Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = organic printed circuit board materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3963 KiB  
Article
ASPEN PLUS Predictive Simulation of Printed Circuit Boards Pyrolysis and Steam Gasification for Organic Fraction Valorization
by Pietro Romano, Emanuele Melchiorre and Francesco Vegliò
Waste 2023, 1(1), 281-292; https://doi.org/10.3390/waste1010018 - 25 Jan 2023
Cited by 6 | Viewed by 3532
Abstract
Printed circuit boards are considered a secondary source of raw materials, such as precious or base metals. One of the most promising solutions for recovering these metals is certainly hydrometallurgy. However, the leaching of different metals from PCBs is hindered by the presence [...] Read more.
Printed circuit boards are considered a secondary source of raw materials, such as precious or base metals. One of the most promising solutions for recovering these metals is certainly hydrometallurgy. However, the leaching of different metals from PCBs is hindered by the presence of an organic fraction that lowers the extraction yields. One solution to this problem is a pyrolysis pre-treatment which removes the organic fraction and enhances it through conversion into syngas. A steady-state simulation model was developed using ASPEN PLUS to describe the thermodynamic behavior of PCB pyrolysis. The pyrolysis reactor was modeled as a combination of the Yields reactor and the Gibbs reactor. The model has been validated using various data present in the literature. The composition of the different products was estimated through the minimization of Gibbs’s free energy. A sensitivity analysis was performed to investigate the influence of different parameters on the conversion yield and the syngas quality produced. Thanks to the study, it was possible to describe and analyze the pyrolysis of PCBs without requiring numerous experimental tests. The results show how steam gasification appears to be the most efficient technology for the pre-treatment of PCBs within a hydrometallurgical process. Full article
Show Figures

Figure 1

14 pages, 3656 KiB  
Article
Low Dielectric Properties and Transmission Loss of Polyimide/Organically Modified Hollow Silica Nanofiber Composites
by Shu-Yang Lin, Yu-Min Ye, Erh-Ching Chen and Tzong-Ming Wu
Polymers 2022, 14(20), 4462; https://doi.org/10.3390/polym14204462 - 21 Oct 2022
Cited by 10 | Viewed by 3756
Abstract
In this study, a series of low dielectric constant and transmission loss of polyimide (PI)/organically modified hollow silica nanofiber (m-HSNF) nanocomposites were synthesized via two-step polymerization. Two different PIs were fabricated using two types of diamine monomers with or without fluorine-containing groups and [...] Read more.
In this study, a series of low dielectric constant and transmission loss of polyimide (PI)/organically modified hollow silica nanofiber (m-HSNF) nanocomposites were synthesized via two-step polymerization. Two different PIs were fabricated using two types of diamine monomers with or without fluorine-containing groups and biphenylene structure of dianhydride. The chemical structure and morphology of the fabricated composites were characterized using Nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) and field-emission scanning electron microscopy (FESEM). The two-step polymerization process successfully manufactured and converted from polyamic acid to polyimide after thermal imidization was proved by the NMR and FTIR results. The FESEM and their related energy-dispersive X-ray spectroscopy (EDS) images of nanocomposites indicate that the m-HSNF is extremely dispersed into the polyimide matrix. The high-frequency dielectric constants of the nanocomposite materials decrease as the presence of fluorine-containing groups in diamine monomers and the loadings of the m-HSNF increase. These findings are probably attributed to the presence of the steric hindrance effect brought by trifluoromethyl groups, and the m-HSNF can disrupt the chain packing and increase the free volume, thus reducing the dielectric properties of polyimides. The transmission loss and its related uncertainty of fabricated composite materials contain excellent performance, suggesting that the fabricated materials could be used as substrate materials for 5G printed circuit board. Full article
(This article belongs to the Special Issue Smart and Functional Polymer Composites)
Show Figures

