Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = ozone exceedance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4846 KB  
Article
A Microscale Chemical Transport Model Simulation of an Ozone Episode in Detroit, Michigan
by Eduardo P. Olaguer and Marissa Vaerten
Atmosphere 2026, 17(2), 139; https://doi.org/10.3390/atmos17020139 - 28 Jan 2026
Viewed by 150
Abstract
A retrospective ozone simulation was conducted with the Microscale Forward and Adjoint Chemical Transport (MicroFACT) model for an industrialized area of Detroit, Michigan, USA, using a 24 km × 24 km horizontal × 1.5 km vertical grid. The domain encompassed a regulatory monitoring [...] Read more.
A retrospective ozone simulation was conducted with the Microscale Forward and Adjoint Chemical Transport (MicroFACT) model for an industrialized area of Detroit, Michigan, USA, using a 24 km × 24 km horizontal × 1.5 km vertical grid. The domain encompassed a regulatory monitoring station at East 7 Mile Rd at the northern edge of the grid. The episode day was 30 June 2022, when the station-measured 8 h ozone reached 76 ppb during predominantly southwesterly wind. The ozone impacts of mobile, point, nonpoint, and biogenic emissions were simulated at 400 m horizontal resolution. Simulation results were compared against station measurements of ozone, nitrogen oxides, and total reactive nitrogen. Local nitrogen oxide sources were found to titrate ozone, while ozone turbulently entrained to the surface from ~500 m aloft enhanced surface Ozone Production Efficiency and led to extended periods of high ozone concentrations very similar to observations. Volatile Organic Compound emission reductions produced only weak decreases in maximum 8 h ozone, suggesting that radicals were enhanced mostly by photolysis of subsiding ozone. Entrainment of ozone layers aloft may thus be critical in explaining historical ozone exceedances of the United States National Ambient Air Quality Standard at the East 7 Mile Rd station. Full article
Show Figures

Figure 1

14 pages, 3045 KB  
Article
Effectiveness of Ozone Treatment, Ultrasonic Treatment, and Ultraviolet Irradiation in Removing Candida albicans Adhered to Acrylic Resins Fabricated by Different Manufacturing Methods
by Chihiro Kaneko, Tomofumi Sawada, Taichi Ishikawa, Toshitaka Miura, Takuya Kobayashi and Shinji Takemoto
Materials 2026, 19(1), 53; https://doi.org/10.3390/ma19010053 - 23 Dec 2025
Viewed by 458
Abstract
Acrylic resins are commonly used for denture bases due to ease of molding but are prone to water absorption and microbial contamination. This study aimed to evaluate the effects of ozonated water immersion (OZ), ultrasonic cleaning (US), and ultraviolet (UV) irradiation on the [...] Read more.
Acrylic resins are commonly used for denture bases due to ease of molding but are prone to water absorption and microbial contamination. This study aimed to evaluate the effects of ozonated water immersion (OZ), ultrasonic cleaning (US), and ultraviolet (UV) irradiation on the removal of Candida albicans from acrylic resins produced by heat curing and additive manufacturing. The resin specimens were then subjected to treatment with OZ, US, UV irradiation, and commercial denture cleansers. Following treatment, the number of viable C. albicans cells was quantified and statistically analyzed (α = 0.05), morphology was observed under a scanning electron microscope (SEM) and fluorescence imaging. OZ, US, and UV irradiation significantly reduced the viable C. albicans count. Notably, the combination of the three treatments achieved a reduction exceeding 99.9% of viable cells. Although SEM revealed that C. albicans remained on the specimens, fluorescence imaging demonstrated a progressive decrease in viable cells and an increase in dead cells with each treatment, with the greatest effect observed when the three treatments were combined. The difference of removal behaviors of C. albicans among fabrication methods was not observed, comparable to denture cleaners. The combined application of all three treatments was the most effective strategy for microbial removal. Full article
(This article belongs to the Special Issue Advances and Applications of 3D Printing and Additive Manufacturing)
Show Figures

