Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = ortho-hydroxylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1424 KiB  
Article
Synthesis and Trapping of the Elusive Ortho-Iminoquinone Methide Derived from α-Tocopheramine and Comparison to the Case of α-Tocopherol
by Anjan Patel and Thomas Rosenau
Molecules 2025, 30(15), 3257; https://doi.org/10.3390/molecules30153257 - 4 Aug 2025
Viewed by 185
Abstract
Tocopheramines are a class of antioxidants which are distinguished from tocopherols (vitamin E) by the presence of an amino group instead of the phenolic hydroxyl group. α-Tocopheramine is intensively studied for biomedical applications but also as a stabilizer for synthetic and natural polymers, [...] Read more.
Tocopheramines are a class of antioxidants which are distinguished from tocopherols (vitamin E) by the presence of an amino group instead of the phenolic hydroxyl group. α-Tocopheramine is intensively studied for biomedical applications but also as a stabilizer for synthetic and natural polymers, in particular for cellulose solutions and spinning dopes for cellulosic fibers. This study addresses a fundamental difference in the oxidation chemistry of α-tocopheramine and its tocopherol counterpart: while the formation of the ortho-quinone methide (o-QM) involving C-5a is one of the most fundamental reactions of α-tocopherol, the corresponding ortho-iminoquinone methide (o-IQM) derived from α-tocopheramine has been elusive so far. Synthesis of the transient intermediate succeeded initially via 5a-hydroxy-α-tocopheramine, and its occurrence was confirmed by dimerization to the corresponding spiro-dimer and by trapping with ethyl vinyl ether. Eventually, suitable oxidation conditions were found which allowed for the generation of the o-IQM directly from α-tocopheramine. The underlying oxidation chemistry of α-tocopherol and α-tocopheramine is concisely discussed. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Scheme 1

15 pages, 3975 KiB  
Article
Decomposition Mechanisms of Lignin-Related Aromatic Monomers in Solution Plasma
by Takaki Miyamoto, Jeanielle Amurao, Eiji Minami and Haruo Kawamoto
Plasma 2025, 8(2), 14; https://doi.org/10.3390/plasma8020014 - 10 Apr 2025
Viewed by 1045
Abstract
Lignin is a natural aromatic macromolecule present in wood and an abundant resource on Earth, yet it is hardly used. In this study, an aqueous solution plasma treatment was investigated for the catalyst-free production of valuable chemicals from lignin. To elucidate the decomposition [...] Read more.
Lignin is a natural aromatic macromolecule present in wood and an abundant resource on Earth, yet it is hardly used. In this study, an aqueous solution plasma treatment was investigated for the catalyst-free production of valuable chemicals from lignin. To elucidate the decomposition mechanism, the aqueous solution plasma treatment was applied to the fundamental lignin aromatic model compounds—phenol, guaiacol, and syringol. The results showed that the decomposition rate followed the order syringol > guaiacol > phenol, indicating that electron-donating methoxy groups enhance reactivity. These aromatic model compounds underwent hydroxylation at the ortho and para positions, oxidative ring cleavage, and fragmentation, leading to the formation of various dicarboxylic acids, primarily oxalic acid. All these reactions were promoted by hydroxyl radicals generated from water. Ultimately, decarbonylation and decarboxylation of carboxyl groups resulted in gasification, mainly producing H2, CO, and CO2. These results provide fundamental insights into lignin decomposition and demonstrate that aqueous solution plasma is a promising method for producing dicarboxylic acids from lignin under mild conditions without catalysts. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

