Palladium-Catalyzed Selective Carbonylation Reactions of Ortho-Phenylene Dihalides with Bifunctional N,O-Nucleophiles
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabriele, B. Carbon Monoxide in Organic Synthesis–Carbonylation Chemistry; Wiley-VCH: Weinheim, Germany, 2021. [Google Scholar]
- Beller, M. Catalytic Carbonylation Reactions; Springer: Berlin, Germany, 2006. [Google Scholar]
- Wu, X.-F.; Fang, X.; Wu, L.; Jackstell, R.; Neumann, H.; Beller, M. Transition-Metal-Catalyzed Carbonylation Reactions of Olefins and Alkynes: A Personal Account. Acc. Chem. Res. 2014, 47, 1041–1053. [Google Scholar] [CrossRef] [PubMed]
- Beller, M.; Wu, X.-F. Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C-X Bonds; Springer: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Peng, J.-B.; Geng, H.-Q.; Wu, X.-F. The Chemistry of CO: Carbonylation. Chem 2019, 5, 526–552. [Google Scholar] [CrossRef]
- Brennführer, A.; Neumann, H.; Beller, M. Palladium-Catalyzed Carbonylation Reactions of Aryl Halides and Related Compounds. Angew. Chem. Int. Ed. 2009, 48, 4114–4133. [Google Scholar] [CrossRef]
- Ueda, T.; Konishi, H.; Manabe, K. Palladium-Catalyzed Carbonylation of Aryl, Alkenyl, and Allyl Halides with Phenyl Formate. Org. Lett. 2012, 14, 3100–3103. [Google Scholar] [CrossRef] [PubMed]
- Tukacs, J.M.; Marton, B.; Albert, E.; Tóth, I.; Mika, L.T. Palladium-catalyzed aryloxy- and alkoxycarbonylation of aromatic iodides in γ-valerolactone as bio-based solvent. J. Organomet. Chem. 2020, 923, 121407. [Google Scholar] [CrossRef]
- Peng, J.; Qi, X.; Wu, X.-F. Recent Achievements in Carbonylation Reactions: A Personal Account. Synlett 2017, 28, 175–194. [Google Scholar] [CrossRef]
- Burhardt, M.N.; Ahlburg, A.; Skrydstrup, T. Palladium-Catalyzed Thiocarbonylation of Aryl, Vinyl, and Benzyl Bromides. J. Org. Chem. 2014, 79, 11830–11840. [Google Scholar] [CrossRef]
- Hirschbeck, V.; Gehrtz, P.H.; Fleischer, I. Regioselective Thiocarbonylation of Vinyl Arenes. J. Am. Chem. Soc. 2016, 138, 16794–16799. [Google Scholar] [CrossRef]
- Aghmiz, A.; Pedros, M.G.; Bultó, A.M.M.; Schmidtchen, F.P. Hydrocarboxylation of Styrene in Aqueous Media with Pd-guanidinumphosphine Systems. Catal. Lett. 2005, 103, 191–193. [Google Scholar] [CrossRef]
- Schmidt, M.; Urban, C.; Schmidt, S.; Schomäcker, R. Palladium-Catalyzed Hydroxycarbonylation of 1-Dodecene in Microemulsion Systems: Does Reaction Performance Care about Phase Behavior? ACS Omega 2018, 3, 13355–13364. [Google Scholar] [CrossRef]
- Xu, T.; Sha, F.; Alper, H. Highly Ligand-Controlled Regioselective Pd-Catalyzed Aminocarbonylation of Styrenes with Aminophenols. J. Am. Chem. Soc. 2016, 138, 6629–6635. [Google Scholar] [CrossRef] [PubMed]
- Sha, F.; Alper, H. Ligand- and Additive-Controlled Pd-Catalyzed Aminocarbonylation of Alkynes with Aminophenols: Highly Chemo- and Regioselective Synthesis of α,β-Unsaturated Amides. ACS Catal. 2017, 7, 2220–2229. [Google Scholar] [CrossRef]
