Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,426)

Search Parameters:
Keywords = output feedback

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2192 KiB  
Article
Double Demodulation Incorporates Reciprocal Modulation and Residual Amplitude Modulation Feedback to Enhance the Bias Performance of RFOG
by Zhijie Yang, Xiaolong Yan, Guoguang Chen and Xiaoli Tian
Photonics 2025, 12(8), 792; https://doi.org/10.3390/photonics12080792 (registering DOI) - 5 Aug 2025
Abstract
The suppression of Rayleigh backscattering noise in a resonant fiber optic gyro (RFOG) is accompanied by the emergence of residual amplitude modulation (RAM) effects, which impact the bias performance of the RFOG output. In this paper, we propose a double demodulation technique that [...] Read more.
The suppression of Rayleigh backscattering noise in a resonant fiber optic gyro (RFOG) is accompanied by the emergence of residual amplitude modulation (RAM) effects, which impact the bias performance of the RFOG output. In this paper, we propose a double demodulation technique that integrates reciprocal modulation and RAM feedback. By utilizing reciprocal modulation–demodulation along with a RAM feedback control method, we effectively suppress both RAM and laser frequency noise. Furthermore, the inherent suppression characteristics of the double modulation–demodulation scheme facilitate effective backscatter noise reduction. As a result, the gyro angular random walk of the RFOG has improved to 3°/√h, and the long-term bias instability has been enhanced to 0.1°/h over a test duration of 10 h. Full article
(This article belongs to the Special Issue Emerging Trends in Optical Fiber Sensors and Sensing Techniques)
18 pages, 861 KiB  
Article
Observer-Based Exponential Stability Control of T-S Fuzzy Networked Systems with Varying Communication Delays
by Hejun Yao and Fangzheng Gao
Mathematics 2025, 13(15), 2513; https://doi.org/10.3390/math13152513 - 5 Aug 2025
Abstract
This paper is concerned with the problem of dynamic output feedback exponential stability control of T-S fuzzy networked control systems (NCSs) with varying communication delays. First, with consideration of varying communication delays, a new model of the networked systems is established by using [...] Read more.
This paper is concerned with the problem of dynamic output feedback exponential stability control of T-S fuzzy networked control systems (NCSs) with varying communication delays. First, with consideration of varying communication delays, a new model of the networked systems is established by using the T-S fuzzy method, and a state observer is designed to estimate the unknown control disturbance. Then, a delay-dependent exponential stability criterion of closed-loop systems is derived by means of iterative technique and multiple augmented Lyapnov functionals and the linear matrix inequality (LMI) method. Furthermore, an observer-based controller is explicitly constructed to realize exponential stability control for this class of NCSs. An iterative algorithm is developed to compute the controller’s matrix by means of the Cone Complementarity Linearization Method (CCLM). Lastly, the validity and feasibility of the proposed exponential stability criterion are confirmed via a numerical simulation example. Full article
Show Figures