21 pages, 4975 KiB  
Article
The Gas- and Condensed-Phase Efficacy of Functionalized Phosphorus Flame Retardants for Cotton Fabric: Phenyl vs. Phenoxy Groups
by Raphael Otto, Ava Cardona, Alexander M. Preußner, Wael Ali, Jochen S. Gutmann and Thomas Mayer-Gall
Polymers 2025, 17(7), 924; https://doi.org/10.3390/polym17070924 - 28 Mar 2025
Cited by 1 | Viewed by 694
Abstract
This study explores how functionalized aromatic P-FRs, specifically phenyl- and phenoxy-based phosphoric acid derivatives, influence the flame retardancy of cotton textiles. By systematically investigating derivatives with varying degrees of phenyl, phenoxy, and acidic hydroxyl terminations, alongside ortho-phosphoric acid as a reference, this work [...] Read more.
This study explores how functionalized aromatic P-FRs, specifically phenyl- and phenoxy-based phosphoric acid derivatives, influence the flame retardancy of cotton textiles. By systematically investigating derivatives with varying degrees of phenyl, phenoxy, and acidic hydroxyl terminations, alongside ortho-phosphoric acid as a reference, this work aimed to elucidate the role of aromaticity and functional group composition on both gas- and condensed-phase flame retardant efficacy. Cotton fabrics were treated with comparable phosphorus loadings (~3 g/m2), quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES), to evaluate the gas- and condensed-phase efficacy of the flame retardants. Notably, derivatives with a higher number of acidic hydroxyl terminations exhibited the best flame retardant performance, enhancing char formation through dehydration and condensation reactions during combustion. Thermal analysis (TGA) and microscale combustion calorimetry (MCC) confirmed that phenoxy systems catalyze cotton decomposition more effectively, promoting dehydration through the hydrolysis of phenoxy groups. Furthermore, IR analysis of evolved gases revealed a significant reduction in volatile emissions for phenoxy systems, while this was not observed for phenyl derivatives. These findings underscore the importance of robust condensed-phase mechanisms for achieving effective flame retardancy in cotton textiles. Full article
(This article belongs to the Special Issue Technical Textile Science and Technology)
Show Figures