- Xu, T.; Alper, H. Pd-Catalyzed Chemoselective Carbonylation of Aminophenols with Iodoarenes: Alkoxycarbonylation vs Aminocarbonylation. J. Am. Chem. Soc. 2014, 136, 16970–16973. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, F.; Liu, J.; Wang, W.; Sun, C.; Chen, D. Ligands and Bases Mediate Switching between Aminocarbonylations and Alkoxycarbonylations in Coupling of Aminophenols with Iodoarenes. Inorg. Chem. 2019, 58, 10217–10226. [Google Scholar] [CrossRef]
- Carrilho, M.B.; Almeida, A.R.; Kiss, M.; Kollár, L.; Skoda-Földes, R.; Dąbrovski, J.M.; Moreno, M.J.S.M.; Pereira, M.M. One-Step Synthesis of Dicarboxamides through Pd-Catalysed Aminocarbonylation with Diamines as N-Nucleophiles. Eur. J. Org. Chem. 2015, 2015, 1840–1847. [Google Scholar] [CrossRef]
- Ibrahim, M.B.; Malik, I.; Hussain, S.M.S.; Fazal, A.; Fettouhi, M.; Ali, B.E. Synthesis, crystal structures and catalytic activities of new palladium(II)–bis(oxazoline) complexes. Transit. Met. Chem. 2016, 41, 739–749. [Google Scholar] [CrossRef]
- Mikle, G.; Noveczky, P.; Mahó, S.; Kollár, L. Palladium-catalysed amino- vs. alkoxycarbonylation of iodoalkenes using bifunctional N,O-nucleophiles. Tetrahedron 2021, 85, 132050. [Google Scholar] [CrossRef]
- Kollár, L.; Takács, A.; Molnár, C.; Kovács, A.; Mika, L.T.; Pongrácz, P. Palladium-Catalyzed Selective Amino- and Alkoxycarbonylation of Iodoarenes with Aliphatic Aminoalcohols as Heterobifunctional O,N-Nucleophiles. J. Org. Chem. 2023, 88, 5172–5179. [Google Scholar] [CrossRef]
- Perry, R.J.; Turner, S.R. Preparation of N-Substituted Phthalimides by the Palladium-Catalyzed Carbonylation and Coupling of o-Dihalo Aromatics and Primary Amines. J. Org. Chem. 1991, 56, 6573–6579. [Google Scholar] [CrossRef]
- Chen, J.; Natte, K.; Spannenberg, A.; Neumann, H.; Beller, M.; Wu, X.-F. Efficient palladium-catalyzed double carbonylation of o-dibromobenzenes: Synthesis of thalidomide. Org. Biomol. Chem. 2014, 12, 5578–5581. [Google Scholar] [CrossRef]
- Wójcik, P.; Trzeciak, A.M. The aminocarbonylation of 1,2-diiodoarenes with primary and secondary amines catalyzed by palladium complexes with imidazole ligands. Appl. Catal. A Gen. 2018, 560, 73–83. [Google Scholar] [CrossRef]
- Cao, H.; Alper, H. Palladium-Catalyzed Double Carbonylation Reactions of o-Dihaloarenes with Amines in Phosphonium Salt Ionic Liquids. Org. Lett. 2010, 12, 4126–4129. [Google Scholar] [CrossRef] [PubMed]
- Marosvölgyi-Haskó, D.; Petz, A.; Takács, A.; Kollár, L. Synthesis of tetrahydrophthalazine and phthalamide (phthalimide) derivatives via palladium-catalysed carbonylation of iodoarenes. Tetrahedron 2011, 67, 9122–9128. [Google Scholar] [CrossRef]
- Sawant, D.N.; Wagh, Y.S.; Bhatte, K.D.; Bhanage, B.M. Palladium-Catalyzed Carbon-Monoxide-Free Aminocarbonylation of Aryl Halides Using N-Substituted Formamides as an Amide Source. J. Org. Chem. 2011, 76, 5489–5494. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Tanaka, M. Cleavage of C N bonds of tertiary amines and carbonylation of organic halides with Palladium complexes as catalysts leading to formation of tertiary amides. J. Organomet. Chem. 1982, 231, C12–C14. [Google Scholar] [CrossRef]
