzed using NMR and FTIR spectra. The cis-diols of glucose can reversibly bind with the −B(OH)2 groups of the VPBA component in the microgels, resulting in the formation of negatively charged boronate esters that induce the volume phase transition of the microgels. The DMAEA component is incorporated to reduce the pKa of VPBA, thus improving the glucose sensitivity of the microgels at physiological pH. The neutral hydrophilic MEO5MA component is used to tune the onset of the glucose responsiveness of the microgels to the physiologically desirable levels. The more the MEO5MA component copolymerized in the microgels, the greater the glucose concentration required to initiate the swelling of the microgels to trigger the release of insulin. When the onset of the glucose response was tuned to 4−5 mM, the copolymer microgels retained insulin effectively in the hypo-/normo-glycemic range but also released insulin efficiently in response to the elevation of glucose levels in the hyperglycemic range, which is essential for diabetes management. The copolymer microgels display no cytotoxicity in vitro. Full article
Show Figures

Figure 1

24 pages, 4254 KiB  
Review
Zein-Based Nanocarriers: Advances in Oral Drug Delivery
by Yuxin Liu, Dongyu An, Xiangjian Meng, Shiming Deng and Guijin Liu
Pharmaceutics 2025, 17(7), 944; https://doi.org/10.3390/pharmaceutics17070944 - 21 Jul 2025
Viewed by 458
Abstract
Oral administration remains the preferred drug delivery route but faces formidable gastrointestinal barriers, including enzymatic degradation, solubility limitations, and poor epithelial absorption. Zein-based nanocarriers (ZBNs), derived from maize prolamin, provide a transformative platform to address these challenges. This review synthesizes recent advances in [...] Read more.
Oral administration remains the preferred drug delivery route but faces formidable gastrointestinal barriers, including enzymatic degradation, solubility limitations, and poor epithelial absorption. Zein-based nanocarriers (ZBNs), derived from maize prolamin, provide a transformative platform to address these challenges. This review synthesizes recent advances in ZBNs’ design, highlighting their intrinsic advantages: structural stability across pH gradients, self-assembly versatility, and a surface functionalization capacity. Critically, we detail how engineered ZBNs overcome key barriers, such as enzymatic/chemical protection via hydrophobic encapsulation, the enhanced mucus penetration or adhesion through surface engineering, and improved epithelial transport via ligand conjugation. Applications demonstrate their efficacy in stabilizing labile therapeutics, enhancing the solubility of BCS Class II/IV drugs, enabling pH-responsive release, and significantly boosting oral bioavailability. Remaining challenges in scalability and translational predictability warrant future efforts toward multifunctional systems, bio-interfacial modeling, and continuous manufacturing. This work positions ZBNs as a potential platform for the oral delivery of BCS Class II–IV drugs’ in the biopharmaceutics classification system. Full article
(This article belongs to the Special Issue Recent Advances in Peptide and Protein-Based Drug Delivery Systems)
Show Figures

