Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,420)

Search Parameters:
Keywords = organic nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3115 KB  
Article
BINOL-Based Zirconium Metal–Organic Cages: Self-Assembly, Guest Complexation, Aggregation-Induced Emission, and Circularly Polarized Luminescence
by Yawei Liu, Gen Li, Roy Lavendomme, En-Qing Gao and Dawei Zhang
Nanomaterials 2026, 16(2), 132; https://doi.org/10.3390/nano16020132 - 19 Jan 2026
Abstract
The development of nanoscale chiral materials with enhanced optical properties holds significant promise for advancing technologies in light-emitting devices and enantioselective sensing. Here, we report the self-assembly of chiral metal–organic cages from an axially chiral, AIE-active binaphthyl dicarboxylate ligand. This supramolecular architecture functions [...] Read more.
The development of nanoscale chiral materials with enhanced optical properties holds significant promise for advancing technologies in light-emitting devices and enantioselective sensing. Here, we report the self-assembly of chiral metal–organic cages from an axially chiral, AIE-active binaphthyl dicarboxylate ligand. This supramolecular architecture functions as a multifunctional platform, demonstrating a high affinity for anionic guests through synergistic electrostatic and hydrogen-bonding interactions. The rigid cage framework not only enhances the ligand’s intrinsic aggregation-induced emission (AIE) but also serves as a highly effective chiral amplifier. Notably, MOCs significantly boost the circularly polarized luminescence (CPL), achieving a luminescence dissymmetry factor (|glum|) of 1.2 × 10−3. This value represents an approximately five-fold enhancement over that of the unassembled ligand. The photophysical properties of this chiral supramolecular system provide a strategic blueprint for designing next-generation optical nanomaterials. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

22 pages, 1735 KB  
Article
Iron Nanoparticles Derived from Olive Mill Wastewater for Sustainable Soil Remediation
by Mar Gil-Díaz, Carolina Mancho, Rosa Ana Pérez, Juan Alonso, Sergio Diez-Pascual, Beatriz Albero and M. Carmen Lobo
Nanomaterials 2026, 16(2), 118; https://doi.org/10.3390/nano16020118 - 15 Jan 2026
Viewed by 145
Abstract
There is an urgent need to develop sustainable approaches for the remediation of contaminated soil as well as to promote sustainable practices for waste management. Here, we provide the first evaluation of the performance of two types of iron nanoparticles (NA and NH) [...] Read more.
There is an urgent need to develop sustainable approaches for the remediation of contaminated soil as well as to promote sustainable practices for waste management. Here, we provide the first evaluation of the performance of two types of iron nanoparticles (NA and NH) obtained from olive mill wastewater for the remediation of an acidic multi-contaminated soil, including metal(loid)s, PCBs, and a flame retardant (TCPP). Their efficiency was then compared against that of a commercial nanoscale zero-valent iron (NS) through a one-month microcosm experiment employing two doses of each nanomaterial. The impact of the treatments on key soil physicochemical properties, metal(loid) availability, PCB and TCPP concentrations, and soil phytotoxicity was assessed. All treatments reduced soil acidity. Regarding organic contaminants, bioremediation of TCPP was enhanced by all nanomaterials, particularly NH, whereas NA was the only treatment that significantly reduced PCB concentration under the tested conditions. NS achieved the highest rates of metal(loid) immobilization (63–100%); NH was most beneficial for soil fertility and immobilized As, Ni, and Pb (100, 38, and 53%, respectively), whereas NA was only effective for Pb (21–49%). The low dose of both NA and NH improved the germination index (66 and 61%, respectively), reducing soil phytotoxicity. These results highlight the potential of valorizing olive mill wastewater for soil remediation, thereby contributing to the principles of the Circular Economy. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