Graphical abstract

20 pages, 2492 KB  
Review
Heatwaves and Public Health: A Bibliometric Exploration of Climate Change Impacts and Adaptation Strategies
by Kaitano Dube, Hannah Al Ali, Basit Khan and Alireza Daneshkhah
Climate 2025, 13(12), 249; https://doi.org/10.3390/cli13120249 - 12 Dec 2025
Viewed by 1424
Abstract
The year 2024 has been recorded as the warmest year on record, with global temperatures temporarily exceeding the 1.5 °C threshold owing to rising anthropogenic greenhouse gas emissions. This has intensified global attention on heatwaves, which are a major public health threat linked [...] Read more.
The year 2024 has been recorded as the warmest year on record, with global temperatures temporarily exceeding the 1.5 °C threshold owing to rising anthropogenic greenhouse gas emissions. This has intensified global attention on heatwaves, which are a major public health threat linked to increased morbidity and mortality rates. This study conducted a bibliometric analysis of 901 Web of Science-indexed journal articles (2004–2024) using the term “heat wave health.” The findings revealed a significant increase in global temperatures, with an increasing frequency, intensity, and duration of extreme heat events. Heatwaves have been linked to higher rates of injuries, mental health disorders, and mortality, particularly in urban areas, due to ozone pollution, atmospheric contaminants, and the urban heat island effect, leading to increased emergency hospitalisation. Rural populations, especially outdoor labourers, face occupational heat stress and a higher risk of fatality. Adaptation measures, including early warning systems, heat indices, air conditioning, white and green roofs, and urban cooling strategies, offer some mitigation but are inadequate in the long term. Significant knowledge gaps persist regarding regional vulnerabilities, adaptation effectiveness, and socio-economic disparities, underscoring the urgent need for interdisciplinary research to inform heat-resilient public health policies and climate adaptation strategies. This study highlights the urgent need for further interdisciplinary research and targeted policy interventions to enhance heatwave resilience, particularly in under-researched and highly vulnerable regions of the world. Full article
Show Figures

Figure 1

21 pages, 15129 KB  
Article
Vertical Characteristics of an Ozone Pollution Episode in Hong Kong Under the Typhoon Mawar—A Case Study
by Libin Zhu, Jie Wang, Yiwei Xu, Na Ma, Xiaoquan Song, Jie Qin, Beibei Li, Wilson B. C. Tsui, Lihui Lv and Tianshu Zhang
Remote Sens. 2025, 17(23), 3904; https://doi.org/10.3390/rs17233904 - 1 Dec 2025
Viewed by 701
Abstract
This study investigates a typical ozone pollution episode in Hong Kong from May 29 to 31, 2023. Based on the observations of a Differential Absorption Lidar (DIAL) system, both ozone and aerosols accumulated below 1.5 km during the pollution episode. Ozone exhibited distinct [...] Read more.
This study investigates a typical ozone pollution episode in Hong Kong from May 29 to 31, 2023. Based on the observations of a Differential Absorption Lidar (DIAL) system, both ozone and aerosols accumulated below 1.5 km during the pollution episode. Ozone exhibited distinct formation and accumulation characteristics, with concentrations exceeding 200 μg m−3. Aerosols presented evident features of regional transport and local coupling, with extinction coefficients surpassing 1.1 km−1. During late spring to early summer, the northward extension of the Western Pacific Subtropical High (WPSH) established favorable conditions for ozone production. This background was amplified by Typhoon Mawar, whose peripheral circulation channeled pollutants from the Pearl River Delta into Hong Kong through horizontal and vertical pathways, significantly worsening near-surface air quality. The episode was eventually mitigated, as enhanced vertical mixing facilitated the dispersion and removal of accumulated pollutants. These results highlight the critical role of meteorological–chemical interactions in shaping this ozone pollution episode. Full article
Show Figures

