Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,762)

Search Parameters:
Keywords = organic-wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1001 KiB  
Article
A Preliminary Evaluation of the Use of Solid Residues from the Distillation of Medicinal and Aromatic Plants as Fertilizers in Mediterranean Soils
by Anastasia-Garyfallia Karagianni, Anastasia Paraschou and Theodora Matsi
Agronomy 2025, 15(8), 1903; https://doi.org/10.3390/agronomy15081903 (registering DOI) - 7 Aug 2025
Abstract
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum [...] Read more.
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum (Roth) G. Don), lavender (Lavandula angustifolia Mill.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) were added in an alkaline and calcareous soil at the rates of 0 (control), 1, 2, 4 and 8%, in three replications (treatments), and the treated soils were analyzed. The results showed that upon application of the residues, soil electrical conductivity (EC), organic C, total N and the C/N ratio significantly increased, especially at the 4 and 8% rates. The same was found for soil available P, K, B, Cu and Mn. The effects of the residues on soil pH, cation exchange capacity (CEC) and available Zn and Fe were rather inconclusive, whereas soil available N significantly decreased, which was somewhat unexpected. From the different application rates tested, it seems that all residues could improve soil fertility (except N?) when they were applied to soil at rates of 2% and above, without exceeding the 8% rate. The reasons for the latter statement are soil EC and available Mn: the doubling of EC upon application of the residues and the excessive increase in soil available Mn in treatments with 8% residues raise concerns of soil salinization and Mn phytotoxicity risks, respectively. This work provides the first step towards the potential agronomic use of solid residues from MAP distillation in alkaline soils. However, for the establishment of such a perspective, further research is needed in respect to the effect of residues on plant growth and soil properties, by means of at least pot experiments. Based on the results of the current study, the undesirable effect of residues on soil available N should be investigated in depth, since N is the most important essential element for plant growth, and possible risks of micronutrient phytotoxicities should also be studied. In addition, application rates between 2 and 4% should be studied extensively in order to recommend optimum application rates of residues to producers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 8254 KiB  
Article
Aquaporins in the Capillaries of the Dura Mater of Pigs
by Slavica Martinović, Dinko Smilović, Boris Pirkić, Petra Dmitrović, Leonarda Grandverger and Marijan Klarica
Int. J. Mol. Sci. 2025, 26(15), 7653; https://doi.org/10.3390/ijms26157653 (registering DOI) - 7 Aug 2025
Abstract
Dura mater plays a critical role in neurofluid homeostasis, yet comparative data on capillary network density and organization between cranial and spinal regions remain limited. This study addresses this gap by systematically analyzing capillary architecture and aquaporin (AQP) expression in porcine cranial (parietal, [...] Read more.
Dura mater plays a critical role in neurofluid homeostasis, yet comparative data on capillary network density and organization between cranial and spinal regions remain limited. This study addresses this gap by systematically analyzing capillary architecture and aquaporin (AQP) expression in porcine cranial (parietal, falx) and spinal dura mater. Immunofluorescence labeling and confocal microscopy were used to assess capillary density, spatial distribution, and AQP1/AQP4 expression patterns across over 1000 capillaries in these regions. Cranial dura exhibited a 3–4 times higher capillary density compared to spinal dura, with capillaries predominantly localized to meningeal–dural border cell interfaces in cranial regions and a more dispersed distribution in spinal dura. Both AQP1 and AQP4 were detected as discrete clusters within capillary walls, with higher expression in cranial compared to spinal dura. Lymphatic vessels (PDPN-positive) were also observed adjacent to capillaries, supporting a dual-system model for fluid and waste exchange. These findings highlight the dura’s region-specific vascular specialization, with cranial regions favoring dense, structured capillary networks suited for active fluid exchange. This work establishes a foundation for investigating capillary-driven fluid dynamics in pathological states like subdural hematomas or hydrocephalus. Full article
(This article belongs to the Special Issue Aquaporins in Brain Disease, 2nd Edition)
Show Figures