Figure 1

35 pages, 8596 KiB  
Review
Photocatalytic Materials Obtained from E-Waste Recycling: Review, Techniques, Critique, and Update
by Ashkan Bahadoran, Jeffrey Roshan De Lile, Saeid Masudy-Panah, Behzad Sadeghi, Jiaxin Li, Mohammad Hosein Sabzalian, Seeram Ramakrishna, Qinglei Liu, Pasquale Cavaliere and Arun Gopinathan
J. Manuf. Mater. Process. 2022, 6(4), 69; https://doi.org/10.3390/jmmp6040069 - 26 Jun 2022
Cited by 21 | Viewed by 7350
Abstract
Waste-derived materials obtained from the recovery and recycling of electronic waste (e-waste) such as batteries and printed circuit boards have attracted enormous attention from academia and industry in recent years, especially due to their eco-friendly nature and the massive increment in e-waste due [...] Read more.
Waste-derived materials obtained from the recovery and recycling of electronic waste (e-waste) such as batteries and printed circuit boards have attracted enormous attention from academia and industry in recent years, especially due to their eco-friendly nature and the massive increment in e-waste due to technological development. Several investigations in the literature have covered the advances achieved so far. Meanwhile, photocatalytic applications are especially of interest since they maintain mutual benefits and can be used for H2 production from solar water splitting based on semiconductor processing as a proper environmentally friendly technique for solar energy conversion. In addition, they can be utilized to degrade a variety of organic and non-organic contaminations. Nonetheless, to the best of the authors’ knowledge, there has not been any comprehensive review that has specifically been focused on e-waste-derived photocatalytic materials. In this regard, the present work is dedicated to thoroughly discussing the related mechanisms, strategies, and methods, as well as the various possible photocatalysts synthesized from e-wastes with some critiques in this field. This brief overview can introduce modern technologies and promising possibilities for e-waste valorization, photocatalytic processes, and new photocatalytic degradation methods of eco-friendly nature. This paper discusses various e-waste-obtained photocatalytic materials, synthesis procedures, and applications, as well as several types of e-waste, derived materials such as TiO2, ZnO, indium tin oxide, and a variety of sulfide- and ferrite-based photocatalytic materials. Full article
Show Figures

Figure 1

6 pages, 445 KiB  
Proceeding Paper
A Hydrometallurgical Process for Cu Recovery from Printed Circuit Boards
by Dimitrios Vlasopoulos, Paschalis Oustadakis, Styliani Agatzini-Leonardou, Petros Tsakiridis and Emmanouella Remoundaki
Mater. Proc. 2021, 5(1), 56; https://doi.org/10.3390/materproc2021005056 - 3 Dec 2021
Viewed by 1971
Abstract
The current study presents an effort to develop a sustainable hydrometallurgical process for the recovery of copper from waste printed circuit boards (PCBs) to be applied at local small to medium industrial units. The process aims to separate and recover copper from filter [...] Read more.
The current study presents an effort to develop a sustainable hydrometallurgical process for the recovery of copper from waste printed circuit boards (PCBs) to be applied at local small to medium industrial units. The process aims to separate and recover copper from filter dust produced during the crushing of PCBs using a hammer mill in a recycling facility. Due to the high plastic content in the dust (approximately 30% w/w), the metal fraction was separated gravimetrically, and the material originated consisted mainly of Cu (23.8%), Fe (17.8%), Sn (12.7%), Pb (6.3%), Zn (3.4%), Al (3.3%), Mn (1.6%), and Ni (1.5%). Prior to copper recovery, the dust was leached with HCl as a pretreatment step. During this step, more than 80% of iron, zinc, and tin were leached out. The resulting solid consisted mainly of Cu (37.6%) and Fe (10.7%), leading to a copper enrichment of around 60% in the powder. The leaching of copper was conducted in a two-step process using H2SO4 as a leaching agent with the addition of H2O2 as an oxidizing agent. The experimental conditions had low energy requirements (no heating or agitation needed). The leaching of Cu reached 98%. Despite the pretreatment step, the concentration of other metals (Fe, Zn, Ni) in the pregnant solution was too high to proceed to electrowining. Therefore, the organic solvent ACORGA M5640 was selected for the extraction of copper from the pregnant solution. The extraction was conducted in two stages at pH equilibrium 1.5, and the loaded organic phase was stripped with HCl in two steps. The strip liquor was suitable for electrowinning. Full article
(This article belongs to the Proceedings of International Conference on Raw Materials and Circular Economy)
Show Figures

Figure 1

10 pages, 1563 KiB  
Article
Food Waste-Assisted Metal Extraction from Printed Circuit Boards: The Aspergillus niger Route
by Carlotta Alias, Daniela Bulgari, Fabjola Bilo, Laura Borgese, Alessandra Gianoncelli, Giovanni Ribaudo, Emanuela Gobbi and Ivano Alessandri
Microorganisms 2021, 9(5), 895; https://doi.org/10.3390/microorganisms9050895 - 22 Apr 2021
Cited by 11 | Viewed by 3598
Abstract
A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a [...] Read more.
A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste. Full article
(This article belongs to the Special Issue Microorganisms and Organic Waste Valorisation)
Show Figures