Graphical abstract

24 pages, 5085 KB  
Article
Investigating BTEX Emissions in Greece: Spatiotemporal Distribution, Health Risk Assessment and Ozone Formation Potential
by Panagiotis Georgios Kanellopoulos, Eirini Chrysochou and Evangelos Bakeas
Atmosphere 2025, 16(10), 1162; https://doi.org/10.3390/atmos16101162 - 4 Oct 2025
Viewed by 1021
Abstract
This study investigates the atmospheric concentrations, spatiotemporal distribution, the associated health risks and the ozone formation potential of benzene, toluene, ethylbenzene and xylenes (BTEX) across 33 monitoring sites of Greece over a one-year period. Samples were collected using passive diffusive samplers and analyzed [...] Read more.
This study investigates the atmospheric concentrations, spatiotemporal distribution, the associated health risks and the ozone formation potential of benzene, toluene, ethylbenzene and xylenes (BTEX) across 33 monitoring sites of Greece over a one-year period. Samples were collected using passive diffusive samplers and analyzed by gas chromatography–mass spectrometry (GC-MS). The highest BTEX concentrations were detected during winter and autumn, particularly in urban and industrial areas such as in the Attica and Thessaloniki regions, likely due to enhanced emissions from combustion-related activities and reduced atmospheric dispersion. Health risk assessment revealed that hazard quotient (HQ) values for all compounds were within the acceptable limits. However, lifetime cancer risk (LTCR) for benzene exceeded the recommended limits in multiple regions during the colder seasons, indicating notable public health concern. Source apportionment using diagnostic ratios suggested varying seasonal emission sources, with vehicular emissions prevailing in winter and marine or industrial emissions in summer. Xylenes and toluene exhibited the highest ozone formation potential (OFP), underscoring their role in secondary pollutant formation. These findings demonstrate the need for seasonally adaptive air quality strategies, especially in Mediterranean urban and semi-urban environments. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Graphical abstract

17 pages, 4643 KB  
Article
Deep Learning Emulator Towards Both Forward and Adjoint Modes of Atmospheric Gas-Phase Chemical Process
by Yulong Liu, Meicheng Liao, Jiacheng Liu and Zhen Cheng
Atmosphere 2025, 16(9), 1109; https://doi.org/10.3390/atmos16091109 - 21 Sep 2025
Viewed by 1122
Abstract
Gas-phase chemistry has been identified as a major computational bottleneck in both the forward and adjoint modes of chemical transport models (CTMs). Although previous studies have demonstrated the potential of deep learning models to simulate and accelerate this process, few studies have examined [...] Read more.
Gas-phase chemistry has been identified as a major computational bottleneck in both the forward and adjoint modes of chemical transport models (CTMs). Although previous studies have demonstrated the potential of deep learning models to simulate and accelerate this process, few studies have examined the applicability and performance of these models in adjoint sensitivity analysis. In this study, a deep learning emulator for gas-phase chemistry is developed and trained on a diverse set of forward-mode simulations from the Community Multiscale Air Quality (CMAQ) model. The emulator employs a residual neural network (ResNet) architecture referred to as FiLM-ResNet, which integrates Feature-wise Linear Modulation (FiLM) layers to explicitly account for photochemical and non-photochemical conditions. Validation within a single timestep indicates that the emulator accurately predicts concentration changes for 74% of gas-phase species with coefficient of determination (R2) exceeding 0.999. After embedding the emulator into the CTM, multi-timestep simulation over one week shows close agreement with the numerical model. For the adjoint mode, we compute the sensitivities of ozone (O3) with respect to O3, nitric oxide (NO), nitrogen dioxide (NO2), hydroxyl radical (OH) and isoprene (ISOP) using automatic differentiation, with the emulator-based adjoint results achieving a maximum R2 of 0.995 in single timestep evaluations compared to the numerical adjoint sensitivities. A 24 h adjoint simulation reveals that the emulator maintains spatially consistent adjoint sensitivity distributions compared to the numerical model across most grid cells. In terms of computational efficiency, the emulator achieves speed-ups of 80×–130× in the forward mode and 45×–102× in the adjoint mode, depending on whether inference is executed on Central Processing Unit (CPU) or Graphics Processing Unit (GPU). These findings demonstrate that, once the emulator is accurately trained to reproduce forward-mode gas-phase chemistry, it can be effectively applied in adjoint sensitivity analysis. This approach offers a promising alternative approach to numerical adjoint frameworks in CTMs. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