Figure 1

19 pages, 1159 KiB  
Article
Determining the Effect of Different Concentrations of Spent Coffee Grounds on the Metabolomic Profile of Swiss Chard
by Thabiso Motseo and Lufuno Ethel Nemadodzi
Int. J. Plant Biol. 2025, 16(3), 88; https://doi.org/10.3390/ijpb16030088 (registering DOI) - 7 Aug 2025
Abstract
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and [...] Read more.
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and has been proven to be detrimental to the soil in the long run. Hence, there is a growing need to use organic waste material, such as spent coffee grounds (SCGs), to grow crops. Spent coffee grounds are made of depleted coffee beans that contain important soluble compounds. This study aimed to determine the influence of different levels (0.32 g, 0.63 g, 0.92 g, and 1.20 g) of spent coffee grounds on the metabolomic profile of Swiss chard. The 1H-nuclear magnetic resonance (NMR) results showed that Swiss chard grown with different levels of SCGs contains a total of 10 metabolites, which included growth-promoting metabolites (trehalose; betaine), defense mechanism metabolites (alanine; cartinine), energy-reserve metabolites (sucrose; 1,6 Anhydro-β-D-glucose), root metabolites (thymine), stress-related metabolites (2-deoxyadenosine), caffeine metabo-lites (1,3 Dimethylurate), and body-odor metabolites (trimethylamine). Interestingly, caprate, with the abovementioned metabolites, was detected in Swiss chard grown without the application of SCGs. The findings of the current study suggest that SCGs are an ideal organic material for growing Swiss chard for its healthy metabolites. Full article
15 pages, 1774 KiB  
Article
Study on the Effect of pH Modulation on Lactic Acid Production by Electro-Fermentation of Food Waste
by Nuohan Wang, Jianguo Liu, Yongsheng Li, Yuanyuan Ren, Xiaona Wang, Tianlong Zheng and Qunhui Wang
Sustainability 2025, 17(15), 7160; https://doi.org/10.3390/su17157160 - 7 Aug 2025
Abstract
Lactic acid (LA) synthesis through fermentation of food waste (FW) is an emerging techniques for utilizing perishable organic wastes with high value. Using food waste collected from a cafeteria as the substrate for fermentation, the current study was conducted by applying a micro [...] Read more.
Lactic acid (LA) synthesis through fermentation of food waste (FW) is an emerging techniques for utilizing perishable organic wastes with high value. Using food waste collected from a cafeteria as the substrate for fermentation, the current study was conducted by applying a micro electric field to the conventional LA fermentation process and performing open-ended electro-fermentation (EF) without sterilization and lactobacilli inoculation. Furthermore, the effects of pH adjustment on LA production were examined. The findings demonstrated that electrical stimulation enhances the electron transfer rate within the system, accelerates REDOX reactions, and thereby intensifies the lactic acid production process. The pH-regulated group produced LA and dissolved organic materials at considerably higher rates than the control group, which did not receive any pH modification. The maximum LA concentration and organic matter dissolution in the experimental group, where the pH was set to 7 every 12 h of fermentation, were 33.9 and 38.4 g/L, respectively. These values were 208 and 203% higher than those in the control group, indicating that the pH adjustment greatly aided the solubilization and hydrolysis of macromolecules. Among the several hydrolyzing bacteria (Actinobacteriota) that were enriched, Lactobacillus predominated, but Bifidobacterium also became a major genus in the neutral-acidic environment, and its abundance grew dramatically. This study provides a scientific basis for optimizing the LA process of FW. Full article
Show Figures

Graphical abstract

19 pages, 371 KiB  
Review
Human Breast Milk as a Biological Matrix for Assessing Maternal and Environmental Exposure to Dioxins and Dioxin-like Polychlorinated Biphenyls: A Narrative Review of Determinants
by Artemisia Kokkinari, Evangelia Antoniou, Kleanthi Gourounti, Maria Dagla, Aikaterini Lykeridou, Stefanos Zervoudis, Eirini Tomara and Georgios Iatrakis
Pollutants 2025, 5(3), 25; https://doi.org/10.3390/pollutants5030025 - 7 Aug 2025
Abstract
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is [...] Read more.
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is the primary route of maternal exposure, environmental pathways—including inhalation, dermal absorption, and residential proximity to contaminated sites—may also significantly contribute to the maternal body burden. (2) Methods: This narrative review examined peer-reviewed studies investigating maternal and environmental determinants of dioxin and dl-PCB concentrations in human breast milk. A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science (2000–2024), identifying a total of 325 records. Following eligibility screening and full-text assessment, 20 studies met the inclusion criteria. (3) Results: The included studies consistently identified key exposure determinants, such as high consumption of animal-based foods (e.g., meat, fish, dairy), living near industrial facilities or waste sites, and maternal characteristics including age, parity, and body mass index (BMI). Substantial geographic variability was observed, with higher concentrations reported in regions affected by industrial activity, military pollution, or inadequate waste management. One longitudinal study from Japan demonstrated a declining trend in dioxin levels in breast milk, suggesting the potential effectiveness of regulatory interventions. (4) Conclusions: These findings highlight that maternal exposure to dioxins is influenced by identifiable environmental and behavioral factors, which can be mitigated through public health policies, targeted dietary guidance, and environmental remediation. Breast milk remains a critical bioindicator of human exposure. Harmonized, long-term research is needed to clarify health implications and minimize contaminant transfer to infants, particularly among vulnerable populations. Full article
Show Figures