Figure 1

22 pages, 2245 KiB  
Article
The Impact of SGLT-2 Inhibitors on Hydroxyl Radical Markers and Diabetic Neuropathy: A Short-Term Clinical Study
by Ágnes Klabuzai, Viktória Bekő, Zsófia Sütő, Marcell Horváth, Zoltán Wágner, Katalin Vágási, Veronika Pfeil, Miklós Süle, György Grosz, István Wittmann and Szilárd Kun
Antioxidants 2025, 14(3), 289; https://doi.org/10.3390/antiox14030289 - 28 Feb 2025
Cited by 2 | Viewed by 999
Abstract
Beyond their metabolic effect, sodium–glucose cotransporter-2 (SGLT-2) inhibitors reduce the risk of heart failure and have cardiovascular and nephroprotective effects, yet their exact mechanism of action remains unclear. This prospective study included 40 patients with type 2 diabetes whose physician initiated SGLT-2 inhibitor [...] Read more.
Beyond their metabolic effect, sodium–glucose cotransporter-2 (SGLT-2) inhibitors reduce the risk of heart failure and have cardiovascular and nephroprotective effects, yet their exact mechanism of action remains unclear. This prospective study included 40 patients with type 2 diabetes whose physician initiated SGLT-2 inhibitor therapy. Prior to and 4 weeks after the initiation of SGLT-2 inhibitors, in addition to routine clinical and laboratory measurements, hydroxyl free radical and neuropathic evaluations were performed. Body weight, body mass index (BMI), fasting glucose, fructosamine, and albuminuria decreased significantly, whereas red blood cell (RBC) count, hemoglobin, hematocrit, mean corpuscular volume (MCV), and platelet count increased significantly. Urinary o-tyrosine/p-tyrosine and (m-tyrosine+o-tyrosine)/p-tyrosine ratios were significantly reduced, suggesting diminished hydroxyl free radical production. Patients with neuropathy, identified by abnormal baseline current perception threshold (CPT) values, showed significant improvements. Significant correlations between RBCs, platelet parameters, albuminuria, and hydroxyl free radical markers disappeared after SGLT-2 treatment and changes in hydroxyl free radical markers correlated positively with CPT changes. Our results suggest that short-term SGLT-2 inhibition recalibrates metabolic, hematologic, renal, and neuropathic endpoints simultaneously, presumably through attenuating abnormal ortho- and meta-tyrosine incorporation into signaling proteins. Further studies are required to confirm long-term durability and examine whether additional strategies, such as supplementation of the physiological p-tyrosine, could amplify these benefits. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 2581 KiB  
Article
Relationship Between the Structure of the Flavone C-Glycosides of Linseed (Linum usitatissimum L.) and Their Antioxidant Activity
by Imen Ghozzi, Jean-Xavier Fontaine, Roland Molinié, Redouan Elboutachfaiti, Lylia Akkouche, Khaled Sebei, David Mathiron, Christophe Hano, Laurine Garros, Elodie Choque, Romain Roulard, Laurent Petit, Cédric Delattre, Emmanuel Petit and Anthony Quéro
Molecules 2024, 29(24), 5829; https://doi.org/10.3390/molecules29245829 - 10 Dec 2024
Cited by 1 | Viewed by 2080
Abstract
Flavonoids have been documented to have good antioxidant activities in vitro. In recent years, reports on the antioxidant activities of flavone C-glycosides, a subclass of flavonoids, have attracted great attention. Despite the wealth of information on this subject, the correlation between structure [...] Read more.
Flavonoids have been documented to have good antioxidant activities in vitro. In recent years, reports on the antioxidant activities of flavone C-glycosides, a subclass of flavonoids, have attracted great attention. Despite the wealth of information on this subject, the correlation between structure and function is not well understood. In this work, the relationship between the structure and the antioxidant activity of 12 flavone C-glycosides extracted from the aerial part of winter linseed (Linum usitatissimum L.) was studied to fill the current gaps. Orientin, isoorientin, vitexin, isovitexin, swertisin, swertiajaponin, carlinoside, schaftoside, lucenin-1, lucenin-2, vicenin-1, and vicenin-2 were purified by preparative HPLC and by the drowning-out crystallization method. Then, the control of the purity and the confirmation of the chemical structures were assessed by LC-MS and NMR analyses. The antioxidant activity was evaluated using ABTS, CUPRAC, FRAP, and iron chelating activity in vitro assays. Luteolin and its flavone C-glycoside derivatives exhibited higher antioxidant activity than apigenin and its flavone C-glycosides derivatives. This could be attributed to the ortho-dihydroxyl groups at C-3′ and C-4′ of the B ring in the flavonoid skeleton, which seemed to play an important role in antioxidant behavior. These results indicate that the antioxidant activity of these compounds, derived from apigenin and luteolin, can be closely related to their structural characteristics, including the position and nature of the sugars, the number of hydroxyl groups, and the presence of methyl group. Full article
Show Figures

Graphical abstract

11 pages, 2870 KiB  
Article
Palladium-Catalyzed Selective Carbonylation Reactions of Ortho-Phenylene Dihalides with Bifunctional N,O-Nucleophiles
by Fanni Bede, Attila Takács, László Kollár and Péter Pongrácz
Molecules 2024, 29(23), 5620; https://doi.org/10.3390/molecules29235620 - 27 Nov 2024
Viewed by 1303
Abstract
Palladium-catalyzed carbonylation reactions of ortho-phenylene dihalides were studied using aminoethanols as heterobifunctional N,O-nucleophiles. The activity of aryl-iodide and -bromide as well as the chemoselective transformation of amine and hydroxyl functionalities were studied systematically under carbonylation conditions. Aminocarbonylation can be [...] Read more.
Palladium-catalyzed carbonylation reactions of ortho-phenylene dihalides were studied using aminoethanols as heterobifunctional N,O-nucleophiles. The activity of aryl-iodide and -bromide as well as the chemoselective transformation of amine and hydroxyl functionalities were studied systematically under carbonylation conditions. Aminocarbonylation can be selectively realized under optimized conditions, enabling the formation of amide alcohols, and the challenging alkoxycarbonylation can also be proved feasible, enabling amide-ester production. Intramolecular double carbonylation reaction can be achieved using 1,2-diiodobenzene and amino alcohols featuring secondary amine groups, giving oxazocine derivatives. Useful reaction scope with various amino alcohols was performed with good isolated yields of the targeted compounds. Intramolecular C-O coupling of amide alcohols possessing bromo substituent in adjacent ortho position is also demonstrated as a potential next step in benzoxazepine heterocycle formation. Full article
(This article belongs to the Special Issue Advances in Transition-Metal-Catalyzed Synthesis)
Show Figures