36 pages, 12116 KB  
Article
Deciphering Air Pollution Dynamics and Drivers in Riverine Megacities Using Remote Sensing Coupled with Geospatial Analytics for Sustainable Development
by Almustafa Abd Elkader Ayek, Mohannad Ali Loho, Wafa Saleh Alkhuraiji, Safieh Eid, Mahmoud E. Abd-Elmaboud, Faten Nahas and Youssef M. Youssef
Atmosphere 2025, 16(9), 1084; https://doi.org/10.3390/atmos16091084 - 15 Sep 2025
Cited by 1 | Viewed by 1828
Abstract
Air pollution represents a critical environmental challenge in stressed riverine cities, particularly in regions experiencing rapid urbanization and inadequate emission management infrastructure. This study investigates the spatio-temporal dynamics of atmospheric pollution in Baghdad, Iraq, during 2012–2023, analyzing seven key pollutants (CO, CO2 [...] Read more.
Air pollution represents a critical environmental challenge in stressed riverine cities, particularly in regions experiencing rapid urbanization and inadequate emission management infrastructure. This study investigates the spatio-temporal dynamics of atmospheric pollution in Baghdad, Iraq, during 2012–2023, analyzing seven key pollutants (CO, CO2, SO2, SO4, O3, CH4, and AOD) using NASA’s Giovanni platform coupled with Google Earth Engine analytics. Monthly time-series data were processed through advanced statistical techniques, including Seasonal Autoregressive Integrated Moving Average (SARIMA) modeling and correlation analysis with meteorological parameters, to identify temporal trends, seasonal variations, and driving mechanisms. The analysis revealed three distinct pollutant trajectory categories reflecting complex emission–atmosphere interactions. Carbon monoxide exhibited dramatic decline (60–70% reduction from 2021), attributed to COVID-19 pandemic restrictions and demonstrating rapid responsiveness to activity modifications. Conversely, greenhouse gases showed persistent accumulation, with CO2 increasing from 400.5 to 417.5 ppm and CH4 rising 5.9% over the study period, indicating insufficient mitigation efforts. Sulfur compounds and ozone displayed stable concentrations with pronounced seasonal oscillations (winter peaks 2–3 times summer levels), while aerosol optical depth showed high temporal variability linked to dust storm events. Spatial analysis identified pronounced urban–rural concentration gradients, with central Baghdad CO levels exceeding 0.40 ppm compared to peripheral regions below 0.20 ppm. Linear concentration patterns along transportation corridors and industrial zones confirmed anthropogenic source dominance. Correlation analysis revealed strong relationships between meteorological factors and pollutant concentrations (atmospheric pressure: r = 0.62–0.70 with NO2), providing insights for integrated climate–air quality management strategies. The study demonstrates substantial contributions to Sustainable Development Goals across four dimensions (Environmental Health 30%, Sustainable Cities and Climate Action 25%, Economic Development 25%, and Institutional Development 20%) while providing transferable methodological frameworks for evidence-based policy interventions and environmental monitoring in similar stressed urban environments globally. Full article
(This article belongs to the Special Issue Remote Sensing and GIS Technology in Atmospheric Research)
Show Figures