28 pages, 1779 KB  
Review
Two-Dimensional Carbon-Based Electrochemical Sensors for Pesticide Detection: Recent Advances and Environmental Monitoring Applications
by K. Imran, Al Amin, Gajapaneni Venkata Prasad, Y. Veera Manohara Reddy, Lestari Intan Gita, Jeyaraj Wilson and Tae Hyun Kim
Biosensors 2026, 16(1), 62; https://doi.org/10.3390/bios16010062 - 14 Jan 2026
Viewed by 197
Abstract
Pesticides have been widely applied in agricultural practices over the past decades to protect crops from pests and other harmful organisms. However, their extensive use results in the contamination of soil, water, and agricultural products, posing significant risks to human and environmental health. [...] Read more.
Pesticides have been widely applied in agricultural practices over the past decades to protect crops from pests and other harmful organisms. However, their extensive use results in the contamination of soil, water, and agricultural products, posing significant risks to human and environmental health. Exposure to pesticides can lead to skin irritation, respiratory disorders, and various chronic health problems. Moreover, pesticides frequently enter surface water bodies such as rivers and lakes through agricultural runoff and leaching processes. Therefore, developing effective analytical methods for the rapid and sensitive detection of pesticides in food and water is of great importance. Electrochemical sensing techniques have shown remarkable progress in pesticide analysis due to their high sensitivity, simplicity, and potential for on-site monitoring. Two-dimensional (2D) carbon nanomaterials have emerged as efficient electrocatalysts for the precise and selective detection of pesticides, owing to their large surface area, excellent electrical conductivity, and unique structural features. In this review, we summarize recent advancements in the electrochemical detection of pesticides using 2D carbon-based materials. Comprehensive information on electrode fabrication, sensing mechanisms, analytical performance—including sensing range and limit of detection—and the versatility of 2D carbon composites for pesticide detection is provided. Challenges and future perspectives in developing highly sensitive and selective electrochemical sensing platforms are also discussed, highlighting their potential for simultaneous pesticide monitoring in food and environmental samples. Carbon-based electrochemical sensors have been the subject of many investigations, but their practical application in actual environmental and food samples is still restricted because of matrix effects, operational instability, and repeatability issues. In order to close the gap between laboratory research and real-world applications, this review critically examines sensor performance in real-sample conditions and offers innovative approaches for in situ pesticide monitoring. Full article
Show Figures

Figure 1

39 pages, 4643 KB  
Review
Design and Applications of MOF-Based SERS Sensors in Agriculture and Biomedicine
by Alemayehu Kidanemariam and Sungbo Cho
Sensors 2026, 26(2), 499; https://doi.org/10.3390/s26020499 - 12 Jan 2026
Viewed by 260
Abstract
Metal–organic framework (MOF)-based surface-enhanced Raman scattering (SERS) sensors have emerged as a versatile platform for high-sensitivity and selective detection in agricultural, environmental, and biomedical applications. By integrating plasmonic nanostructures with tunable MOF architectures, these hybrid systems combine ultrahigh signal enhancement with molecular recognition, [...] Read more.
Metal–organic framework (MOF)-based surface-enhanced Raman scattering (SERS) sensors have emerged as a versatile platform for high-sensitivity and selective detection in agricultural, environmental, and biomedical applications. By integrating plasmonic nanostructures with tunable MOF architectures, these hybrid systems combine ultrahigh signal enhancement with molecular recognition, analyte preconcentration, and controlled hotspot distribution. This review provides a comprehensive overview of the fundamental principles underpinning MOF–SERS performance, including EM and chemical enhancement mechanisms, and highlights strategies for substrate design, such as metal–MOF composites, plasmon-free frameworks, ligand functionalization, and hierarchical or core–shell architectures. We further examine their applications in environmental monitoring, pesticide and contaminant detection, pathogen identification, biomarker analysis, and theranostics, emphasizing real-sample performance, molecular selectivity, and emerging integration with portable Raman devices and AI-assisted data analysis. Despite notable advances, challenges remain in reproducibility, quantitative reliability, matrix interference, scalability, and biocompatibility. Future developments are likely to focus on rational MOF design, sustainable fabrication, intelligent spectral interpretation, and multifunctional integration to enable robust, field-deployable sensors. Overall, MOF-based SERS platforms represent a promising next-generation analytical tool poised to bridge laboratory innovation and practical, real-world applications. Full article
Show Figures