Graphical abstract

13 pages, 1230 KiB  
Article
Biosynthesis of Piceatannol from Resveratrol in Grapevine Can Be Mediated by Cresolase-Dependent Ortho-Hydroxylation Activity of Polyphenol Oxidase
by Ascensión Martínez-Márquez, Susana Selles-Marchart, Hugo Nájera, Jaime Morante-Carriel, Maria J. Martínez-Esteso and Roque Bru-Martínez
Plants 2024, 13(18), 2602; https://doi.org/10.3390/plants13182602 - 18 Sep 2024
Cited by 2 | Viewed by 1854
Abstract
Piceatannol is a naturally occurring hydroxylated analogue of the stilbene phytoalexin resveratrol that can be found in grape fruit and derived products. Piceatannol has aroused great interest as it has been shown to surpass some human health-beneficial properties of resveratrol including antioxidant activity, [...] Read more.
Piceatannol is a naturally occurring hydroxylated analogue of the stilbene phytoalexin resveratrol that can be found in grape fruit and derived products. Piceatannol has aroused great interest as it has been shown to surpass some human health-beneficial properties of resveratrol including antioxidant activity, several pharmacological activities and also bioavailability. The plant biosynthetic pathway of piceatannol is still poorly understood, which is a bottleneck for the development of both plant defence and bioproduction strategies. Cell cultures of Vitis vinifera cv. Gamay, when elicited with dimethyl-β-cyclodextrin (MBCD) and methyl jasmonate (MeJA), lead to large increases in the accumulation of resveratrol, and after 120 h of elicitation, piceatannol is also detected due to the regiospecific hydroxylation of resveratrol. Therefore, an ortho-hydroxylase must participate in the biosynthesis of piceatannol. Herein, three possible types of resveratrol hydroxylation enzymatic reactions have been tested, specifically, a reaction catalyzed by an NADPH-dependent cytochrome, P450 hydroxylase, a 2-oxoglutarate-dependent dioxygenase and ortho-hydroxylation, similar to polyphenol oxidase (PPO) cresolase activity. Compared with P450 hydoxylase and the dioxygenase activities, PPO displayed the highest specific activity detected either in the crude extract, the particulate or the soluble fraction obtained from cell cultures elicited with MBCD and MeJA for 120 h. The overall yield of PPO activity present in the crude extract (107.42 EU) was distributed mostly in the soluble fraction (66.15 EU) rather than in the particulate fraction (3.71 EU). Thus, partial purification of the soluble fraction by precipitation with ammonium sulphate, dialysis and ion exchange chromatography was carried out. The soluble fraction precipitated with 80% ammonium sulphate and the chromatographic fractions also showed high levels of PPO activity, and the presence of the PPO protein was confirmed by Western blot and LC-MS/MS. In addition, a kinetic characterization of the cresolase activity of partially purified PPO was carried out for the resveratrol substrate, including Vmax and Km parameters. The Km value was 118.35 ± 49.84 µM, and the Vmax value was 2.18 ± 0.46 µmol min−1 mg−1. Full article
(This article belongs to the Special Issue Biochemical Defenses of Plants)
Show Figures