Figure 1

27 pages, 2204 KB  
Article
Study on the Volatile Organic Compound Emission Characteristics of Crumb Rubber-Modified Asphalt
by Hu Feng, Haisheng Zhao, Dongfang Zhang, Peiyu Zhang, Yindong Ding, Yanping Liu, Chunhua Su, Qingjun Han and Yiran Li
Coatings 2025, 15(9), 1043; https://doi.org/10.3390/coatings15091043 - 5 Sep 2025
Cited by 2 | Viewed by 1930
Abstract
Crumb rubber used in asphalt modification can generally improve the road performance of asphalt mixture pavement while offering substantial environmental and economic benefits. This study investigates the volatile organic compound emissions from crumb rubber-modified asphalt binders via gas chromatography–mass spectrometry, focusing on the [...] Read more.
Crumb rubber used in asphalt modification can generally improve the road performance of asphalt mixture pavement while offering substantial environmental and economic benefits. This study investigates the volatile organic compound emissions from crumb rubber-modified asphalt binders via gas chromatography–mass spectrometry, focusing on the effects of crumb rubber types (e.g., activated crumb rubber, non-activated crumb rubber), contents, and additives (warm-mix agents, deodorants, styrene–butadiene–styrene (SBS)). The analysis encompasses total volatile organic compound emissions, compositional variations, secondary organic aerosol and ozone formation potentials, and carcinogenic risks. Results indicate that non-activated crumb rubber increases volatile organic compound emissions initially, peaking at a 15% content (3.99 times higher than base asphalt), dominated by trichloroethylene. The surfactant-based warm-mix additive significantly reduces emissions by 73%, whereas deodorants exhibited limited efficacy. At equivalent contents, activated crumb rubber-modified asphalt emits more volatile organic compounds than non-activated crumb rubber-modified asphalt and leads to a higher ozone formation potential. Activated crumb rubber/SBS-modified asphalt blends reduce emissions by 69%–81% due to synergistic effects. In contrast, non-activated crumb rubber/SBS blends increase emissions, likely due to phase separation. All samples contain carcinogens, primarily trichloroethylene (20%–79%) and benzene (0.1%–9%). These findings underscore the critical importance of crumb rubber activation status and SBS addition in controlling volatile organic compound diffusion. The activated crumb rubber/SBS combination achieves a synergistic reduction exceeding the sum of individual effects (“1 + 1 > 2”). These findings provide valuable insights for designing eco-friendly asphalt. Full article
(This article belongs to the Special Issue Advances in Pavement Materials and Civil Engineering)
Show Figures

Figure 1

20 pages, 2086 KB  
Article
Integrated Assessment of Near-Surface Ozone Impacts on Rice Yield and Sustainable Cropping Strategies in Pearl River Delta (2015–2023)
by Xiaodong Hu, Danyang Cao, Junjie Li, Wei Sun, Ziyong Guo, Ming Xu and Jia’en Zhang
Agriculture 2025, 15(17), 1851; https://doi.org/10.3390/agriculture15171851 - 30 Aug 2025
Viewed by 971
Abstract
Near-surface ozone (O3) pollution has emerged as a growing threat to rice production in the Pearl River Delta (PRD), impairing photosynthesis, suppressing crop growth, and reducing yields. This study integrated long-term observational data with spatial crop distribution data and modeling approaches [...] Read more.
Near-surface ozone (O3) pollution has emerged as a growing threat to rice production in the Pearl River Delta (PRD), impairing photosynthesis, suppressing crop growth, and reducing yields. This study integrated long-term observational data with spatial crop distribution data and modeling approaches to assess O3-induced impacts on rice yields and associated economic losses across the PRD from 2015 to 2023. The results showed that annual average O3 concentrations during rice-growing periods increased from 41.3 to 66.0 μg/m3, with accumulated AOT40 values reaching 20.1 ppm·h. O3 exposure led to annual average rice yield losses of 10.8% ± 0.8%, including 9.3% for double-early rice and 12.3% for double-late rice. Absolute yield losses totaled approximately 333,000 tons per year, equivalent to the caloric needs of 2.69 million people, with economic losses exceeding CNY 844 million. Vulnerability hotspots were identified in Zhaoqing and Jiangmen, each suffering over 100,000 tons of annual losses. Scenario simulations indicated that a 20% reduction in ambient O3 could recover up to 54,700 tons annually. Future projections under RCP 2.6–8.5 suggested continued yield losses of 14,900 to 23,200 tons per year by 2050. Temporal adjustments to planting calendars may further mitigate these effects. This study highlights the urgent need for integrated mitigation strategies to enhance agricultural resilience in the face of ozone stress in industrialized delta regions. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