Figure 1

16 pages, 5728 KiB  
Article
Thermal Isolation of a Clean Alloy from Waste Slag and Polymeric Residue of Electronic Waste
by Rasoul Khayyam Nekouei, Samane Maroufi, Mohammad Assefi, Farshid Pahlevani and Veena Sahajwalla
Processes 2020, 8(1), 53; https://doi.org/10.3390/pr8010053 - 2 Jan 2020
Cited by 14 | Viewed by 4149
Abstract
Unprecedented advances and innovation in technology and short lifespans of electronic devices have resulted in the generation of a considerable amount of electronic waste (e-waste). Polymeric components present in electronic waste contain a wide range of organic materials encompassing a significant portion of [...] Read more.
Unprecedented advances and innovation in technology and short lifespans of electronic devices have resulted in the generation of a considerable amount of electronic waste (e-waste). Polymeric components present in electronic waste contain a wide range of organic materials encompassing a significant portion of carbon (C). This source of carbon can be employed as a reducing agent in the reduction of oxides from another waste stream, i.e., steelmaking slag, which contains ≈20 wt%–40 wt% iron oxide. This waste slag is produced on a very large scale by the steel industry due to the nature of the process. In this research, the polymeric residue leftover from waste printed circuit boards (PCBs) after a physical-chemical recycling process was used as the source of carbon in the reduction of iron oxide from electric arc furnace (EAF) slag. Prior to the recycling tests, the polymer content of e-waste was characterized in terms of composition, morphology, thermal behavior, molecular structure, hazardous elements such as Br, the volatile portion, and the fixed carbon content. After the optimization of the ratio between the waste slag (Fe source) and the waste polymer (the carbon source), the microstructure of the recycled alloy showed no Br, Cl, S, or other contamination. Hence, two problematic and complex waste streams were successfully converted to a clean alloy with 4 wt% C, 4% Cr, 2% Si, 1% Mn, and 89% Fe. Full article
(This article belongs to the Special Issue Gas, Water and Solid Waste Treatment Technology)
Show Figures

Graphical abstract

21 pages, 6413 KiB  
Article
Development of a Cost-Effective Optical Sensor for Continuous Monitoring of Turbidity and Suspended Particulate Matter in Marine Environment
by T. Matos, C. L. Faria, M. S. Martins, Renato Henriques, P. A. Gomes and L. M. Goncalves
Sensors 2019, 19(20), 4439; https://doi.org/10.3390/s19204439 - 14 Oct 2019
Cited by 43 | Viewed by 6286
Abstract
A cost-effective optical sensor for continuous in-situ monitoring of turbidity and suspended particulate matter concentration (SPM), with a production cost in raw materials less than 20 €, is presented for marine or fluvial applications. The sensor uses an infrared LED and three photodetectors [...] Read more.
A cost-effective optical sensor for continuous in-situ monitoring of turbidity and suspended particulate matter concentration (SPM), with a production cost in raw materials less than 20 €, is presented for marine or fluvial applications. The sensor uses an infrared LED and three photodetectors with three different positions related to the light source—135º, 90º and 0º—resulting in three different types of light detection: backscattering, nephelometry and transmitted light, respectively. This design allows monitoring in any type of environment, offering a wide dynamic range and accuracy for low and high turbidity or SPM values. An ultraviolet emitter–receiver pair is also used to differentiate organic and inorganic matter through the differences in absorption at different wavelengths. The optical transducers are built in a watertight structure with a radial configuration where a printed circuit board with the electronic signal coupling is assembled. An in-lab calibration of the sensor was made to establish a relation between suspended particulate matter (SPM) or the turbidity (NTU) to the photodetectors’ electrical output value in Volts. Two different sizes of seashore sand were used (180 µm and 350 µm) to evaluate the particle size susceptibility. The sensor was tested in a fluvial environment to evaluate SPM change during sediment transport caused by rain, and a real test of 22 days continuous in-situ monitoring was realized to evaluate its performance in a tidal area. The monitoring results were analysed, showing the SPM change during tidal cycles as well as the influence of the external light and biofouling problems. Full article
(This article belongs to the Special Issue Marine Sensors: Recent Advances and Challenges)
Show Figures