Figure 1

20 pages, 19986 KiB  
Article
In Situ Targeting RGD-Modified Cyclodextrin Inclusion Complex/Hydrogel Hybrid System for Enhanced Glioblastoma Therapy
by Xiaofeng Yuan, Zhenhua Wang, Pengcheng Qiu, Zhenhua Tong, Bingwen Wang, Yingjian Sun, Xue Sun, Lu Sui, Haiqiang Jia, Jiajun Wang, Haifeng Tang and Weiliang Ye
Pharmaceutics 2025, 17(7), 938; https://doi.org/10.3390/pharmaceutics17070938 - 20 Jul 2025
Viewed by 294
Abstract
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor, characterized by high malignancy, recurrence rate, and dismal prognosis, thereby demanding innovative therapeutic strategies. In this study, we report a novel in situ targeting inclusion complex hydrogel hybrid system (DOX/RGD-CD@Gel) that integrates [...] Read more.
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor, characterized by high malignancy, recurrence rate, and dismal prognosis, thereby demanding innovative therapeutic strategies. In this study, we report a novel in situ targeting inclusion complex hydrogel hybrid system (DOX/RGD-CD@Gel) that integrates doxorubicin (DOX) with RGD-conjugated cyclodextrin (RGD-CD) and a thermosensitive hydrogel for enhanced GBM therapy. Methods: The DOX/RGD-CD@Gel system was prepared by conjugating doxorubicin (DOX) with RGD-modified cyclodextrin (RGD-CD) and embedding it into a thermosensitive hydrogel. The drug delivery and antitumor efficacy of this system were evaluated in vitro and in vivo. Results: In vitro and in vivo evaluations demonstrated that DOX/RGD-CD@Gel significantly enhanced cytotoxicity compared to free DOX or DOX/CD formulations. The targeted delivery system effectively promoted apoptosis and inhibited cell proliferation and metastasis in GBM cells. Moreover, the hydrogel-based system exhibited prolonged drug retention in the brain, as evidenced by its temperature- and pH-responsive release characteristics. In a GBM mouse model, DOX/RGD-CD@Gel significantly suppressed tumor growth and improved survival rates. Conclusions: This study presents a paradigm of integrating a targeted inclusion complex with a thermosensitive hydrogel, offering a safe and efficacious strategy for localized GBM therapy with potential translational value. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

17 pages, 3065 KiB  
Article
Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery
by Xingyu Zhao and Yinghuan Li
Pharmaceuticals 2025, 18(7), 1042; https://doi.org/10.3390/ph18071042 - 15 Jul 2025
Viewed by 489
Abstract
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity [...] Read more.
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity to enhance tissue-specific drug delivery. In this study, we engineered MMP-2-responsive GPLGVRG peptide-modified cleavable PEGylated liposomes for targeted paclitaxel (PTX) delivery. Methods: Molecular docking simulations employed the MMP-2 crystal structure (PDB ID: 7XJO) to assess GPLGVRG peptide binding affinity. A cleavable, enzyme-sensitive peptide-PEG conjugate (Chol-PEG2K-GPLGVRG-PEG5K) was synthesized via small-molecule liquid-phase synthesis and characterized by 1H NMR and MALDI-TOF MS. Liposomes incorporating this conjugate (S-Peps-PEG5K) were formulated to evaluate whether MMP-2-mediated peptide degradation triggers detachment of long-chain PEG moieties, thereby enhancing internalization by 4T1 breast cancer cells. Additionally, the effects of tumor microenvironmental pH (~6.5) and MMP-2 concentration on drug release dynamics were investigated. Results: Molecular docking revealed robust GPLGVRG-MMP-2 interactions, yielding a binding energy of −7.1 kcal/mol. The peptide formed hydrogen bonds with MMP-2 residues Tyr A:23 and Arg A:53 (bond lengths: 2.4–2.5 Å) and engaged in hydrophobic contacts, confirming MMP-2 as the primary recognition site. Formulations containing 5 mol% Chol-PEG2K-GPLGVRG-PEG5K combined with 0.15 µg/mL MMP-2 (S-Peps-PEG5K +MMP) exhibited superior internalization efficiency and significantly reduced clonogenic survival compared to controls. Notably, acidic pH (~6.5) induced MMP-2-mediated cleavage of the GPLGVRG peptide, accelerating S-Peps-PEG5K dissociation and facilitating drug release. Conclusions: MMP-2-responsive, cleavable PEGylated liposomes markedly improve PTX accumulation and controlled release at tumor sites by dynamically modulating their stealth properties, offering a promising strategy to enhance chemotherapy efficacy in breast cancer. Full article
Show Figures