16 pages, 2488 KB  
Article
Effect of Waste Micro-Particles on Metalworking Fluid Efficiency and Biodegradation During the Cutting Process
by Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Dora Kroisová, Anita Białkowska and Mohamed Bakar
Materials 2025, 18(17), 3988; https://doi.org/10.3390/ma18173988 - 26 Aug 2025
Cited by 1 | Viewed by 1225
Abstract
This study investigates contaminants in metalworking fluids (MWFs) from an industrial band saw, focusing on microparticle classification and microbial quantification linked to fluid degradation. Most particles were under 50 µm, primarily aluminum and iron oxides from tool wear; oxygen- and sulfur-containing particles suggested [...] Read more.
This study investigates contaminants in metalworking fluids (MWFs) from an industrial band saw, focusing on microparticle classification and microbial quantification linked to fluid degradation. Most particles were under 50 µm, primarily aluminum and iron oxides from tool wear; oxygen- and sulfur-containing particles suggested corrosion. Microbiological analysis showed high contamination, with culturable microorganisms exceeding 1000 CFU/mL. A pathogenic strain associated with biodeterioration was identified, underscoring the need for microbial control. Filtration and ozonation have been used as decontamination methods to improve the purity and biological stability of the process fluid. Filtration enabled selective removal of metallic microparticles. Among six nanofiber filters, the Berry filter achieved the highest efficiency (70.8%) for particles ≥ 7.3 µm, while other filters were faster but less efficient. Ozonation proved highly effective for microbiological decontamination, reducing viable microorganisms by over 95%, improving visual clarity, and lowering pH from 9 to 8 while remaining within operational limits. Unlike filtration, ozonation significantly reduced microbial load. The combination of both methods is proposed as a sustainable strategy for maintaining process fluid quality under industrial conditions. These findings support integrated decontamination approaches to extend fluid life, reduce fresh MWF consumption and waste, and enhance workplace hygiene and safety in machining operations. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

23 pages, 3264 KB  
Article
Comparative Analysis of PM2.5- and O3-Attributable Impacts in China: Changing Trends and Driving Factors
by Tong Gao
Sustainability 2025, 17(16), 7350; https://doi.org/10.3390/su17167350 - 14 Aug 2025
Viewed by 1868
Abstract
China’s divergent fine particulate matter (PM2.5) and surface ozone (O3) pollution trends pose critical threats to sustainable development. This study quantifies the spatiotemporal evolution of health burdens (premature deaths) and economic costs across 333 cities during 2015–2023, integrating the [...] Read more.
China’s divergent fine particulate matter (PM2.5) and surface ozone (O3) pollution trends pose critical threats to sustainable development. This study quantifies the spatiotemporal evolution of health burdens (premature deaths) and economic costs across 333 cities during 2015–2023, integrating the Global Exposure Mortality Model (for PM2.5) and Log-linear Exposure-Response Model (for O3) with income- and age-adjusted Value of Statistical Life. The results revealed an 11% decrease in PM2.5-attributable premature deaths, but this benefit was partially offset (60%) by an 87% increase in O3-related deaths. Furthermore, the per capita economic loss from O3 exposure increased by 154%, far exceeding China’s 79% growth in per capita disposable income. Decomposition analysis revealed that while diverging exposure levels primarily drove differential PM2.5- and O3-related impacts, this disparity was significantly amplified by population aging. These findings underscore the need for air quality strategies to both sustain PM2.5 reduction achievements and implement rigorous O3 controls, while integrating pollution considerations into public health frameworks with special emphasis on protecting vulnerable populations. Full article
(This article belongs to the Special Issue Environmental Pollution and Impacts on Human Health)
Show Figures