Figure 1

25 pages, 8698 KiB  
Article
Phosphine Oxide Containing Poly(pyridinium salt)s as Fire Retardant Materials
by Maksudul M. Alam, Bidyut Biswas, Alexi K. Nedeltchev, Haesook Han, Asanga D. Ranasinghe, Pradip K. Bhowmik and Kisholoy Goswami
Polymers 2019, 11(7), 1141; https://doi.org/10.3390/polym11071141 - 3 Jul 2019
Cited by 13 | Viewed by 7395
Abstract
Six new rugged, high-temperature tolerant phosphine oxide-containing poly(4,4′-(p-phenylene)-bis(2,6-diphenylpyridinium)) polymers P-1, P-2, P-3, P-4, P-5, and P-6 are synthesized, characterized, and evaluated. Synthesis results in high yield and purity, as confirmed by elemental, proton ( [...] Read more.
Six new rugged, high-temperature tolerant phosphine oxide-containing poly(4,4′-(p-phenylene)-bis(2,6-diphenylpyridinium)) polymers P-1, P-2, P-3, P-4, P-5, and P-6 are synthesized, characterized, and evaluated. Synthesis results in high yield and purity, as confirmed by elemental, proton (1H), and carbon 13 (13C) nuclear magnetic resonance (NMR) spectra analyses. High glass transition temperatures (Tg > 230 °C) and high char yields (>50% at 700 °C) are determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. These new ionic polymers exhibit excellent processability, thin-film forming, high-temperature resistance, fire-resistance and retardation, coating, adhesion, mechanical and tensile strength, and n-type (electron transport) properties. The incorporation of phosphine oxide and bis(phenylpyridinium) moieties in the polymer backbones leads to high glass transition temperatures and excellent fire retardant properties, as determined by microcalorimetry measurements. The use of organic counterions allows these ionic polymers to be easily processable from several common organic solvents. A large variety of these polymers can be synthesized by utilizing structural variants of the bispyrylium salt, phosphine oxide containing diamine, and the counterion in a combinatorial fashion. These results make them very attractive for a number of applications, including as coating and structural component materials for automobiles, aircrafts, power and propulsion systems, firefighter garments, printed circuit boards, cabinets and housings for electronic and electrical components, construction materials, mattresses, carpets, upholstery and furniture, and paper-thin coatings for protecting important paper documents. Full article
(This article belongs to the Special Issue Phosphorus-Containing Polymers)
Show Figures

Graphical abstract

19 pages, 5895 KiB  
Article
Chemical Recycling of Used Printed Circuit Board Scraps: Recovery and Utilization of Organic Products
by Se-Ra Shin, Van Dung Mai and Dai-Soo Lee
Processes 2019, 7(1), 22; https://doi.org/10.3390/pr7010022 - 4 Jan 2019
Cited by 24 | Viewed by 8062
Abstract
The disposal of end-of-life printed circuit boards (PCBs) comprising cross-linked brominated epoxy resins, glass fiber, and metals has attracted considerable attention from the environmental aspect. In this study, valuable resources, especially organic material, were recovered by the effective chemical recycling of PCBs. Pulverized [...] Read more.
The disposal of end-of-life printed circuit boards (PCBs) comprising cross-linked brominated epoxy resins, glass fiber, and metals has attracted considerable attention from the environmental aspect. In this study, valuable resources, especially organic material, were recovered by the effective chemical recycling of PCBs. Pulverized PCB was depolymerized by glycolysis using polyethylene glycol (PEG 200) with a molecular weight of 200 g/mol under basic conditions. The cross-linked epoxy resins were effectively decomposed into a low-molecular species by glycolysis with PEG 200, followed by the effective separation of the metals and glass fibers from organic materials. The organic material was modified into recycled polyol with an appropriate viscosity and a hydroxyl value for rigid polyurethane foams (RPUFs) by the Mannich reaction and the addition polymerization of propylene oxide. RPUFs prepared using the recycled polyol exhibited superior thermal and mechanical properties as well as thermal insulation properties compared to conventional RPUFs, indicating that the recycled polyol obtained from the used PCBs can be valuable as RPUF raw materials for heat insulation. Full article
(This article belongs to the Special Issue Renewable Polymers: Processing and Chemical Modifications)
Show Figures

Graphical abstract

8 pages, 1415 KiB  
Article
Improving the Energy Concentration in Waste Printed Circuit Boards Using Gravity Separation
by Amit Kumar, Vinoth Kumar Kuppusamy, Maria E. Holuszko and Travis Janke
Recycling 2018, 3(2), 21; https://doi.org/10.3390/recycling3020021 - 16 May 2018
Cited by 10 | Viewed by 4091
Abstract
Electronic waste is one the fastest growing waste streams in the world, and printed circuit boards (PCBs) are the most valuable fraction of this stream due to the presence of gold, silver, copper, and palladium. Printed circuit boards consist of approximately 30% metals [...] Read more.
Electronic waste is one the fastest growing waste streams in the world, and printed circuit boards (PCBs) are the most valuable fraction of this stream due to the presence of gold, silver, copper, and palladium. Printed circuit boards consist of approximately 30% metals and 70% non-metals. The non-metal fraction (NMF) is composed of 60–65% fiberglass and 35–40% organics, in the form of surface-mount plastics and epoxy resins in the printed circuit board laminates. The organics in the NMF provide a potential alternative source of energy, but hazardous flame retardants contained in epoxy resins and the presence of residual metals create challenges for utilizing this material for energy recovery. This research provides an evaluation of the energy content of printed circuit boards. Density-based separation was used to separate various components of the NMF to increase the energy content in specific density fractions while reducing the metal content. The result showed that the energy content before and after the removal of the metallic fraction from PCBs was 9 and 15 GJ/t, respectively. After the density-based separation of the NMF, the energy content in the lightest fraction increased to 21 GJ/t, while reducing the concentration of the hazardous flame retardants. The contents of the hazardous flame retardants and residual metal were analyzed, to evaluate the harmful effect of emissions produced from utilizing the NMF as an alternative feedstock in waste-to-energy applications. Full article
Show Figures