Graphical abstract

19 pages, 2490 KiB  
Article
Linker-Free Hyaluronic Acid-Dexamethasone Conjugates: pH-Responsive Nanocarriers for Targeted Anti-Inflammatory Therapy
by Anton N. Bokatyi, Natallia V. Dubashynskaya, Igor V. Kudryavtsev, Andrey S. Trulioff, Artem A. Rubinstein, Elena N. Vlasova and Yury A. Skorik
Int. J. Mol. Sci. 2025, 26(14), 6608; https://doi.org/10.3390/ijms26146608 - 10 Jul 2025
Viewed by 607
Abstract
The covalent conjugation of pharmaceutical compounds to polymeric carriers represents an effective strategy for enhancing drug properties, including improved bioavailability, targeted delivery, and sustained release, while reducing systemic toxicity and adverse effects. By exploiting the physicochemical characteristics of biopolymers—particularly molecular charge and weight—we [...] Read more.
The covalent conjugation of pharmaceutical compounds to polymeric carriers represents an effective strategy for enhancing drug properties, including improved bioavailability, targeted delivery, and sustained release, while reducing systemic toxicity and adverse effects. By exploiting the physicochemical characteristics of biopolymers—particularly molecular charge and weight—we engineered a polymeric platform for glucocorticoid delivery with precisely controlled parameters including particle size, surface charge, targeting capability, and release kinetics. This study reports a linker-free synthesis of hyaluronic acid-dexamethasone (HA-DEX) conjugates through Steglich esterification, catalyzed by 4-dimethylaminopyridine (DMAP), which facilitates the acylation of sterically hindered alcohols. The reaction specifically couples carboxyl groups of hyaluronic acid with the C21 hydroxyl group of dexamethasone. Incorporation of hydrophobic dexamethasone moieties induced self-assembly into nanoparticles featuring a hydrophobic core and negatively charged hydrophilic shell (−20 to −25 mV ζ-potential). In vitro characterization revealed pH-dependent release profiles, with 80–90% dexamethasone liberated in mildly acidic phosphate buffer (pH 5.2) versus 50–60% in phosphate-buffered saline (pH 7.4) over 35 days, demonstrating both sustained release and inflammation-responsive behavior. The conjugates exhibited potent anti-inflammatory activity in a human tumor necrosis factor-α (TNFα)-induced inflammation model. These findings position HA-DEX conjugates as promising candidates for targeted glucocorticoid delivery to specific anatomical sites including ocular, articular, and tympanic tissues, where their combination of CD44-targeting capability, enhanced permeability and retention effects, and stimulus-responsive release can optimize therapeutic outcomes while minimizing off-target effects. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

20 pages, 1556 KiB  
Article
Engineered PAM-SPION Nanoclusters for Enhanced Cancer Therapy: Integrating Magnetic Targeting with pH-Responsive Drug Release
by Dimitra Tzavara, Konstantina Papadia, Argiris Kolokithas-Ntoukas, Sophia G. Antimisiaris and Athanasios Skouras
Molecules 2025, 30(13), 2785; https://doi.org/10.3390/molecules30132785 - 28 Jun 2025
Viewed by 432
Abstract
Background: Nanomedicine approaches for cancer therapy face significant challenges, including a poor tumor accumulation, limited therapeutic efficacy, and systemic toxicity. We hypothesized that controlling the clustering of poly(acrylic acid-co-maleic acid) (PAM)-coated superparamagnetic iron oxide nanoparticles (SPIONs) would enhance their magnetic properties for improved [...] Read more.
Background: Nanomedicine approaches for cancer therapy face significant challenges, including a poor tumor accumulation, limited therapeutic efficacy, and systemic toxicity. We hypothesized that controlling the clustering of poly(acrylic acid-co-maleic acid) (PAM)-coated superparamagnetic iron oxide nanoparticles (SPIONs) would enhance their magnetic properties for improved targeting, while enabling a pH-responsive drug release in tumor microenvironments. Methods: PAM-stabilized SPION clusters were synthesized via arrested precipitation, characterized for physicochemical and magnetic properties, and evaluated for doxorubicin loading and pH-dependent release. A dual targeting approach combining antibody conjugation with magnetic guidance was assessed in cellular models, including a novel alternating magnetic field (AMF) pre-treatment protocol. Results: PAM-SPION clusters demonstrated controlled size distributions (60–100 nm), excellent colloidal stability, and enhanced magnetic properties, particularly for larger crystallites (13 nm). The formulations exhibited a pH-responsive drug release (8.5% at pH 7.4 vs. 14.3% at pH 6.5) and a significant enhancement of AMF-triggered release (17.5%). The dual targeting approach achieved an 8-fold increased cellular uptake compared to non-targeted formulations. Most notably, the novel AMF pre-treatment protocol demonstrated an 87% improved therapeutic efficacy compared to conventional post-treatment applications. Conclusions: The integration of targeting antibodies, magnetic guidance, and a pH-responsive PAM coating creates a versatile theranostic platform with significantly enhanced drug delivery capabilities. The unexpected synergistic effect of the AMF pre-treatment represents a promising new approach for improving the therapeutic efficacy of nanoparticle-based cancer treatments. Full article
Show Figures