- Sperotto, E.; van Klink, G.P.M.; van Koten, G.; de Vries, J.G. The mechanism of the modified Ullmann reaction. Dalton Trans. 2021, 39, 10338–10351. [Google Scholar] [CrossRef]
- Shi, J.; Wu, J.; Cui, C.; Dai, W.-M. Microwave-Assisted Intramolecular Ullmann Diaryl Etherification as the Post-Ugi Annulation for Generation of Dibenz[b,f ][1,4]oxazepine Scaffold. J. Org. Chem. 2016, 81, 10392–10403. [Google Scholar] [CrossRef]
- Prabakaran, K.; Zeller, M.; Prasad, K.J.R. Palladium-Mediated Intramolecular C–O and C–C Coupling Reactions: An Efficient Synthesis of Benzannulated Oxazepino- and Pyranocarbazoles. Synlett 2011, 42, 1835–1840. [Google Scholar] [CrossRef]
# | Ligand [mmol] | 1a [mmol] | 2a [mmol] | Base | pCO [bar] | Solvent | T [°C] | t [h] | Conversion and Composition of the Reaction Mixture |
---|---|---|---|---|---|---|---|---|---|
1 | TPP [0.02] | 0.5 | 0.5 | Et3N | 1 | DMF | 100 | 48 | |
2 | TPP [0.02] | 0.5 | 0.5 | Cs2CO3 | 1 | DMF | 100 | 24 | |
3 | TPP [0.02] | 0.5 | 0.5 | KOtBu | 1 | DMF | 100 | 24 | |
4 | TPP [0.02] | 0.5 | 1.0 | Et3N | 1 | DMF | 100 | 24 | |
5 | TPP [0.02] | 0.5 | 0.5 | Et3N | 40 | DMF | 100 | 24 | |
6 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | DMF | 100 | 48 | |
7 | tBu-Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | DMF | 100 | 24 | |
8 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | MeCN | 82 | 24 | |
9 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | NMP | 100 | 96 | |
10 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | DMF | 75 | 48 | |
11 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | DMF | 50 | 48 | |
12 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 40 | DMF | 75 | 48 | |
13 | - | 0.5 | 0.5 | Et3N | 1 | DMF | 75 | 48 | |
14 | TPP [0.02] | 1.0 | 0.5 | Et3N | 1 | DMF | 50 | 24 | |
15 | Xantphos [0.01] | 1.0 | 0.5 | Et3N | 1 | DMF | 100 | 24 | |
16 | Xantphos [0.01] | 1.0 | 0.5 | Et3N | 1 | DMF | 75 | 24 | |
17 | Xantphos [0.01] | 1.0 | 0.5 | Et3N | 1 | DMF | 50 | 72 | |
Reaction conditions: Pd(OAc)2 (0.01 mmol); Base (2.0 mmol); Solvent (10 mL). Conversion and composition are determined by GC. |
# | Ligand [mmol] | 1a [mmol] | pCO [bar] | T [°C] | Conversion and Composition of the Reaction Mixture |
---|---|---|---|---|---|
1 | TPP [0.02] | 0.5 | 1 bar | 100 | |
2 | TPP [0.02] | 1.0 | 1 bar | 100 | |
3 | Xantphos [0.01] | 0.5 | 1 bar | 100 | |
4 | Xantphos [0.01] | 1.0 | 1 bar | 100 | |
5 | Xantphos [0.01] | 1.0 | 1 bar | 75 | |
6 a | Xantphos [0.01] | 1.0 | 1 bar | 50 | |
7 | Xantphos [0.01] | 0.5 | 40 bar | 100 | |
8 | Xantphos [0.01] | 1.0 | 40 bar | 100 | |
Reaction conditions: PdCl2(PhCN)2 (0.01 mmol); 2b (0.5 mmol); Et3N (2.0 mmol); DMF (10 mL); t = 24 h. Conversion and composition determined by GC. a Reaction time: 96 h. |