Figure 1

22 pages, 1479 KB  
Review
Application of Graphene Oxide Nanomaterials in Crop Plants and Forest Plants
by Yi-Xuan Niu, Xin-Yu Yao, Jun Hyok Won, Zi-Kai Shen, Chao Liu, Weilun Yin, Xinli Xia and Hou-Ling Wang
Forests 2026, 17(1), 94; https://doi.org/10.3390/f17010094 - 10 Jan 2026
Viewed by 140
Abstract
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, [...] Read more.
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, and root or soil exposure, while comparing annual crops with woody forest plants. Mechanistic progress points to a shared physicochemical basis: surface oxygen groups and sheet geometry reshape water and ion microenvironments at the soil–seed and soil–rhizosphere interfaces, and many reported shifts in antioxidant enzymes and hormone pathways likely represent downstream stress responses. In crops, low-to-moderate doses most consistently improve germination, root architecture, and tolerance to salinity or drought stress, whereas high doses or prolonged root exposure can cause root surface coating, oxidative injury, and photosynthetic inhibition. In forest plants, evidence remains limited and often relies on seedlings or tissue culture. For forest plants with long life cycles, processes such as soil persistence, aging, and multi-seasonal carry-over become key factors, especially in nurseries and restoration substrates. The available data indicate predominant root retention with generally limited root-to-shoot translocation, so residues in edible and medicinal organs remain insufficiently quantified under realistic-use patterns. This review provides a scenario-based framework for crop- and forestry-specific safe-dose windows and proposes standardized endpoints for long-term fate and ecological risk assessment. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

17 pages, 1279 KB  
Review
Polysulfone Membranes: Here, There and Everywhere
by Pere Verdugo, Iwona Gulaczyk, Magdalena Olkiewicz, Josep M. Montornes, Marta Woźniak-Budych, Filip F. Pniewski, Iga Hołyńska-Iwan and Bartosz Tylkowski
Membranes 2026, 16(1), 35; https://doi.org/10.3390/membranes16010035 - 5 Jan 2026
Viewed by 411
Abstract
Polysulfone (PSU) membranes are widely recognized for their thermal stability, mechanical strength, and chemical resistance, making them suitable for diverse separation applications. This review highlights recent advances in PSU membrane development, focusing on fabrication techniques, structural modifications, and emerging applications. Phase inversion remains [...] Read more.
Polysulfone (PSU) membranes are widely recognized for their thermal stability, mechanical strength, and chemical resistance, making them suitable for diverse separation applications. This review highlights recent advances in PSU membrane development, focusing on fabrication techniques, structural modifications, and emerging applications. Phase inversion remains the predominant method for membrane synthesis, allowing precise control over morphology and performance. Functional enhancements through blending, chemical grafting, and incorporation of nanomaterials—such as metal–organic frameworks (MOFs), carbon nanotubes, and zwitterionic polymers—have significantly improved gas separation, and water purification., In gas separation, PSU-based mixed matrix membranes demonstrate enhanced CO2/CH4 selectivity, particularly when integrated with MOFs like ZIF-7 and ZIF-8. In water treatment, PSU membranes effectively remove algal toxins and heavy metals, with surface modifications improving hydrophilicity and antifouling properties. Despite these advancements, challenges remain in optimizing cross-linking strategies and understanding structure–property relationships. This review provides a comprehensive overview of PSU membrane technologies and outlines future directions for their development in sustainable and high-performance separation systems. Full article
Show Figures

Figure 1

41 pages, 3073 KB  
Review
Sustainable Carbon Nanomaterials from Biomass Precursors: Green Synthesis Strategies and Environmental Applications
by Ernesto Almaraz-Vega, Aislinn Itzel Morales-Vargas, Guillermo Gómez Delgado, Laura Castellanos-Arteaga, Ofelia Iñiguez Gómez and Claudia Cecilia Flores Salcedo
Nanomaterials 2026, 16(1), 75; https://doi.org/10.3390/nano16010075 - 5 Jan 2026
Viewed by 585
Abstract
Environmental pollution caused by industrialization and population growth has intensified the demand for sustainable materials capable of mitigating contaminants effectively. In this context, the green synthesis of carbon-based nanomaterials derived from biomass has gained significant attention as an eco-friendly and renewable approach that [...] Read more.
Environmental pollution caused by industrialization and population growth has intensified the demand for sustainable materials capable of mitigating contaminants effectively. In this context, the green synthesis of carbon-based nanomaterials derived from biomass has gained significant attention as an eco-friendly and renewable approach that reduces dependence on fossil resources. These nanomaterials exhibit outstanding physicochemical characteristics, including high surface area, tunable porosity, abundant functional groups, and excellent stability, which enhance their performance in environmental remediation. Specifically, biomass-derived carbon nanomaterials have demonstrated remarkable efficiency as adsorbents for the removal of heavy metals and organic pollutants, as well as photocatalysts for the degradation of toxic compounds under visible light irradiation. The physicochemical properties of the resulting materials are strongly influenced by the type and pretreatment of the biomass, along with synthesis parameters such as pyrolysis temperature, activation process, and heteroatom doping. This review highlights recent advances in the synthesis, characterization, and environmental applications of biomass-derived carbon nanomaterials, emphasizing their potential as cost-effective, scalable, and sustainable solutions for wastewater treatment and pollutant degradation in both aquatic and atmospheric systems. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