Figure 1

55 pages, 3854 KiB  
Article
Synthesis and Enzymatic Evaluation of a Small Library of Substituted Phenylsulfonamido-Alkyl Sulfamates towards Carbonic Anhydrase II
by Toni C. Denner, Niels V. Heise, Ahmed Al-Harrasi and René Csuk
Molecules 2024, 29(13), 3015; https://doi.org/10.3390/molecules29133015 - 25 Jun 2024
Viewed by 1875
Abstract
A small library of 79 substituted phenylsulfonamidoalkyl sulfamates, 1b79b, was synthesized starting from arylsulfonyl chlorides and amino alcohols with different numbers of methylene groups between the hydroxyl and amino moieties yielding intermediates 1a79a, followed by the reaction [...] Read more.
A small library of 79 substituted phenylsulfonamidoalkyl sulfamates, 1b79b, was synthesized starting from arylsulfonyl chlorides and amino alcohols with different numbers of methylene groups between the hydroxyl and amino moieties yielding intermediates 1a79a, followed by the reaction of the latter with sulfamoyl chloride. All compounds were screened for their inhibitory activity on bovine carbonic anhydrase II. Compounds 1a79a showed no inhibition of the enzyme, in contrast to sulfamates 1b79b. Thus, the inhibitory potential of compounds 1b79b towards this enzyme depends on the substituent and the substitution pattern of the phenyl group as well as the length of the spacer. Bulkier substituents in the para position proved to be better for inhibiting CAII than compounds with the same substituent in the meta or ortho position. For many substitution patterns, compounds with shorter spacer lengths were superior to those with long chain spacers. Compounds with shorter spacer lengths performed better than those with longer chain spacers for a variety of substitution patterns. The most active compound held inhibition constant as low as Ki = 0.67 μM (for 49b) and a tert-butyl substituent in para position and acted as a competitive inhibitor of the enzyme. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

14 pages, 4552 KiB  
Article
Molecular Docking Studies of Ortho-Substituted Phenols to Tyrosinase Helps Discern If a Molecule Can Be an Enzyme Substrate
by María F. Montenegro, José A. Teruel, Pablo García-Molina, José Tudela, José Neptuno Rodríguez-López, Francisco García-Cánovas and Francisco García-Molina
Int. J. Mol. Sci. 2024, 25(13), 6891; https://doi.org/10.3390/ijms25136891 - 23 Jun 2024
Cited by 2 | Viewed by 2076
Abstract
Phenolic compounds with a position ortho to the free phenolic hydroxyl group occupied can be tyrosinase substrates. However, ortho-substituted compounds are usually described as inhibitors. The mechanism of action of tyrosinase on monophenols is complex, and if they are ortho-substituted, it is more [...] Read more.
Phenolic compounds with a position ortho to the free phenolic hydroxyl group occupied can be tyrosinase substrates. However, ortho-substituted compounds are usually described as inhibitors. The mechanism of action of tyrosinase on monophenols is complex, and if they are ortho-substituted, it is more complicated. It can be shown that many of these molecules can become substrates of the enzyme in the presence of catalytic o-diphenol, MBTH, or in the presence of hydrogen peroxide. Docking studies can help discern whether a molecule can behave as a substrate or inhibitor of the enzyme. Specifically, phenols such as thymol, carvacrol, guaiacol, eugenol, isoeugenol, and ferulic acid are substrates of tyrosinase, and docking simulations to the active center of the enzyme predict this since the distance of the peroxide oxygen from the oxy-tyrosinase form to the ortho position of the phenolic hydroxyl is adequate for the electrophilic attack reaction that gives rise to hydroxylation occurring. Full article
(This article belongs to the Special Issue Mechanism of Enzyme Catalysis: When Structure Meets Function)
Show Figures