Figure 1

15 pages, 3069 KiB  
Article
ZIF-93-Based Nanomaterials as pH-Responsive Drug Delivery Systems for Enhanced Antibacterial Efficacy of Kasugamycin in the Management of Pear Fire Blight
by Chunli Chen, Bin Hao, Jincheng Shen, Shuren Liu, Hongzu Feng, Jianwei Zhang, Chen Liu, Yong Li and Hongqiang Dong
Agronomy 2025, 15(7), 1535; https://doi.org/10.3390/agronomy15071535 - 25 Jun 2025
Viewed by 302
Abstract
Kasugamycin (KSM) is easily affected by photolysis, acid–base destruction, and oxidative decomposition in the natural environment, leading to its poor durability and low effective utilization rate, which affects its control effect on plant bacterial diseases. Nanomaterials modified with environment-responsive agents enable the control [...] Read more.
Kasugamycin (KSM) is easily affected by photolysis, acid–base destruction, and oxidative decomposition in the natural environment, leading to its poor durability and low effective utilization rate, which affects its control effect on plant bacterial diseases. Nanomaterials modified with environment-responsive agents enable the control of the release of pesticides through intelligently responding to external stimuli, thereby improving efficacy and reducing environmental impact. In this study, a pH-responsive controlled release system was constructed using zeolitic imidazolate frameworks (ZIF-93) for the sustained and targeted delivery of KSM. The synthesized KSM@ZIF-93 exhibited a diameter of 63.93 ± 11.19 nm with a drug loading capacity of 20.0%. Under acidic conditions mimicking bacterial infection sites, the Schiff base bonds and coordination bonds in ZIF-93 dissociated, triggering the simultaneous release of KSM and Zn2+, achieving a synergistic antibacterial effect. Light stability experiments revealed a 34.81% reduction in UV-induced degradation of KSM when encapsulated in ZIF-93. In vitro antimicrobial assays demonstrated that KSM@ZIF-93 completely inhibited Erwinia amylovora at 200 mg/L and had better antibacterial activity and persistence than KSM and ZIF-93. The field experiment and safety evaluation showed that the control effect of KSM@ZIF-93 on pear fire blight at the concentration of 200 mg/L was (75.19 ± 3.63)% and had no toxic effect on pollen germination. This pH-responsive system not only enhances the stability and bioavailability of KSM but also provides a targeted and environmentally compatible strategy for managing bacterial infections during the flowering period of pear trees. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