Figure 1

20 pages, 3734 KiB  
Review
Microbial Community and Metabolic Pathways in Anaerobic Digestion of Organic Solid Wastes: Progress, Challenges and Prospects
by Jiachang Cao, Chen Zhang, Xiang Li, Xueye Wang, Xiaohu Dai and Ying Xu
Fermentation 2025, 11(8), 457; https://doi.org/10.3390/fermentation11080457 - 7 Aug 2025
Abstract
Anaerobic digestion (AD) is a sustainable and widely adopted technology for the treatment of organic solid wastes (OSWs). However, AD efficiency varies significantly across different substrates, primarily due to differences in the microbial community and metabolic pathways. This review provides a comprehensive summary [...] Read more.
Anaerobic digestion (AD) is a sustainable and widely adopted technology for the treatment of organic solid wastes (OSWs). However, AD efficiency varies significantly across different substrates, primarily due to differences in the microbial community and metabolic pathways. This review provides a comprehensive summary of the AD processes for four types of typical OSWs (i.e., sewage sludge, food waste, livestock manure, and straw), with an emphasis on their universal characteristics across global contexts, focusing mainly on the electron transfer mechanisms, essential microbial communities, and key metabolic pathways. Special attention was given to the mechanisms by which substrate-specific structural differences influence anaerobic digestion efficiency, with a focused analysis and discussion on how different components affect microbial communities and metabolic pathways. This study concluded that the hydrogenotrophic methanogenesis pathway, TCA cycle, and the Wood–Ljungdahl pathway serve as critical breakthrough points for enhancing methane production potential. This research not only provides a theoretical foundation for optimizing AD efficiency, but also offers crucial scientific insights for resource recovery and energy utilization of OSWs, making significant contributions to advancing sustainable waste management practices. Full article
(This article belongs to the Special Issue Feature Review Papers in Industrial Fermentation, 2nd Edition)
Show Figures

Figure 1

15 pages, 1258 KiB  
Article
Biochar Affects Greenhouse Gas Emissions from Urban Forestry Waste
by Kumuduni Niroshika Palansooriya, Tamanna Mamun Novera, Dengge Qin, Zhengfeng An and Scott X. Chang
Land 2025, 14(8), 1605; https://doi.org/10.3390/land14081605 - 6 Aug 2025
Abstract
Urban forests are vital to cities because they provide a range of ecosystem services, including carbon (C) sequestration, air purification, and urban cooling. However, urban forestry also generates significant amounts of organic waste, such as grass clippings, pruned tree branches, and fallen tree [...] Read more.
Urban forests are vital to cities because they provide a range of ecosystem services, including carbon (C) sequestration, air purification, and urban cooling. However, urban forestry also generates significant amounts of organic waste, such as grass clippings, pruned tree branches, and fallen tree leaves and woody debris that can contribute to greenhouse gas (GHG) emissions if not properly managed. In this study, we investigated the effect of wheat straw biochar (produced at 500 °C) on GHG emissions from two types of urban forestry waste: green waste (GW) and yard waste (YW), using a 100-day laboratory incubation experiment. Overall, GW released more CO2 than YW, but biochar addition reduced cumulative CO2 emissions by 9.8% in GW and by 17.6% in YW. However, biochar increased CH4 emissions from GW and reduced the CH4 sink strength of YW. Biochar also had contrasting effects on N2O emissions, increasing them by 94.3% in GW but decreasing them by 61.4% in YW. Consequently, the highest global warming potential was observed in biochar-amended GW (125.3 g CO2-eq kg−1). Our findings emphasize that the effect of biochar on GHG emissions varies with waste type and suggest that selecting appropriate biochar types is critical for mitigating GHG emissions from urban forestry waste. Full article
(This article belongs to the Special Issue Land Use Effects on Carbon Storage and Greenhouse Gas Emissions)
Show Figures