Figure 1

25 pages, 5488 KiB  
Article
Biased by Design? Evaluating Bias and Behavioral Diversity in LLM Annotation of Real-World and Synthetic Hotel Reviews
by Maria C. Voutsa, Nicolas Tsapatsoulis and Constantinos Djouvas
AI 2025, 6(8), 178; https://doi.org/10.3390/ai6080178 - 4 Aug 2025
Abstract
As large language models (LLMs) gain traction among researchers and practitioners, particularly in digital marketing for tasks such as customer feedback analysis and automated communication, concerns remain about the reliability and consistency of their outputs. This study investigates annotation bias in LLMs by [...] Read more.
As large language models (LLMs) gain traction among researchers and practitioners, particularly in digital marketing for tasks such as customer feedback analysis and automated communication, concerns remain about the reliability and consistency of their outputs. This study investigates annotation bias in LLMs by comparing human and AI-generated annotation labels across sentiment, topic, and aspect dimensions in hotel booking reviews. Using the HRAST dataset, which includes 23,114 real user-generated review sentences and a synthetically generated corpus of 2000 LLM-authored sentences, we evaluate inter-annotator agreement between a human expert and three LLMs (ChatGPT-3.5, ChatGPT-4, and ChatGPT-4-mini) as a proxy for assessing annotation bias. Our findings show high agreement among LLMs, especially on synthetic data, but only moderate to fair alignment with human annotations, particularly in sentiment and aspect-based sentiment analysis. LLMs display a pronounced neutrality bias, often defaulting to neutral sentiment in ambiguous cases. Moreover, annotation behavior varies notably with task design, as manual, one-to-one prompting produces higher agreement with human labels than automated batch processing. The study identifies three distinct AI biases—repetition bias, behavioral bias, and neutrality bias—that shape annotation outcomes. These findings highlight how dataset complexity and annotation mode influence LLM behavior, offering important theoretical, methodological, and practical implications for AI-assisted annotation and synthetic content generation. Full article
(This article belongs to the Special Issue AI Bias in the Media and Beyond)
Show Figures

Figure 1

18 pages, 1817 KiB  
Article
Adaptive Shared Trajectory Tracking Control for Output-Constrained Euler–Lagrange Systems
by Ke Tang and Liang Sun
Actuators 2025, 14(8), 383; https://doi.org/10.3390/act14080383 - 3 Aug 2025
Viewed by 50
Abstract
This study presents the state-feedback and output-feedback adaptive shared trajectory tracking control laws for nonlinear Euler–Lagrange systems subject to parametric uncertainties and output constraints framed within linear inequalities. The logarithm-driven coordinate transformation is used to ensure that system outputs are consistently bounded by [...] Read more.
This study presents the state-feedback and output-feedback adaptive shared trajectory tracking control laws for nonlinear Euler–Lagrange systems subject to parametric uncertainties and output constraints framed within linear inequalities. The logarithm-driven coordinate transformation is used to ensure that system outputs are consistently bounded by defined regions, while model-based adaptive laws are used in the machine controller to estimate and cancel parametric uncertainties and the human controller can be given arbitrarily. The stability of the whole controlled system is proved by Lyapunov stability theory, and simulation examples are used to illustrate the performance of the proposed shared control laws. Full article
Show Figures

Figure 1

17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 - 1 Aug 2025
Viewed by 83
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

25 pages, 17227 KiB  
Article
Distributed Online Voltage Control with Feedback Delays Under Coupled Constraints for Distribution Networks
by Jinxuan Liu, Yanjian Peng, Xiren Zhang, Zhihao Ning and Dingzhong Fan
Technologies 2025, 13(8), 327; https://doi.org/10.3390/technologies13080327 - 31 Jul 2025
Viewed by 99
Abstract
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of [...] Read more.
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of relying on centralized computation, the proposed method allows each inverter to make local decisions using real-time voltage measurements and delayed communication with neighboring PV nodes. To account for practical asynchronous communication and feedback delay, a Distributed Online Primal–Dual Push–Sum (DOPP) algorithm that integrates a fixed-step delay model into the push–sum coordination framework is developed. Through extensive case studies on a modified IEEE 123-bus system, it has been demonstrated that the proposed method maintains robust performance under both static and dynamic scenarios, even in the presence of fixed feedback delays. Specifically, in static scenarios, the proposed strategy rapidly eliminates voltage violations within 50–100 iterations, effectively regulating all nodal voltages into the acceptable range of [0.95, 1.05] p.u. even under feedback delays with a delay step of 10. In dynamic scenarios, the proposed strategy ensures 100% voltage compliance across all nodes, demonstrating superior voltage regulation and reactive power coordination performance over conventional droop and incremental control approaches. Full article
26 pages, 5549 KiB  
Article
Intrusion Detection and Real-Time Adaptive Security in Medical IoT Using a Cyber-Physical System Design
by Faeiz Alserhani
Sensors 2025, 25(15), 4720; https://doi.org/10.3390/s25154720 - 31 Jul 2025
Viewed by 251
Abstract
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical [...] Read more.
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical aspects of patient security. In this paper, we introduce a machine learning-enabled Cognitive Cyber-Physical System (ML-CCPS), which is designed to identify and respond to cyber threats in MIoT environments through a layered cognitive architecture. The system is constructed on a feedback-looped architecture integrating hybrid feature modeling, physical behavioral analysis, and Extreme Learning Machine (ELM)-based classification to provide adaptive access control, continuous monitoring, and reliable intrusion detection. ML-CCPS is capable of outperforming benchmark classifiers with an acceptable computational cost, as evidenced by its macro F1-score of 97.8% and an AUC of 99.1% when evaluated with the ToN-IoT dataset. Alongside classification accuracy, the framework has demonstrated reliable behaviour under noisy telemetry, maintained strong efficiency in resource-constrained settings, and scaled effectively with larger numbers of connected devices. Comparative evaluations, radar-style synthesis, and ablation studies further validate its effectiveness in real-time MIoT environments and its ability to detect novel attack types with high reliability. Full article
Show Figures