35 pages, 3359 KiB  
Article
GSH/pH-Responsive Chitosan–PLA Hybrid Nanosystems for Targeted Ledipasvir Delivery to HepG2 Cells: Controlled Release, Improved Selectivity, DNA Interaction, Electrochemical and Stopped-Flow Kinetics Analyses
by Ahmed M. Albasiony, Amr M. Beltagi, Mohamed M. Ibrahim, Shaban Y. Shaban and Rudi van Eldik
Int. J. Mol. Sci. 2025, 26(13), 6070; https://doi.org/10.3390/ijms26136070 - 24 Jun 2025
Viewed by 512
Abstract
This study aimed to design dual-responsive chitosan–polylactic acid nanosystems (PLA@CS NPs) for controlled and targeted ledipasvir (LED) delivery to HepG2 liver cancer cells, thereby reducing the systemic toxicity and improving the therapeutic selectivity. Two formulations were developed utilizing ionotropic gelation and w/ [...] Read more.
This study aimed to design dual-responsive chitosan–polylactic acid nanosystems (PLA@CS NPs) for controlled and targeted ledipasvir (LED) delivery to HepG2 liver cancer cells, thereby reducing the systemic toxicity and improving the therapeutic selectivity. Two formulations were developed utilizing ionotropic gelation and w/o/w emulsion techniques: LED@CS NPs with a size of 143 nm, a zeta potential of +43.5 mV, and a loading capacity of 44.1%, and LED-PLA@CS NPs measuring 394 nm, with a zeta potential of +33.3 mV and a loading capacity of 89.3%, with the latter demonstrating significant drug payload capacity. Since most drugs work through interaction with DNA, the in vitro affinity of DNA to LED and its encapsulated forms was assessed using stopped-flow and other approaches. They bind through multi-modal electrostatic and intercalative modes via two reversible processes: a fast complexation followed by a slow isomerization. The overall binding activation parameters for LED (cordination affinity, Ka = 128.4 M−1, Kd = 7.8 × 10−3 M, ΔG = −12.02 kJ mol−1), LED@CS NPs (Ka = 2131 M−1, Kd = 0.47 × 10−3 M, ΔG = −18.98 kJ mol−1) and LED-PLA@CS NPs (Ka = 22026 M−1, Kd = 0.045 × 10−3 M, ΔG = −24.79 kJ mol−1) were obtained with a reactivity ratio of 1/16/170 (LED/LED@CS NPs/LED-PLA@CS NPs). This indicates that encapsulation enhanced the interaction between the DNA and the LED-loaded nanoparticle systems, without changing the mechanism, and formed thermodynamically stable complexes. The drug release kinetics were assessed under tumor-mimetic conditions (pH 5.5, 10 mM GSH) and physiological settings (pH 7.4, 2 μM GSH). The LED@CS NPs and LED-PLA@CS NPs exhibited drug release rates of 88.0% and 73%, respectively, under dual stimuli over 50 h, exceeding the release rates observed under physiological conditions, which were 58% and 54%, thereby indicating that the LED@CS NPs and LED-PLA@CS NPs systems specifically target malignant tissue. Release regulated by Fickian diffusion facilitates tumor-specific payload delivery. Although encapsulation did not enhance the immediate cytotoxicity compared to free LED, as demonstrated by an in vitro cytotoxicity in HepG2 cancer cell lines, it significantly enhanced the therapeutic index (2.1-fold for LED-PLA@CS NPs) by protecting non-cancerous cells. Additionally, the nanoparticles demonstrated broad-spectrum antibacterial effects, suggesting efficacy in the prevention of chemotherapy-related infections. The dual-responsive LED-PLA@CS NPs allowed controlled tumor-targeted LED delivery with better selectivity and lower off-target toxicity, making LED-PLA@CS NPs interesting candidates for repurposing HCV treatments into safer cancer nanomedicines. Furthermore, this thorough analysis offers useful reference information for comprehending the interaction between drugs and DNA. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