# | Ligand [mmol] | 1b [mmol] | 2a [mmol] | Base | pCO [bar] | T [°C] | Conversion and Composition of the Reaction Mixture |
---|---|---|---|---|---|---|---|
1 | TPP [0.02] | 0.5 | 0.5 | Et3N | 1 | 100 | |
2 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | 100 | |
3 | Xantphos [0.02] | 0.5 | 0.5 | Et3N | 1 | 100 | |
4 | Xantphos [0.01] | 0.5 | 1.0 | Et3N | 1 | 100 | |
5 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | 75 | |
6 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | 50 | |
7 | Xantphos [0.01] | 1.0 | 0.5 | Et3N | 1 | 100 | |
1b [mmol] | 2b [mmol] | ||||||
8 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | 100 | |
9 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | 130 | |
10 a | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 1 | 100 | |
11 | Xantphos [0.01] | 0.5 | 0.5 | Et3N | 20 | 100 | |
12 | N-Xantphos [0.01] | 1.0 | 0.5 | Et3N | 1 | 100 | |
13 | Xantphos [0.01] | 1.0 | 0.5 | Et3N | 1 | 120 | |
14 | Xantphos [0.01] | 1.0 | 0.5 | Cs2CO3 | 1 | 120 | |
15 | Xantphos [0.01] | 1.0 | 0.5 | KtBu | 1 | 120 | |
Reaction conditions: Pd(OAc)2 (0.01 mmol); Base (2.0 mmol); DMF (10 mL); t = 24 h. Values determined by GC. a PdCl2(PhCN)2 was used. |
# | Ligand [mmol] | Base | Solvent | T [°C] | Conversion and Composition of the Reaction Mixture |
---|---|---|---|---|---|
1 | TPP [0.005] | Et3N | DMF | 75 | |
2 | TPP [0.005] | DABCO | DMF | 75 | |
3 | TPP [0.005] | Na3PO4 | DMF | 75 | |
4 | Xantphos [0.005] | Et3N | DMF | 75 | |
5 | Xantphos [0.005] | Na3PO4 | DMF | 75 | |
6 | Xantphos [0.005] | K2CO3 | DMF | 75 | |
7 | TPP [0.005] | K2CO3 | MeCN | 75 | |
8 | TPP [0.005] | K2CO3 | Dioxane | 75 | |
9 | Xantphos [0.005] | K2CO3 | DMF | 50 | |
10 | Xantphos [0.005] | K2CO3 | DMF | 100 | |
11 | Xantphos [0.005] | K2CO3 | DMF (dry) | 75 | |
Reaction conditions: Pd(OAc)2 (0.0025 mmol); Base (0.5 mmol); 1,2-Diiodobenzene (0.125 mmol); 2-(Methylamino)ethanol (0.125 mmol) Solvent (2.5 mL); pCO = 1 bar; t = 24 h. Values determined by GC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bede, F.; Takács, A.; Kollár, L.; Pongrácz, P. Palladium-Catalyzed Selective Carbonylation Reactions of Ortho-Phenylene Dihalides with Bifunctional N,O-Nucleophiles. Molecules 2024, 29, 5620. https://doi.org/10.3390/molecules29235620
Bede F, Takács A, Kollár L, Pongrácz P. Palladium-Catalyzed Selective Carbonylation Reactions of Ortho-Phenylene Dihalides with Bifunctional N,O-Nucleophiles. Molecules. 2024; 29(23):5620. https://doi.org/10.3390/molecules29235620
Chicago/Turabian StyleBede, Fanni, Attila Takács, László Kollár, and Péter Pongrácz. 2024. "Palladium-Catalyzed Selective Carbonylation Reactions of Ortho-Phenylene Dihalides with Bifunctional N,O-Nucleophiles" Molecules 29, no. 23: 5620. https://doi.org/10.3390/molecules29235620
APA StyleBede, F., Takács, A., Kollár, L., & Pongrácz, P. (2024). Palladium-Catalyzed Selective Carbonylation Reactions of Ortho-Phenylene Dihalides with Bifunctional N,O-Nucleophiles. Molecules, 29(23), 5620. https://doi.org/10.3390/molecules29235620