Figure 1

27 pages, 12164 KiB  
Article
Neural Network Adaptive Attitude Control of Full-States Quad Tiltrotor UAV
by Jiong He, Binwu Ren, Yousong Xu, Qijun Zhao, Siliang Du and Bo Wang
Aerospace 2025, 12(8), 684; https://doi.org/10.3390/aerospace12080684 - 30 Jul 2025
Viewed by 222
Abstract
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics [...] Read more.
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics model of the quad tiltrotor UAV is established based on the approach of component-based mechanistic modeling. Secondly, the effects of internal uncertainties and external disturbances on the model are eliminated, whilst the online adaptive parameter tuning problem for the nonlinear active disturbance rejection controller is addressed. The superior nonlinear function approximation capability of the RBF neural network is then utilized by taking both the control inputs computed by the controller and the system outputs of the quad tiltrotor model as neural network inputs to implement adaptive parameter adjustments for the Extended State Observer (ESO) component responsible for disturbance estimation and the Nonlinear State Error Feedback (NLSEF) control law of the active disturbance rejection controller. Finally, an adaptive attitude control system for the quad tiltrotor UAV is constructed, centered on the ADRC-RBF controller. Subsequently, the efficacy of the attitude control system is validated through simulation, encompassing a range of flight conditions. The simulation results demonstrate that the Integral of Absolute Error (IAE) of the pitch angle response controlled by the ADRC-RBF controller is reduced to 37.4° in comparison to the ADRC controller in the absence of external disturbance in the full-states mode state of the quad tiltrotor UAV, and the oscillation amplitude of the pitch angle response controlled by the ADRC-RBF controller is generally reduced by approximately 50% in comparison to the ADRC controller in the presence of external disturbance. In comparison with the conventional ADRC controller, the proposed ADRC-RBF controller demonstrates superior performance with regard to anti-disturbance capability, adaptability, and tracking accuracy. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 3529 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 205
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