Figure 1

20 pages, 18761 KiB  
Article
High-Temperature Storage Testing of ACF Attached Sensor Structures
by Sanna Lahokallio, Maija Hoikkanen, Jyrki Vuorinen and Laura Frisk
Materials 2015, 8(12), 8641-8660; https://doi.org/10.3390/ma8125455 - 10 Dec 2015
Cited by 9 | Viewed by 7382
Abstract
Several electronic applications must withstand elevated temperatures during their lifetime. Materials and packages for use in high temperatures have been designed, but they are often very expensive, have limited compatibility with materials, structures, and processing techniques, and are less readily available than traditional [...] Read more.
Several electronic applications must withstand elevated temperatures during their lifetime. Materials and packages for use in high temperatures have been designed, but they are often very expensive, have limited compatibility with materials, structures, and processing techniques, and are less readily available than traditional materials. Thus, there is an increasing interest in using low-cost polymer materials in high temperature applications. This paper studies the performance and reliability of sensor structures attached with anisotropically conductive adhesive film (ACF) on two different organic printed circuit board (PCB) materials: FR-4 and Rogers. The test samples were aged at 200 °C and 240 °C and monitored electrically during the test. Material characterization techniques were also used to analyze the behavior of the materials. Rogers PCB was observed to be more stable at high temperatures in spite of degradation observed, especially during the first 120 h of aging. The electrical reliability was very good with Rogers. At 200 °C, the failures occurred after 2000 h of testing, and even at 240 °C the interconnections were functional for 400 h. The study indicates that, even though these ACFs were not designed for use in high temperatures, with stable PCB material they are promising interconnection materials at elevated temperatures, especially at 200 °C. However, the fragility of the structure due to material degradation may cause reliability problems in long-term high temperature exposure. Full article
Show Figures

Figure 1

12 pages, 433 KiB  
Article
Kinetic Study of the Pyrolysis of Waste Printed Circuit Boards Subject to Conventional and Microwave Heating
by Jing Sun, Wenlong Wang, Zhen Liu, Qingluan Ma, Chao Zhao and Chunyuan Ma
Energies 2012, 5(9), 3295-3306; https://doi.org/10.3390/en5093295 - 31 Aug 2012
Cited by 90 | Viewed by 8976
Abstract
This paper describes a kinetic study of the decomposition of waste printed circuit boards (WPCB) under conventional and microwave-induced pyrolysis conditions. We discuss the heating rates and the influence of the pyrolysis on the thermal decomposition kinetics of WPCB. We find that the [...] Read more.
This paper describes a kinetic study of the decomposition of waste printed circuit boards (WPCB) under conventional and microwave-induced pyrolysis conditions. We discuss the heating rates and the influence of the pyrolysis on the thermal decomposition kinetics of WPCB. We find that the thermal degradation of WPCB in a controlled conventional thermogravimetric analyzer (TGA) occurred in the temperature range of 300 °C–600 °C, where the main pyrolysis of organic matter takes place along with an expulsion of volumetric volatiles. The corresponding activation energy is decreased from 267 kJ/mol to 168 kJ/mol with increased heating rates from 20 °C/min to 50 °C/min. Similarly, the process of microwave-induced pyrolysis of WPCB material manifests in only one stage, judging by experiments with a microwave power of 700 W. Here, the activation energy is determined to be only 49 kJ/mol, much lower than that found in a conventional TGA subject to a similar heating rate. The low activation energy found in microwave-induced pyrolysis suggests that the adoption of microwave technology for the disposal of WPCB material and even for waste electronic and electrical equipment (WEEE) could be an attractive option. Full article
(This article belongs to the Special Issue Waste to Energy Technologies)
Show Figures

Figure 1

Back to TopTop