Figure 1

15 pages, 4534 KiB  
Article
Self-Organization of Polyurethane Ionomers Based on Organophosphorus-Branched Polyols
by Ilsiya M. Davletbaeva, Oleg O. Sazonov, Ilyas N. Zakirov, Alexander V. Arkhipov and Ruslan S. Davletbaev
Polymers 2024, 16(13), 1773; https://doi.org/10.3390/polym16131773 - 23 Jun 2024
Cited by 1 | Viewed by 1221
Abstract
Based on organophosphorus branched polyols (AEPAs) synthesized using triethanolamine (TEOA), ortho-phosphoric acid (OPA), and polyoxyethylene glycol with MW = 400 (PEG), vapor-permeable polyurethane ionomers (AEPA-PEG-PUs) were obtained. During the synthesis of AEPAs, the reaction of the OPA etherification with polyoxyethylene glycol was [...] Read more.
Based on organophosphorus branched polyols (AEPAs) synthesized using triethanolamine (TEOA), ortho-phosphoric acid (OPA), and polyoxyethylene glycol with MW = 400 (PEG), vapor-permeable polyurethane ionomers (AEPA-PEG-PUs) were obtained. During the synthesis of AEPAs, the reaction of the OPA etherification with polyoxyethylene glycol was studied in a wide temperature range and at different molar ratios of the starting components. It turned out that OPA simultaneously undergoes a catalytically activated etherification reaction with triethanolamine and PEG. After TEOA is fully involved in the etherification reaction, excess OPA does not react with the terminal hydroxyl groups of AEPA-PEG or the remaining amount of PEG. The ortho-phosphoric acid remaining in an unreacted state is involved in associative interactions with the phosphate ions of the AEPA. Increasing the synthesis temperature from 40 °C to 110 °C leads to an increase in OPA conversion. However, for the AEPA-PEG-PU based on AEPA-PEG obtained at 100 °C and 110 °C, ortho-phosphoric acid no longer enters into associative interactions with the phosphate ions of the AEPA. Due to the hydrophilicity of polyoxyethylene glycol, the presence of phosphate ions in the polyurethane structure, and their associative binding with the unreacted ortho-phosphoric acid, the diffusion of water molecules in polyurethanes is enhanced, and high values of vapor permeability and tensile strength were achieved. Full article
(This article belongs to the Special Issue Polyurethane Composites: Properties and Applications)
Show Figures

Graphical abstract

19 pages, 7216 KiB  
Article
In Silico Design of Potential Small-Molecule Antibiotic Adjuvants against Salmonella typhimurium Ortho Acetyl Sulphydrylase Synthase to Address Antimicrobial Resistance
by Oluwadunni F. Elebiju, Gbolahan O. Oduselu, Temitope A. Ogunnupebi, Olayinka O. Ajani and Ezekiel Adebiyi
Pharmaceuticals 2024, 17(5), 543; https://doi.org/10.3390/ph17050543 - 23 Apr 2024
Cited by 4 | Viewed by 2555
Abstract
The inhibition of O-acetyl sulphydrylase synthase isoforms has been reported to represent a promising approach for the development of antibiotic adjuvants. This occurs via the organism developing an unpaired oxidative stress response, causing a reduction in antibiotic resistance in vegetative and swarm [...] Read more.
The inhibition of O-acetyl sulphydrylase synthase isoforms has been reported to represent a promising approach for the development of antibiotic adjuvants. This occurs via the organism developing an unpaired oxidative stress response, causing a reduction in antibiotic resistance in vegetative and swarm cell populations. This consequently increases the effectiveness of conventional antibiotics at lower doses. This study aimed to predict potential inhibitors of Salmonella typhimurium ortho acetyl sulphydrylase synthase (StOASS), which has lower binding energy than the cocrystalized ligand pyridoxal 5 phosphate (PLP), using a computer-aided drug design approach including pharmacophore modeling, virtual screening, and in silico ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) evaluation. The screening and molecular docking of 4254 compounds obtained from the PubChem database were carried out using AutoDock vina, while a post-screening analysis was carried out using Discovery Studio. The best three hits were compounds with the PubChem IDs 118614633, 135715279, and 155773276, possessing binding affinities of −9.1, −8.9, and −8.8 kcal/mol, respectively. The in silico ADMET prediction showed that the pharmacokinetic properties of the best hits were relatively good. The optimization of the best three hits via scaffold hopping gave rise to 187 compounds, and they were docked against StOASS; this revealed that lead compound 1 had the lowest binding energy (−9.3 kcal/mol) and performed better than its parent compound 155773276. Lead compound 1, with the best binding affinity, has a hydroxyl group in its structure and a change in the core heterocycle of its parent compound to benzimidazole, and pyrimidine introduces a synergistic effect and consequently increases the binding energy. The stability of the best hit and optimized compound at the StOASS active site was determined using RMSD, RMSF, radius of gyration, and SASA plots generated from a molecular dynamics simulation. The MD simulation results were also used to monitor how the introduction of new functional groups of optimized compounds contributes to the stability of ligands at the target active site. The improved binding affinity of these compounds compared to PLP and their toxicity profile, which is predicted to be mild, highlights them as good inhibitors of StOASS, and hence, possible antimicrobial adjuvants. Full article
(This article belongs to the Special Issue New Perspectives on Chemoinformatics and Drug Design)
Show Figures