21 pages, 11260 KiB  
Article
GaN HEMT Oscillators with Buffers
by Sheng-Lyang Jang, Ching-Yen Huang, Tzu Chin Yang and Chien-Tang Lu
Micromachines 2025, 16(8), 869; https://doi.org/10.3390/mi16080869 - 28 Jul 2025
Viewed by 238
Abstract
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability [...] Read more.
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability due to the self-heating effect and lattice mismatch between the SiC substrate and the GaN. Depletion-mode GaN HEMTs are utilized for radio frequency applications, and this work investigates three wide-bandgap (WBG) GaN HEMT fixed-frequency oscillators with output buffers. The first GaN-on-SiC HEMT oscillator consists of an HEMT amplifier with an LC feedback network. With the supply voltage of 0.8 V, the single-ended GaN oscillator can generate a signal at 8.85 GHz, and it also supplies output power of 2.4 dBm with a buffer supply of 3.0 V. At 1 MHz frequency offset from the carrier, the phase noise is −124.8 dBc/Hz, and the figure of merit (FOM) of the oscillator is −199.8 dBc/Hz. After the previous study, the hot-carrier stressed RF performance of the GaN oscillator is studied, and the oscillator was subject to a drain supply of 8 V for a stressing step time equal to 30 min and measured at the supply voltage of 0.8 V after the step operation for performance benchmark. Stress study indicates the power oscillator with buffer is a good structure for a reliable structure by operating the oscillator core at low supply and the buffer at high supply. The second balanced oscillator can generate a differential signal. The feedback filter consists of a left-handed transmission-line LC network by cascading three unit cells. At a 1 MHz frequency offset from the carrier of 3.818 GHz, the phase noise is −131.73 dBc/Hz, and the FOM of the 2nd oscillator is −188.4 dBc/Hz. High supply voltage operation shows phase noise degradation. The third GaN cross-coupled VCO uses 8-shaped inductors. The VCO uses a pair of drain inductors to improve the Q-factor of the LC tank, and it uses 8-shaped inductors for magnetic coupling noise suppression. At the VCO-core supply of 1.3 V and high buffer supply, the FOM at 6.397 GHz is −190.09 dBc/Hz. This work enhances the design techniques for reliable GaN HEMT oscillators and knowledge to design high-performance circuits. Full article
(This article belongs to the Special Issue Research Trends of RF Power Devices)
Show Figures

Figure 1

18 pages, 1296 KiB  
Article
A Comprehensive Comparison and Evaluation of AI-Powered Healthcare Mobile Applications’ Usability
by Hessah W. Alduhailan, Majed A. Alshamari and Heider A. M. Wahsheh
Healthcare 2025, 13(15), 1829; https://doi.org/10.3390/healthcare13151829 - 26 Jul 2025
Viewed by 481
Abstract
Objectives: Artificial intelligence (AI) symptom-checker apps are proliferating, yet their everyday usability and transparency remain under-examined. This study provides a triangulated evaluation of three widely used AI-powered mHealth apps: ADA, Mediktor, and WebMD. Methods: Five usability experts applied a 13-item AI-specific [...] Read more.
Objectives: Artificial intelligence (AI) symptom-checker apps are proliferating, yet their everyday usability and transparency remain under-examined. This study provides a triangulated evaluation of three widely used AI-powered mHealth apps: ADA, Mediktor, and WebMD. Methods: Five usability experts applied a 13-item AI-specific heuristic checklist. In parallel, thirty lay users (18–65 years) completed five health-scenario tasks on each app, while task success, errors, completion time, and System Usability Scale (SUS) ratings were recorded. A repeated-measures ANOVA followed by paired-sample t-tests was conducted to compare SUS scores across the three applications. Results: The analysis revealed statistically significant differences in usability across the apps. ADA achieved a significantly higher mean SUS score than both Mediktor (p = 0.0004) and WebMD (p < 0.001), while Mediktor also outperformed WebMD (p = 0.0009). Common issues across all apps included vague AI outputs, limited feedback for input errors, and inconsistent navigation. Each application also failed key explainability heuristics, offering no confidence scores or interpretable rationales for AI-generated recommendations. Conclusions: Even highly rated AI mHealth apps display critical gaps in explainability and error handling. Embedding explainable AI (XAI) cues such as confidence indicators, input validation, and transparent justifications can enhance user trust, safety, and overall adoption in real-world healthcare contexts. Full article
Show Figures

Figure 1

20 pages, 5404 KiB  
Article
Adaptive Transient Synchronization Support Strategy for Grid-Forming Energy Storage Facing Inverter Faults
by Chao Xing, Jiajie Xiao, Peiqiang Li, Xinze Xi, Yunhe Chen and Qi Guo
Electronics 2025, 14(15), 2980; https://doi.org/10.3390/electronics14152980 - 26 Jul 2025
Viewed by 263
Abstract
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze [...] Read more.
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze the transient response mechanism of the grid-forming energy storage grid-connected inverter under faults, revealing the negative coupling relationship between active power output and transient stability, as well as the positive coupling relationship between reactive power output and transient stability. Based on this, through the analysis of the dynamic characteristics of the fault overcurrent, the negative correlation between the fault inrush current and impedance and the positive correlations among the fault steady-state current, active power, and voltage at the point of common coupling are identified. Then, a variable proportional–integral controller is designed to adaptively correct the active power reference value command, and the active power during the fault is gradually restored via the frequency feedback mechanism. Meanwhile, the reactive power reference value is dynamically adjusted according to the voltage at the point of common coupling to effectively support the voltage. Finally, the effectiveness of the proposed strategy is verified in MATLAB/Simulink. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Figure 1

19 pages, 2564 KiB  
Article
FLIP: A Novel Feedback Learning-Based Intelligent Plugin Towards Accuracy Enhancement of Chinese OCR
by Xinyue Tao, Yueyue Han, Yakai Jin and Yunzhi Wu
Mathematics 2025, 13(15), 2372; https://doi.org/10.3390/math13152372 - 24 Jul 2025
Viewed by 266
Abstract
Chinese Optical Character Recognition (OCR) technology is essential for digital transformation in Chinese regions, enabling automated document processing across various applications. However, Chinese OCR systems struggle with visually similar characters, where subtle stroke differences lead to systematic recognition errors that limit practical deployment [...] Read more.
Chinese Optical Character Recognition (OCR) technology is essential for digital transformation in Chinese regions, enabling automated document processing across various applications. However, Chinese OCR systems struggle with visually similar characters, where subtle stroke differences lead to systematic recognition errors that limit practical deployment accuracy. This study develops FLIP (Feedback Learning-based Intelligent Plugin), a lightweight post-processing plugin designed to improve Chinese OCR accuracy across different systems without external dependencies. The plugin operates through three core components as follows: UTF-8 encoding-based output parsing that converts OCR results into mathematical representations, error correction using information entropy and weighted similarity measures to identify and fix character-level errors, and adaptive feedback learning that optimizes parameters through user interactions. The approach functions entirely through mathematical calculations at the character encoding level, ensuring universal compatibility with existing OCR systems while effectively handling complex Chinese character similarities. The plugin’s modular design enables seamless integration without requiring modifications to existing OCR algorithms, while its feedback mechanism adapts to domain-specific terminology and user preferences. Experimental evaluation on 10,000 Chinese document images using four state-of-the-art OCR models demonstrates consistent improvements across all tested systems, with precision gains ranging from 1.17% to 10.37% and overall Chinese character recognition accuracy exceeding 98%. The best performing model achieved 99.42% precision, with ablation studies confirming that feedback learning contributes additional improvements from 0.45% to 4.66% across different OCR architectures. Full article
(This article belongs to the Special Issue Crowdsourcing Learning: Theories, Algorithms, and Applications)
Show Figures