29 pages, 2109 KiB  
Article
Molecular Insights into the Nociceptive Modulation by Palmitoylethanolamide and Equisetum arvense Extract: An In Vitro Study Across the Blood–Brain Barrier
by Simone Mulè, Rebecca Galla, Sara Ferrari, Marco Invernizzi and Francesca Uberti
Nutrients 2025, 17(12), 1998; https://doi.org/10.3390/nu17121998 - 13 Jun 2025
Viewed by 574
Abstract
Background: The blood–brain barrier (BBB) plays a critical role in protecting the central nervous system (CNS) but also limits drug delivery. Insufficient knowledge of how the CNS promotes the onset and maintenance of peripheral neuropathic pain limits therapeutic methods for the treatment of [...] Read more.
Background: The blood–brain barrier (BBB) plays a critical role in protecting the central nervous system (CNS) but also limits drug delivery. Insufficient knowledge of how the CNS promotes the onset and maintenance of peripheral neuropathic pain limits therapeutic methods for the treatment of persistent neuropathic pain. Thus, this study aimed to evaluate the ability of a novel combination of Palmitoylethanolamide (PEA) and Equisetum arvense L. (Equisetum A.L.) to cross the BBB and modulate nociceptive pathways. Methods: Using a humanised in vitro BBB tri-culture model, the permeability, cytotoxicity, and integrity of the barrier were assessed after exposure to two different PEA forms, PEA ultramicronized (PEA-um) and PEA80mesh, Equisetum A.L., and a combination of the last two samples. The samples exhibited no cytotoxicity, maintained tight junction integrity, and efficiently crossed the blood–brain barrier (BBB), with the combination displaying the highest permeability. The eluate from the BBB model was then used to stimulate the co-culture of CCF-STTG1 astrocytes and SH-SY5Y neurons pre-treated with H2O2 200 µM. Results: Treatment with the combination significantly increased cell viability (1.8-fold, p < 0.05), reduced oxidative stress (2.5-fold, p < 0.05), and decreased pro-inflammatory cytokines (TNFα, IL-1β) compared to single agents. Mechanistic analysis revealed modulation of key targets involved in pain pathways, including decreased FAAH and NAAA activity, increased levels of endocannabinoids (AEA and 2-AG), upregulation of CB2 receptor expression, enhanced PPARα activity, and reduced phosphorylation of PKA and TRPV1. Conclusions: These findings suggest that the combination of PEA and Equisetum A.L. effectively crosses the BBB and exerts combined anti-inflammatory and analgesic effects at the CNS level, suggesting a possible role in modulating neuroinflammatory and nociception responses. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

57 pages, 5820 KiB  
Review
Surfactant-Enabled Nanocarriers in Breast Cancer Therapy: Targeted Delivery and Multidrug Resistance Reversal
by Ashirwad Jadhav and Karuppiah Nagaraj
Pharmaceutics 2025, 17(6), 779; https://doi.org/10.3390/pharmaceutics17060779 - 13 Jun 2025
Cited by 1 | Viewed by 743
Abstract
Breast cancer remains a leading cause of cancer-related morbidity and mortality among women worldwide. Its treatment is complicated by molecular heterogeneity and the frequent development of multidrug resistance (MDR). Conventional drug delivery approaches are often limited by poor aqueous solubility, rapid systemic clearance, [...] Read more.
Breast cancer remains a leading cause of cancer-related morbidity and mortality among women worldwide. Its treatment is complicated by molecular heterogeneity and the frequent development of multidrug resistance (MDR). Conventional drug delivery approaches are often limited by poor aqueous solubility, rapid systemic clearance, non-specific biodistribution, and off-target toxicity. This review will critically explore the possibility of surfactant-based drug delivery systems (DDSs) in addressing the constraints of standard breast cancer treatments. It focuses on the mechanisms by which surfactants promote solubility, facilitate cellular uptake, and overcome drug resistance, while also analyzing current therapeutic success and future directions. A thorough review of preclinical and clinical investigations was undertaken, focusing on important surfactant-based DDSs such as polymeric micelles, nanoemulsions, liposomes, and self-emulsifying systems (SEDDSs). Mechanistic insights into surfactant functions, such as membrane permeabilization and efflux pump inhibition, were studied alongside delivery systems incorporating ligands and co-loaded medicines. Pluronic® micelles, TPGS-based systems, biosurfactant-stabilized nanoparticles, and lipid-based carrier surfactant platforms improve medication solubility, stability, and delivery. Genexol® are examples of formulations demonstrating effective use and FDA translational potential. These systems now incorporate stimuli-responsive release mechanisms—such as pH, temperature, redox, immuno- and photodynamic treatment—artificial intelligence treatment design, and tailored treatment advancement, and responsive tailoring. Surfactant-enabled DDSs can improve breast cancer care. Innovative approaches for personalized oncology treatment are countered by the enduring challenges of toxicity, regulatory hurdles, and diminished scalability. Full article
(This article belongs to the Special Issue Natural Nanoparticle for Cancer Diagnosis and Treatment, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop