Lightweight Attention-Based CNN Architecture for CSI Feedback of RIS-Assisted MISO Systems †
Abstract
1. Introduction
- We propose a deep learning-based CSI feedback structure, called LwCSI-Net, designed to optimize the CSI feedback process in RIS-assisted communication systems. This method effectively enhances the accuracy and efficiency of CSI feedback.
- The LwCSI-Net model combines a one-dimensional convolutional network, an efficient channel attention (ECA) mechanism, and a CRBlock module. Through multi-level information fusion and processing during feature extraction, compression, and decompression, the model’s expressive power is further enhanced, maintaining high performance while ensuring lightweight design.
- Our numerical results show that the proposed LwCSI-Net network successfully reduces model complexity under high compression ratios while demonstrating excellent CSI reconstruction performance. The model also exhibits significant advantages in rapid learning, low error, and superior normalized mean square error (NMSE), particularly in complex environments, where it shows strong adaptability and robustness.
Notations
2. System Model
2.1. Signal Model
2.2. Channel Model
2.3. CSI Feedback Process
3. Proposed Lightweight CSI Feedback Network
3.1. The Design of LwCSI-Net
3.2. Channel Attention
4. Simulation Experiment and Result Analysis
4.1. Experimental Design
4.2. Analysis of Results
4.3. Analysis of Method Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Optimization Procedure for Equation (14)
Algorithm A1 Optimization Procedure for Equation (14) |
|
References
- Basharat, S.; Hassan, S.A.; Pervaiz, H.; Mahmood, A.; Ding, Z.; Gidlund, M. Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks. IEEE Wirel. Commun. 2021, 28, 184–191. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, W.; Xing, C.; Zhao, N.; Al-Dhahir, N.; Karagiannidis, G.K.; Yang, X. Intelligent integrated sensing and communication: A survey. Sci. China Inf. Sci. 2025, 68, 131301. [Google Scholar] [CrossRef]
- Shen, D.; Dai, L. Channel feedback for reconfigurable intelligent surface assisted wireless communications. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Virtual, 7–11 December 2020; pp. 1–5. [Google Scholar]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Pan, C.; Zhou, G.; Zhi, K.; Hong, S.; Wu, T.; Pan, Y.; Ren, H.; Renzo, M.D.; Lee Swindlehurst, A.; Zhang, R.; et al. An Overview of Signal Processing Techniques for RIS/IRS-Aided Wireless Systems. IEEE J. Sel. Top. Signal Process. 2022, 16, 883–917. [Google Scholar] [CrossRef]
- Liang, H.W.; Chung, W.H.; Kuo, S.Y. FDD-RT: A simple CSI acquisition technique via channel reciprocity for FDD massive MIMO downlink. IEEE Syst. J. 2016, 12, 714–724. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Larsson, E.G. No Downlink Pilots Are Needed in TDD Massive MIMO. IEEE Trans. Wirel. Commun. 2017, 16, 2921–2935. [Google Scholar] [CrossRef]
- An, J.; Xu, C.; Wu, Q.; Ng, D.W.K.; Di Renzo, M.; Yuen, C.; Hanzo, L. Codebook-based solutions for reconfigurable intelligent surfaces and their open challenges. IEEE Wirel. Commun. 2022, 31, 134–141. [Google Scholar] [CrossRef]
- Shin, B.S.; Oh, J.H.; You, Y.H.; Hwang, D.D.; Song, H.K. Limited channel feedback scheme for reconfigurable intelligent surface assisted MU-MIMO wireless communication systems. IEEE Access 2022, 10, 50288–50297. [Google Scholar] [CrossRef]
- Guo, J.; Wen, C.K.; Jin, S.; Li, G.Y. Overview of deep learning-based CSI feedback in massive MIMO systems. IEEE Trans. Commun. 2022, 70, 8017–8045. [Google Scholar] [CrossRef]
- Wen, C.K.; Shih, W.T.; Jin, S. Deep learning for massive MIMO CSI feedback. IEEE Wirel. Commun. Lett. 2018, 7, 748–751. [Google Scholar] [CrossRef]
- Ji, S.; Li, M. CLNet: Complex input lightweight neural network designed for massive MIMO CSI feedback. IEEE Wirel. Commun. Lett. 2021, 10, 2318–2322. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, W.; Liang, L.; Wang, N.; Li, G.Y.; You, X. A lightweight deep network for efficient CSI feedback in massive MIMO systems. IEEE Wirel. Commun. Lett. 2021, 10, 1840–1844. [Google Scholar] [CrossRef]
- Wang, T.; Wen, C.K.; Jin, S.; Li, G.Y. Deep learning-based CSI feedback approach for time-varying massive MIMO channels. IEEE Wirel. Commun. Lett. 2018, 8, 416–419. [Google Scholar] [CrossRef]
- Li, X.; Wu, H. Spatio-Temporal Representation With Deep Neural Recurrent Network in MIMO CSI Feedback. IEEE Wirel. Commun. Lett. 2020, 9, 653–657. [Google Scholar] [CrossRef]
- Guo, J.; Wen, C.K.; Jin, S.; Li, G.Y. Convolutional Neural Network-Based Multiple-Rate Compressive Sensing for Massive MIMO CSI Feedback: Design, Simulation, and Analysis. IEEE Trans. Wirel. Commun. 2020, 19, 2827–2840. [Google Scholar] [CrossRef]
- Ji, S.; Li, M. Enhancing Deep Learning Performance of Massive MIMO CSI Feedback. In Proceedings of the ICC 2023—IEEE International Conference on Communications, Rome, Italy, 28 May–1 June 2023; pp. 4949–4954. [Google Scholar]
- Wang, Y.; Lu, H.; Sun, H. Channel estimation in IRS-enhanced mmWave system with super-resolution network. IEEE Commun. Lett. 2021, 25, 2599–2603. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Song, J. Multi-resolution CSI feedback with deep learning in massive MIMO system. In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Wang, B.; Teng, Y.; Lau, V.; Han, Z. Cca-net: A lightweight network using criss-cross attention for csi feedback. IEEE Commun. Lett. 2023, 27, 1879–1883. [Google Scholar] [CrossRef]
- Xie, W.; Zou, J.; Xiao, J.; Li, M.; Peng, X. Quan-transformer based channel feedback for RIS-aided wireless communication systems. IEEE Commun. Lett. 2022, 26, 2631–2635. [Google Scholar] [CrossRef]
- Yu, X.; Li, D. Phase shift compression for control signaling reduction in IRS-aided wireless systems: Global attention and lightweight design. IEEE Trans. Wirel. Commun. 2024, 23, 8528–8541. [Google Scholar] [CrossRef]
- Feng, H.; Xu, Y.; Zhao, Y. Deep Learning-Based Joint Channel Estimation and CSI Feedback for RIS-Assisted Communications. IEEE Commun. Lett. 2024, 28, 1860–1864. [Google Scholar] [CrossRef]
- Yu, X.; Li, D.; Xu, Y.; Liang, Y.C. Convolutional autoencoder-based phase shift feedback compression for intelligent reflecting surface-assisted wireless systems. IEEE Commun. Lett. 2021, 26, 89–93. [Google Scholar] [CrossRef]
- Peng, Z.; Li, Z.; Liu, R.; Pan, C.; Yuan, F.; Wang, J. Deep Learning-Based CSI Feedback for RIS-Aided Massive MIMO Systems With Time Correlation. IEEE Wirel. Commun. Lett. 2024, 13, 2060–2064. [Google Scholar] [CrossRef]
- Guo, J.; Chen, W.; Wen, C.K.; Jin, S. Deep learning-based two-timescale CSI feedback for beamforming design in RIS-assisted communications. IEEE Trans. Veh. Technol. 2022, 72, 5452–5457. [Google Scholar] [CrossRef]
- Guo, J.; Yang, X.; Wen, C.K.; Jin, S.; Li, G.Y. Deep Learning-Based CSI Feedback for RIS-Assisted Multi-User Systems. IEEE Trans. Commun. 2025, 73, 4974–4989. [Google Scholar] [CrossRef]
- Xue, Y.; Dong, A.; Li, S.; Yu, J.; Jia, J. Lightweight Attention-Based CNN Architecture for CSI Feedback of RIS-Assisted MISO Systems. In Proceedings of the International Conference on Wireless Artificial Intelligent Computing Systems and Applications, Tokyo, Japan, 24–26 June 2025; Springer: Berlin/Heidelberg, Germany, 2025; pp. 340–350. [Google Scholar]
- Zhi, K.; Pan, C.; Ren, H.; Wang, K.; Elkashlan, M.; Di Renzo, M.; Schober, R.; Poor, H.V.; Wang, J.; Hanzo, L. Two-timescale design for reconfigurable intelligent surface-aided massive MIMO systems with imperfect CSI. IEEE Trans. Inf. Theory 2022, 69, 3001–3033. [Google Scholar] [CrossRef]
- Shen, D.; Dai, L. Dimension reduced channel feedback for reconfigurable intelligent surface aided wireless communications. IEEE Trans. Commun. 2021, 69, 7748–7760. [Google Scholar] [CrossRef]
Network | CR = 4 | CR = 16 | CR = 32 | CR = 64 |
---|---|---|---|---|
CsiNet | 5.41M | 3.84M | 3.58M | 3.45M |
CRNet | 5.47M | 3.90M | 3.64M | 3.51M |
CLNet | 4.54M | 2.97M | 2.71M | 2.57M |
CCA-Net-L | 4.81M | 3.27.M | 3.01M | 2.87M |
LwCSI-Net | 3.41M | 1.35M | 1.12M | 1.02M |
Network | CR = 4 | CR = 16 | CR = 32 | CR = 64 |
---|---|---|---|---|
CsiNet | 2.10M | 530K | 268K | 137K |
CRNet | 2.103M | 529.59K | 267.38K | 136.28K |
CLNet | 2.102M | 528.71K | 266.50K | 135.40K |
CCA-Net-L | 2.102M | 529.1K | 266.9K | 135.8K |
LwCSI-Net | 2.402M | 420.24K | 195.34K | 101.75K |
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
Baseline | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
SE | ✓ | ✓ | ||||
CRBlock | ✓ | ✓ | ✓ | |||
ECA | ✓ | ✓ | ||||
4 | −26.43 | −27.59 | −28.33 | −27.46 | −29.22 | −29.21 |
16 | −21.22 | −22.31 | −24.05 | −22.12 | −24.59 | −24.63 |
32 | −18.72 | −19.01 | −20.13 | −19.34 | −20.78 | −20.84 |
64 | −15.23 | −15.78 | −16.51 | −16.13 | −17.60 | −18.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, A.; Xue, Y.; Li, S.; Xu, W.; Yu, J. Lightweight Attention-Based CNN Architecture for CSI Feedback of RIS-Assisted MISO Systems. Mathematics 2025, 13, 2371. https://doi.org/10.3390/math13152371
Dong A, Xue Y, Li S, Xu W, Yu J. Lightweight Attention-Based CNN Architecture for CSI Feedback of RIS-Assisted MISO Systems. Mathematics. 2025; 13(15):2371. https://doi.org/10.3390/math13152371
Chicago/Turabian StyleDong, Anming, Yupeng Xue, Sufang Li, Wendong Xu, and Jiguo Yu. 2025. "Lightweight Attention-Based CNN Architecture for CSI Feedback of RIS-Assisted MISO Systems" Mathematics 13, no. 15: 2371. https://doi.org/10.3390/math13152371
APA StyleDong, A., Xue, Y., Li, S., Xu, W., & Yu, J. (2025). Lightweight Attention-Based CNN Architecture for CSI Feedback of RIS-Assisted MISO Systems. Mathematics, 13(15), 2371. https://doi.org/10.3390/math13152371