43 pages, 5874 KB  
Review
Photocatalytic Degradation of Antibiotics Using Nanomaterials: Mechanisms, Applications, and Future Perspectives
by Jianwei Liu, Hongwei Ruan, Pengfei Duan, Peng Shao, Yang Zhou, Ying Wang, Yudi Chen, Zhiyong Yan and Yang Liu
Nanomaterials 2026, 16(1), 49; https://doi.org/10.3390/nano16010049 - 29 Dec 2025
Viewed by 592
Abstract
Widespread antibiotic residues in aquatic environments pose escalating threats to ecological stability and human health, highlighting the urgent demand for effective remediation strategies. In recent years, photocatalytic technology based on advanced nanomaterials has emerged as a sustainable and efficient strategy for antibiotic degradation, [...] Read more.
Widespread antibiotic residues in aquatic environments pose escalating threats to ecological stability and human health, highlighting the urgent demand for effective remediation strategies. In recent years, photocatalytic technology based on advanced nanomaterials has emerged as a sustainable and efficient strategy for antibiotic degradation, enabling the effective utilization of solar energy for environmental remediation. This review provides an in-depth discussion of six representative categories of photocatalytic nanomaterials that have demonstrated remarkable performance in antibiotic degradation, including metal oxide-based systems with defect engineering and hollow architectures, bismuth-based semiconductors with narrow band gaps and heterojunction designs, silver-based plasmonic composites with enhanced light harvesting, metal–organic frameworks (MOFs) featuring tunable porosity and hybrid interfaces, carbon-based materials such as g-C3N4 and biochar that facilitate charge transfer and adsorption, and emerging MXene–semiconductor hybrids exhibiting exceptional conductivity and interfacial activity. The photocatalytic performance of these nanomaterials is compared in terms of degradation efficiency, recyclability, and visible-light response to evaluate their suitability for antibiotic degradation. Beyond parent compound removal, we emphasize transformation products, mineralization, and post-treatment toxicity evolution as critical metrics for assessing true detoxification and environmental risk. In addition, the incorporation of artificial intelligence into photocatalyst design, mechanistic modeling, and process optimization is highlighted as a promising direction for accelerating material innovation and advancing toward scalable, safe, and sustainable photocatalytic applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

25 pages, 532 KB  
Review
Organic Pollutant Degradation Through Photocatalysis: Progress, Challenges, and Sustainable Solutions (Mini Review)
by Gamze Sak, Şeyda Taşar and Gülbeyi Dursun
Appl. Sci. 2026, 16(1), 204; https://doi.org/10.3390/app16010204 - 24 Dec 2025
Viewed by 487
Abstract
The rapid increase in global population and industrial activities has intensified the discharge of toxic organic pollutants—including antibiotics, dyes, phenolic compounds, and pesticides—into the environment, posing critical threats to both ecosystems and human health. Conventional treatment technologies remain largely inadequate for their complete [...] Read more.
The rapid increase in global population and industrial activities has intensified the discharge of toxic organic pollutants—including antibiotics, dyes, phenolic compounds, and pesticides—into the environment, posing critical threats to both ecosystems and human health. Conventional treatment technologies remain largely inadequate for their complete removal, particularly for pollutants with complex structures and high persistence. Among advanced approaches, photocatalytic systems have emerged as a sustainable and environmentally friendly technology, capable of mineralizing organic pollutants into harmless end products. However, their large-scale application is hindered by inherent limitations such as restricted visible-light activity, low quantum efficiency, and rapid recombination of charge carriers. This mini-review critically examines recent advances aimed at overcoming these bottlenecks, including band gap engineering, metal and non-metal doping, and the incorporation of carbon-based nanomaterials (e.g., CNTs, GO, CQDs). Special emphasis is placed on strategies that enhance photocatalytic activity under visible light, as well as the emerging potential of waste-derived carbon-based photocatalysts for sustainable applications. Finally, key research gaps—such as scalability, long-term stability, and techno-economic feasibility—are discussed to provide future perspectives on the rational design of next-generation photocatalysts. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

14 pages, 3873 KB  
Article
Eco-Friendly ZnO Nanomaterial Coatings for Photocatalytic Degradation of Emerging Organic Pollutants in Water Systems: Characterization and Performance
by Dušica Jovanović, Szabolcs Bognár, Nina Finčur, Vesna Despotović, Predrag Putnik, Branimir Bajac, Sandra Jakšić, Bojan Miljević and Daniela Šojić Merkulov
Nanomaterials 2026, 16(1), 23; https://doi.org/10.3390/nano16010023 - 24 Dec 2025
Viewed by 296
Abstract
The present study targets key limitation ‘separation after the process’ that is responsible for the loss of the photocatalyst in water treatment during heterogeneous photocatalysis. Therefore, eco-friendly nanostructured ZnO coatings were engineered by the doctor blade technique through the immobilization of green ZnO [...] Read more.
The present study targets key limitation ‘separation after the process’ that is responsible for the loss of the photocatalyst in water treatment during heterogeneous photocatalysis. Therefore, eco-friendly nanostructured ZnO coatings were engineered by the doctor blade technique through the immobilization of green ZnO nanomaterials onto alumina substrate. ZnO/BPE 30 and ZnO/BPE 60 coatings were obtained from banana peel extract-based ZnO powder (ZnO/BPE). Likewise, ZnO/GTE 30 and ZnO/GTE 60 were prepared using green tea extract-based ZnO powder (ZnO/GTE). XRD characterization verified hexagonal wurtzite ZnO phase, while HRSEM analysis revealed that the flat surface of ZnO/BPE had rod-like nanostructures below 120 nm, and ZnO/GTE had spherical, porous nanoparticle networks with less than 70 nm. According to UV–vis spectrometry, all four coatings have bandgaps of ~5 eV. The highest efficiency for the solar-driven photocatalytic degradation of emerging organic pollutants was for ciprofloxacin (among pesticides clomazone and tembotrione; pharmaceuticals ciprofloxacin and 17α-ethinylestradiol; and mycotoxin zearalenone) in ultrapure water with the presence of all studied ZnO-based coatings, after 60 min of simulated solar irradiation. Its highest removal (89.1%) was achieved with ZnO/GTE 30, also having good reusability across three consecutive cycles in river water, thus supporting the application of eco-friendly, immobilized ZnO nanomaterials for wastewater treatment and environmental remediation. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (3rd Edition))
Show Figures

Graphical abstract

35 pages, 6966 KB  
Review
Electrochemical Synthesis of Nanomaterials Using Deep Eutectic Solvents: A Comprehensive Review
by Ana T. S. C. Brandão and Sabrina State
Nanomaterials 2026, 16(1), 15; https://doi.org/10.3390/nano16010015 - 22 Dec 2025
Viewed by 639
Abstract
Deep eutectic solvents (DES) have emerged as a versatile and sustainable medium for the green synthesis of nanomaterials, offering a viable alternative to conventional organic solvents and ionic liquids. Nanomaterials can be synthesised in DESs via multiple routes, including chemical reduction, solvothermal, and [...] Read more.
Deep eutectic solvents (DES) have emerged as a versatile and sustainable medium for the green synthesis of nanomaterials, offering a viable alternative to conventional organic solvents and ionic liquids. Nanomaterials can be synthesised in DESs via multiple routes, including chemical reduction, solvothermal, and electrochemical methods. Among the different pathways, this review focuses on the electrochemical synthesis of nanomaterials in DESs, as it offers several advantages: low cost, scalability for large-scale production, and low-temperature processing. The size, shape, and morphology (e.g., nanoparticles, nanoflowers, nanowires) of the resulting nanostructures can be tuned by adjusting the concentration of the electroactive species, the applied potential, the current density, mechanical agitation, and the electrolyte temperature. The use of DES as an electrolytic medium represents an environmentally friendly alternative. From an electrochemical perspective, it exhibits high electrochemical stability, good solubility for a wide range of precursors, and a broad electrochemical window. Furthermore, their low surface tensions promote high nucleation rates, and their high ionic strengths induce structural effects such as templating, capping and stabilisation, that play a crucial role in controlling particle morphology, size distribution and aggregation. Despite significant progress, key challenges persist, including incomplete mechanistic understanding, limited recyclability, and difficulties in scaling up synthesis while maintaining structural precision. This review highlights recent advances in the development of metal, alloy, oxide, and carbon-based composite nanomaterials obtained by electrochemical routes from DESs, along with their applications. Full article
Show Figures

Graphical abstract

30 pages, 3933 KB  
Review
Next-Generation Electrically Conductive Polymers: Innovations in Solar and Electrochemical Energy Devices
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(24), 3331; https://doi.org/10.3390/polym17243331 - 17 Dec 2025
Viewed by 715
Abstract
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, [...] Read more.
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, solution-phase processability, and cost-effective manufacturing potential. This extensive review provides an in-depth examination of the fundamental principles governing charge carrier mobility in conjugated polymer systems, explores diverse synthetic methodologies for tailoring molecular architectures, and analyzes their transformative applications across multiple energy technology domains. In photovoltaic technologies, electrically conductive polymers have driven major advancements in organic solar cells and photoelectrochemical systems, significantly improving energy conversion efficiency while reducing manufacturing costs. In electrochemical energy storage, their integration into supercapacitors and rechargeable lithium-based batteries has enhanced charge storage capability, accelerated charge–discharge processes, and extended operational lifespan compared with conventional electrode materials. This comprehensive analysis emphasizes emerging developments in hybrid composite architectures that combine conductive polymers with carbon-based nanomaterials, metal oxides, and other functional components to create next-generation flexible, lightweight, and wearable energy systems. By synthesizing fundamental materials chemistry with device engineering perspectives, this review illuminates the transformative potential of electrically conductive polymers in establishing sustainable, efficient, and resilient energy infrastructures for future technological landscapes. Full article
Show Figures

Figure 1

32 pages, 1415 KB  
Review
Challenges in Operating a Microbial Electrolysis Cell (MEC): Translating Biofilm Activity to Electron Flow and Hydrogen
by Naufila Mohamed Ashiq, Alreem Ali Juma Al Rahma Aldarmaki, Mariam Salem Saif Alketbi, Haya Aadel Abdullah Alshehhi, Alreem Salem Obaid Alkaabi, Noura Suhail Mubarak Saeed Alshamsi and Ashraf Aly Hassan
Sustainability 2025, 17(24), 11216; https://doi.org/10.3390/su172411216 - 15 Dec 2025
Viewed by 531
Abstract
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected [...] Read more.
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected current densities by the flow of electrons to produce hydrogen. This review examines the multiple causes that lead to the disconnect between robust biofilm development, electron transfer, and hydrogen production. Factors affecting biofilm generation (formation, substrate selection, thickness, conductivity, and heterogeneity) are discussed. Moreover, factors affecting electron transfer (electrode configuration, mass transfer constraints, key electroactive species, and metabolic pathways) are discussed. Also, substrate diffusion limitations, proton accumulation causing inhibitory pH gradients in stratified biofilms, elevated internal resistance, electron diversion to competing processes like hydrogenotrophic methanogenesis consuming H2, and detrimental biofilm aging, impacting hydrogen production, are studied. The critical roles of electrode materials, reactor configuration, and biofilm electroactivity are analyzed, emphasizing advanced electrochemical (CV, EIS, LSV), imaging (CLSM, SEM, AFM), and omics (metagenomics, transcriptomics, proteomics) techniques essential for diagnosing bottlenecks. Strategies to enhance extracellular electron transfer (EET) (advanced nanomaterials, redox mediators, conductive polymers, bioaugmentation, and pulsed electrical operation) are evaluated for bridging this performance gap and improving energy recovery. The review presents an integrated framework connecting biofilm electroactivity, EET kinetics, and hydrogen evolution efficiency. It highlights that conventional biofilm metrics may not reflect actual electron flow. Combining electrochemical, microelectrode, and omics insights allows precise evaluation of EET efficiency and supports sustainable MEC optimization for enhanced hydrogen generation. Full article
Show Figures