Figure 1

20 pages, 10391 KB  
Article
Sustainable Substitution of Petroleum-Based Processing Oils with Soybean-Derived Alternatives in Styrene–Butadiene Rubber: Effects on Processing Behavior and Mechanical Properties
by Yang-Wei Lin, Tsung-Yi Chen, Chen-Yu Chueh, Yi-Ting Chen, Tsunghsueh Wu and Hsi-Ming Hsieh
Polymers 2025, 17(15), 2129; https://doi.org/10.3390/polym17152129 - 1 Aug 2025
Viewed by 1784
Abstract
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) [...] Read more.
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) systems to assess processing characteristics, mechanical performance, and environmental durability. Among the alternatives, SBO demonstrated the best overall performance, improving processability and tensile strength by over 10%, while ESBO enhanced ozone resistance by 35% due to its epoxide functionality. Expired and recycled SBOs maintained essential mechanical properties within 90% of virgin SBO values. The full replacement of CH450 with SBO in tire prototypes resulted in burst strength exceeding 1000 kPa and stable appearance after 5000 km of road testing. To validate industrial relevance, the developed green tire was exhibited at the 2025 Taipei International Cycle Show, attracting interest from international buyers and stakeholders for its eco-friendly composition and carbon footprint reduction potential, thereby demonstrating both technical feasibility and commercial viability. Full article
(This article belongs to the Special Issue Functional Polymers and Their Composites for Sustainable Development)
Show Figures

Graphical abstract

19 pages, 12174 KB  
Article
Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China
by Junli Xu and Jian Wang
Atmosphere 2025, 16(8), 907; https://doi.org/10.3390/atmos16080907 - 26 Jul 2025
Viewed by 1000
Abstract
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring [...] Read more.
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring stations between 2015 and 2025, this paper analyzed the spatio-temporal variation of 8 h O3 concentrations and instances of exceedance. On the basis of exploring the influence of meteorological factors on regional 8 h O3 concentration, the potential source contribution areas of pollutants under the exceedance condition were investigated using the HYSPLIT model. The results indicate a rapid increase in the 8 h O3 concentration at a rate of 0.91 ± 0.98 μg·m−3·a−1, with the average number of days exceeding concentration standards reaching 41.05 in the Yangtze River Delta urban agglomeration. Spatially, the 8 h O3 concentrations were higher in coastal areas and lower in inland regions, as well as elevated in plains compared to hilly terrains. This distribution was significantly distinct from the concentration growth trend characterized by higher levels in the northwest and lower levels in the southeast. Furthermore, it diverged from the spatial characteristics where exceedances primarily occurred in the heavily industrialized northeastern region and the lightly industrialized central region, indicating that the growth and exceedance of 8 h O3 concentrations were influenced by disparate factors. Local human activities have intensified the emissions of ozone precursor substances, which could be the key driving factor for the significant increase in regional 8 h O3 concentrations. In the context of high temperatures and low humidity, this has contributed to elevated levels of 8 h O3 concentrations. When wind speeds were below 2.5 m·s−1, the proportion of 8 h O3 concentrations exceeding the standards was nearly 0 under almost calm wind conditions, and it showed an increasing trend with rising wind speeds, indicating that the potential precursor sources that caused high O3 concentrations originated occasionally from inland regions, with very limited presence within the study area. This observation implies that the main cause of exceedances was the transport effect of pollution from outside the region. Therefore, it is recommended that the Yangtze River Delta urban agglomeration adopt economic and technological compensation mechanisms within and between regions to reduce the emission intensity of precursor substances in potential source areas, thereby effectively controlling O3 concentrations and improving public living conditions and quality of life. Full article
Show Figures

Figure 1

30 pages, 9606 KB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Cited by 1 | Viewed by 1823
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

18 pages, 3259 KB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 2203
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

Back to TopTop