Figure 1

17 pages, 287 KiB  
Article
Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines
by Jessica M. Rustia, Judith P. Antonino, Ravelina R. Velasco, Edwin A. Yates and David G. Fernig
Fishes 2025, 10(8), 385; https://doi.org/10.3390/fishes10080385 - 6 Aug 2025
Abstract
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of [...] Read more.
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of this potential nutrient source is hindered by the lack of information concerning its organic and mineral content, the possible presence of heavy metal ions, and the risk of microbial pathogens. We report extensive analysis of the meat from Placuna placenta, harvested during three different seasons to account for potential variations. This comprises proximate analysis, mineral, antioxidant, and microbial analyses. While considerable seasonal variation was observed, the windowpane oyster was found to be a rich source of protein, fats, minerals, and carbohydrates, comparing well with the meats of other shellfish and land animals. Following pre-cooking (~90 °C, 25–30 min), the standard local method for food preparation, no viable E. coli or Salmonella sp. were detected. Mineral content was broadly similar to that reported in fish, although iron, zinc, and copper were more highly represented, nevertheless, heavy metals were below internationally acceptable levels, with the exception of one of three samples, which was slightly above the only current standard, FSANZ. Whether the arsenic was in the safer organic form, which is commonly the case for shellfish, or the more toxic inorganic form remains to be established. This and the variation of arsenic over time will need to be considered when developing food products. Overall, the meat of the windowpane oyster is a valuable food resource and its current (albeit low-level) use should lower any barriers to its acceptance, making it suitable for commercialization. The present data support its development for high-value food products in urban markets. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
15 pages, 750 KiB  
Review
Using Biocontrol Fungi to Control Helminthosis in Wild Animals: An Innovative Proposal for the Health and Conservation of Species
by Júlia dos Santos Fonseca, Beatriz Bacelar Barbosa, Adolfo Paz Silva, María Sol Arias Vázquez, Cristiana Filipa Cazapal Monteiro, Huarrisson Azevedo Santos and Jackson Victor de Araújo
Pathogens 2025, 14(8), 775; https://doi.org/10.3390/pathogens14080775 - 5 Aug 2025
Abstract
Helminth parasites of wild animals represent a major threat to the health of these animals, leading to significant losses in performance, health, and zoonotic implications. In some zoos, anthelmintics have traditionally been used to control these parasites, many of which are also zoonotic. [...] Read more.
Helminth parasites of wild animals represent a major threat to the health of these animals, leading to significant losses in performance, health, and zoonotic implications. In some zoos, anthelmintics have traditionally been used to control these parasites, many of which are also zoonotic. Other actions, such as the removal of organic waste, have also been adopted. Few or no control measures are applied to free-ranging wild animals. Helminthophagous fungi are a promising biological alternative. When animals ingest fungal spores, they are excreted in their feces, where they trap and destroy helminth larvae and eggs, preventing and reducing the parasite load in the environment. Another alternative is to administer fungi by spraying them directly into the environment. This review aims to examine the use of helminthophagous fungi in the control of helminthiases in wild animals, highlighting their potential to minimize dependence on chemical treatments and promote sustainable animal breeding and production. There are many challenges to making this viable, such as environmental variability, stability of formulations, and acceptance of this new technology. These fungi have been shown to reduce parasite burdens in wild animals by up to 75% and can be administered through the animals’ feeding troughs. To date, evidence shows that helminthophagous fungi can reliably curb environmental parasite loads for extended periods, offering a sustainable alternative to repeated anthelmintic dosing. Their use has been linked to tangible gains in body condition, weight, and overall welfare in various captive and free-ranging wildlife species. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