Figure 1

14 pages, 1843 KiB  
Article
Elucidation of 4-Hydroxybenzoic Acid Catabolic Pathways in Pseudarthrobacter phenanthrenivorans Sphe3
by Epameinondas Tsagogiannis, Stamatia Asimakoula, Alexandros P. Drainas, Orfeas Marinakos, Vasiliki I. Boti, Ioanna S. Kosma and Anna-Irini Koukkou
Int. J. Mol. Sci. 2024, 25(2), 843; https://doi.org/10.3390/ijms25020843 - 10 Jan 2024
Cited by 7 | Viewed by 2597
Abstract
4-hydroxybenzoic acid (4-HBA) is an aromatic compound with high chemical stability, being extensively used in food, pharmaceutical and cosmetic industries and therefore widely distributed in various environments. Bioremediation constitutes the most sustainable approach for the removal of 4-hydroxybenzoate and its derivatives (parabens) from [...] Read more.
4-hydroxybenzoic acid (4-HBA) is an aromatic compound with high chemical stability, being extensively used in food, pharmaceutical and cosmetic industries and therefore widely distributed in various environments. Bioremediation constitutes the most sustainable approach for the removal of 4-hydroxybenzoate and its derivatives (parabens) from polluted environments. Pseudarthrobacter phenanthrenivorans Sphe3, a strain capable of degrading several aromatic compounds, is able to grow on 4-HBA as the sole carbon and energy source. Here, an attempt is made to clarify the catabolic pathways that are involved in the biodegradation of 4-hydroxybenzoate by Sphe3, applying a metabolomic and transcriptomic analysis of cells grown on 4-HBA. It seems that in Sphe3, 4-hydroxybenzoate is hydroxylated to form protocatechuate, which subsequently is either cleaved in ortho- and/or meta-positions or decarboxylated to form catechol. Protocatechuate and catechol are funneled into the TCA cycle following either the β-ketoadipate or protocatechuate meta-cleavage branches. Our results also suggest the involvement of the oxidative decarboxylation of the protocatechuate peripheral pathway to form hydroxyquinol. As a conclusion, P. phenanthrenivorans Sphe3 seems to be a rather versatile strain considering the 4-hydroxybenzoate biodegradation, as it has the advantage to carry it out effectively following different catabolic pathways concurrently. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 5351 KiB  
Article
Experimental and Theoretical Insights into a Novel Lightfast Thiophene Azo Dye
by Rosita Diana, Lucia Sessa, Simona Concilio, Stefano Piotto, Luigi Di Costanzo, Antonio Carella and Barbara Panunzi
Crystals 2024, 14(1), 31; https://doi.org/10.3390/cryst14010031 - 27 Dec 2023
Cited by 5 | Viewed by 2016
Abstract
Thiophene ring-enhancing electron delocalization imparts unique properties to azoic chromophore tools. The novel TA-OH dye contains a push–pull π-electron system, including a thiophene-azo scaffold with a hydroxyl group at the ortho position to the azo bridge. The hydroxyl group is expected to lock [...] Read more.
Thiophene ring-enhancing electron delocalization imparts unique properties to azoic chromophore tools. The novel TA-OH dye contains a push–pull π-electron system, including a thiophene-azo scaffold with a hydroxyl group at the ortho position to the azo bridge. The hydroxyl group is expected to lock the azo bridge in its trans conformation, concurring with the photostability and fastness of the dye. The single crystal analysis identified the molecule’s primary conjugation plane, and the theoretical analysis provided electronic pattern insights. The absorption behavior and the trans-to-cis conversion were examined from both experimental and theoretical perspectives. The effect of solvent polarity and the role of pH on the photophysical properties were explored. The solvent polarity strongly affects the absorbance spectrum of TA-OH, therefore potentially making NLO active. Additionally, TA-OH exhibited pH responsiveness akin to classic dichromatic pH indicators, with a noticeable color shift from red to blue observed as pH transitioned from neutral to alkaline. Absorbance titration experiments, along with experimental/theoretical determination of pKa, defined the pH sensing ability. Full article
Show Figures