Figure 1

17 pages, 4338 KiB  
Article
Lightweight Attention-Based CNN Architecture for CSI Feedback of RIS-Assisted MISO Systems
by Anming Dong, Yupeng Xue, Sufang Li, Wendong Xu and Jiguo Yu
Mathematics 2025, 13(15), 2371; https://doi.org/10.3390/math13152371 - 24 Jul 2025
Viewed by 246
Abstract
Reconfigurable Intelligent Surface (RIS) has emerged as a promising enabling technology for wireless communications, which significantly enhances system performance through real-time manipulation of electromagnetic wave reflection characteristics. In RIS-assisted communication systems, existing deep learning-based channel state information (CSI) feedback methods often suffer from [...] Read more.
Reconfigurable Intelligent Surface (RIS) has emerged as a promising enabling technology for wireless communications, which significantly enhances system performance through real-time manipulation of electromagnetic wave reflection characteristics. In RIS-assisted communication systems, existing deep learning-based channel state information (CSI) feedback methods often suffer from excessive parameter requirements and high computational complexity. To address this challenge, this paper proposes LwCSI-Net, a lightweight autoencoder network specifically designed for RIS-assisted multiple-input single-output (MISO) systems, aiming to achieve efficient and low-complexity CSI feedback. The core contribution of this work lies in an innovative lightweight feedback architecture that deeply integrates multi-layer convolutional neural networks (CNNs) with attention mechanisms. Specifically, the network employs 1D convolutional operations with unidirectional kernel sliding, which effectively reduces trainable parameters while maintaining robust feature-extraction capabilities. Furthermore, by incorporating an efficient channel attention (ECA) mechanism, the model dynamically allocates weights to different feature channels, thereby enhancing the capture of critical features. This approach not only improves network representational efficiency but also reduces redundant computations, leading to optimized computational complexity. Additionally, the proposed cross-channel residual block (CRBlock) establishes inter-channel information-exchange paths, strengthening feature fusion and ensuring outstanding stability and robustness under high compression ratio (CR) conditions. Our experimental results show that for CRs of 16, 32, and 64, LwCSI-Net significantly improves CSI reconstruction performance while maintaining fewer parameters and lower computational complexity, achieving an average complexity reduction of 35.63% compared to state-of-the-art (SOTA) CSI feedback autoencoder architectures. Full article
(This article belongs to the Special Issue Data-Driven Decentralized Learning for Future Communication Networks)
Show Figures

Figure 1

26 pages, 338 KiB  
Article
ChatGPT as a Stable and Fair Tool for Automated Essay Scoring
by Francisco García-Varela, Miguel Nussbaum, Marcelo Mendoza, Carolina Martínez-Troncoso and Zvi Bekerman
Educ. Sci. 2025, 15(8), 946; https://doi.org/10.3390/educsci15080946 - 23 Jul 2025
Viewed by 457
Abstract
The evaluation of open-ended questions is typically performed by human instructors using predefined criteria to uphold academic standards. However, manual grading presents challenges, including high costs, rater fatigue, and potential bias, prompting interest in automated essay scoring systems. While automated essay scoring tools [...] Read more.
The evaluation of open-ended questions is typically performed by human instructors using predefined criteria to uphold academic standards. However, manual grading presents challenges, including high costs, rater fatigue, and potential bias, prompting interest in automated essay scoring systems. While automated essay scoring tools can assess content, coherence, and grammar, discrepancies between human and automated scoring have raised concerns about their reliability as standalone evaluators. Large language models like ChatGPT offer new possibilities, but their consistency and fairness in feedback remain underexplored. This study investigates whether ChatGPT can provide stable and fair essay scoring—specifically, whether identical student responses receive consistent evaluations across multiple AI interactions using the same criteria. The study was conducted in two marketing courses at an engineering school in Chile, involving 40 students. Results showed that ChatGPT, when unprompted or using minimal guidance, produced volatile grades and shifting criteria. Incorporating the instructor’s rubric reduced this variability but did not eliminate it. Only after providing an example-rich rubric, a standardized output format, low temperature settings, and a normalization process based on decision tables did ChatGPT-4o demonstrate consistent and fair grading. Based on these findings, we developed a scalable algorithm that automatically generates effective grading rubrics and decision tables with minimal human input. The added value of this work lies in the development of a scalable algorithm capable of automatically generating normalized rubrics and decision tables for new questions, thereby extending the accessibility and reliability of automated assessment. Full article
(This article belongs to the Section Technology Enhanced Education)
Back to TopTop