29 pages, 3371 KiB  
Article
The Impact of a Mobile Laboratory on Water Quality Assessment in Remote Areas of Panama
by Jorge E. Olmos Guevara, Kathia Broce, Natasha A. Gómez Zanetti, Dina Henríquez, Christopher Ellis and Yazmin L. Mack-Vergara
Sustainability 2025, 17(15), 7096; https://doi.org/10.3390/su17157096 - 5 Aug 2025
Abstract
Monitoring water quality is crucial for achieving clean water and sanitation goals, particularly in remote areas. The project “Morbidity vs. Water Quality for Human Consumption in Tonosí: A Pilot Study” aimed to enhance water quality assessments in Panama using advanced analytical techniques to [...] Read more.
Monitoring water quality is crucial for achieving clean water and sanitation goals, particularly in remote areas. The project “Morbidity vs. Water Quality for Human Consumption in Tonosí: A Pilot Study” aimed to enhance water quality assessments in Panama using advanced analytical techniques to assess volatile organic compounds, heavy metals, and microbiological pathogens. To support this, the Technical Unit for Water Quality (UTECH) was established, featuring a novel mobile laboratory with cutting-edge technology for accurate testing, minimal chemical reagent use, reduced waste generation, and equipped with a solar-powered battery system. The aim of this paper is to explore the design, deployment, and impact of the UTECH. Furthermore, this study presents results from three sampling points in Tonosí, where several parameters exceeded regulatory limits, demonstrating the capabilities of the UTECH and highlighting the need for ongoing monitoring and intervention. The study also assesses the environmental, social, and economic impacts of the UTECH in alignment with the Sustainable Development Goals and national initiatives. Finally, a SWOT analysis illustrates the UTECH’s potential to improve water quality assessments in Panama while identifying areas for sustainable growth. The study showcases the successful integration of advanced mobile laboratory technologies into water quality monitoring, contributing to sustainable development in Panama and offering a replicable model for similar initiatives in other regions. Full article
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Viewed by 40
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

20 pages, 3741 KiB  
Article
Use of Amino Acids and Organic Waste Extracts to Improve the Quality of Liquid Nitrogen–Calcium–Magnesium Fertilizers
by Eglė Didžiulytė and Rasa Šlinkšienė
Sustainability 2025, 17(15), 7081; https://doi.org/10.3390/su17157081 - 5 Aug 2025
Viewed by 61
Abstract
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse [...] Read more.
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse gas emissions, water eutrophication, and soil degradation. To develop more sustainable solutions, the focus is on organic fertilizers, which are produced using waste and biostimulants such as amino acids. The aim of this study was to develop and characterize liquid nitrogen–calcium–magnesium fertilizers produced by decomposing dolomite with nitric acid followed by further processing and to enrich them with a powdered amino acid concentrate Naturamin-WSP and liquid extracts from digestate, a by-product of biogas production. Nutrient-rich extracts were obtained using water and potassium hydroxide solutions, with the latter proving more effective by yielding a higher organic carbon content (4495 ± 0.52 mg/L) and humic substances, which can improve soil structure. The produced fertilizers demonstrated favourable physical properties, including appropriate viscosity and density, as well as low crystallization temperatures (eutectic points from –3 to –34 °C), which are essential for storage and application in cold climates. These properties were achieved by adjusting the content of nitrogenous compounds and bioactive extracts. The results of the study show that liquid fertilizers enriched with organic matter can be an effective and more environmentally friendly alternative to mineral fertilizers, contributing to the development of the circular economy and sustainable agriculture. Full article
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Suspension Fertilizers Based on Waste Organic Matter from Peanut Oil Extraction By-Products
by Sainan Xiang, Baoshen Li and Yang Lyu
Agronomy 2025, 15(8), 1885; https://doi.org/10.3390/agronomy15081885 - 5 Aug 2025
Viewed by 157
Abstract
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop [...] Read more.
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop an easily applicable organic suspension fertilizer using peanut bran, the primary by-product of peanut oil extraction, as the main raw material. Fourier-transform infrared (FTIR) analysis revealed that 80 °C is the optimal heating temperature for forming a stable peanut-bran suspension. A comprehensive experimental investigation was conducted to evaluate the effects of different peanut bran addition levels, stabilizers, emulsifiers, and suspending agents on the stability of suspension fertilizers. The results identified the optimal suspension fertilizer formulation as comprising 20% peanut bran, 0.5% sodium bentonite, 0.1% monoglyceride, 0.2% sucrose ester, 0.02% carrageenan, and 0.3% xanthan gum. This formulation ensures good stability and fluidity of the suspension fertilizer while maintaining a low cost of 0.134 USD·kg−1. The findings provide a scalable technological framework for valorizing agro-industrial waste into high-performance organic fertilizers. Full article
Show Figures

Figure 1

12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Viewed by 113
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

Back to TopTop