Figure 1

27 pages, 8176 KiB  
Review
Electrochemistry of Flavonoids
by Dorota Naróg and Andrzej Sobkowiak
Molecules 2023, 28(22), 7618; https://doi.org/10.3390/molecules28227618 - 16 Nov 2023
Cited by 15 | Viewed by 3366
Abstract
This review presents a description of the available data from the literature on the electrochemical properties of flavonoids. The emphasis has been placed on the mechanism of oxidation processes and an attempt was made to find a general relation between the observed reaction [...] Read more.
This review presents a description of the available data from the literature on the electrochemical properties of flavonoids. The emphasis has been placed on the mechanism of oxidation processes and an attempt was made to find a general relation between the observed reaction paths and the structure of flavonoids. Regardless of the solvent used, three potential regions related to flavonoid structures are characteristic of the occurrence of their electrochemical oxidation. The potential values depend on the solvent used. In the less positive potential region, flavonoids, which have an ortho dihydroxy moiety, are reversibly oxidized to corresponding o-quinones. The o-quinones, if they possess a C3 hydroxyl group, react with water to form a benzofuranone derivative (II). In the second potential region, (II) is irreversibly oxidized. In this potential region, some flavonoids without an ortho dihydroxy moiety can also be oxidized to the corresponding p-quinone methides. The oxidation of the hydroxyl groups located in ring A, which are not in the ortho position, occurs in the third potential region at the most positive values. Some discrepancies in the reported reaction mechanisms have been indicated, and this is a good starting point for further investigations. Full article
(This article belongs to the Special Issue Electrochemistry of Organic and Organometallic Compounds)
Show Figures

Figure 1

7 pages, 549 KiB  
Proceeding Paper
Interaction of Phenolic Schiff Bases Bearing Sulfhydryl Moieties with 2,2-Diphenyl-1-picrylhydrazyl Radical: Structure–Activity Relationship Study
by Iveta Turomsha, Maxim Gvozdev, Natalia Loginova, Galina Ksendzova and Nikolai Osipovich
Chem. Proc. 2023, 14(1), 16; https://doi.org/10.3390/ecsoc-27-16113 - 15 Nov 2023
Viewed by 864
Abstract
Current research on synthetic and naturally occurring phenolic compounds is centered around their prominent antioxidant properties. Since reactive oxygen (ROS) and nitrogen (RNS) species cause considerable damage to cellular components upon their overproduction, associated with the pathogenesis of degenerative, cardiovascular and oncological diseases, [...] Read more.
Current research on synthetic and naturally occurring phenolic compounds is centered around their prominent antioxidant properties. Since reactive oxygen (ROS) and nitrogen (RNS) species cause considerable damage to cellular components upon their overproduction, associated with the pathogenesis of degenerative, cardiovascular and oncological diseases, antioxidants may reduce the risk of developing such conditions. Because hydroxyl, amino and sulfhydryl groups present in their structure, antioxidants may function as hydrogen atom and electron donors, as well as metal-reducing and metal-chelating agents. We synthesized phenolic Schiff bases from 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde; ortho-, meta- and para-mercaptoanilines; and 2,2′- and 4,4′-disulfanediyldianilines. Their antioxidant properties were studied in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay. Full article
Show Figures

Figure 1

Back to TopTop