Figure 1

17 pages, 2713 KB  
Article
Potential Use of Biosensors for the Rapid and Specific Isolation of Listeria monocytogenes from Ready-to-Eat (RTE) Foods
by McCoy Williams, Rawah Faraj, Rejoice Nyarku, Savannah Simon, Kingsley E. Bentum, Ahmed Ghazy, Yilkal Woube, Temesgen Samuel, Evangelyn Alocija and Woubit Abebe
Pathogens 2025, 14(12), 1280; https://doi.org/10.3390/pathogens14121280 - 12 Dec 2025
Viewed by 523
Abstract
Listeria monocytogenes is a major foodborne pathogen associated with increasing global public health concern due to numerous outbreaks. Rapid pathogen detection is critical for reducing both the incidence and severity of foodborne illnesses. Recent advances in nanotechnology are transforming analytical methods, particularly for [...] Read more.
Listeria monocytogenes is a major foodborne pathogen associated with increasing global public health concern due to numerous outbreaks. Rapid pathogen detection is critical for reducing both the incidence and severity of foodborne illnesses. Recent advances in nanotechnology are transforming analytical methods, particularly for detecting foodborne pathogens. Magnetic nanoparticles (MNPs) and gold nanoparticles (GNPs) are among the most widely used nanomaterials in this field. This study investigated the potential use of MNPs and GNPs for the rapid and specific isolation of L. monocytogenes from fresh salad, deli meat, and frozen vegetables. L. monocytogenes (ATCC 19117) served as the model organism for biosensing and target capture. Results showed that the limits of detection (LoDs) for the GNP-based plasmonic/colorimetric biosensor and the MNP-based biosensor were 2.5 ng/µL DNA and 1.5 CFU/mL, respectively. Both GNPs and MNPs specifically detected L. monocytogenes even in the presence of closely related pathogens. Integration of MNPs and GNPs significantly enhanced the sensitivity of L. monocytogenes detection. Within one hour, naturally contaminated pre-packaged salad samples demonstrated clear evidence of effective direct capture by MNPs and specific identification by GNPs. This combined approach enables rapid and accurate on-site detection of L. monocytogenes, facilitating timely intervention and reducing the risk of contaminated foods reaching consumers. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

26 pages, 1441 KB  
Review
Effects of Nanomaterials on Crops
by Xiaofang Yang, Huilian Xu, Wenrui Li, Xianchao Chang, Xiaohan Jiang, Xiaoyong Liu and Mengmeng Kong
Curr. Issues Mol. Biol. 2025, 47(12), 1024; https://doi.org/10.3390/cimb47121024 - 8 Dec 2025
Viewed by 362
Abstract
It is essential to review the outcome of nanomaterials on crop growth and development, as well as their underlying applications and risks in agriculture. The agricultural department need to seek a more efficient and sustainable production approach with the global population growth and [...] Read more.
It is essential to review the outcome of nanomaterials on crop growth and development, as well as their underlying applications and risks in agriculture. The agricultural department need to seek a more efficient and sustainable production approach with the global population growth and increasing resource pressure. A number of results have demonstrated that nanomaterials have significant advantages in the enhancement of crop stress resistance, promoting growth and yields due to their unique physical and chemical properties. The paper summarizes the impact of nanomaterials on seed germination, vegetative, and reproductive growth by analyzing existing research. It discusses how nanomaterials improve crop adaptability by regulating the antioxidant system, enhancing photosynthesis, and optimizing nutrient absorption. In addition, the review highlights the potential risks associated with nanomaterials in soil ecosystems, food chain transmission, and human health, including possible negative impacts on soil organisms, microbial communities, and food safety. Finally, this review emphasizes the need for the enhancement of long-term ecological security assessments and the development of intelligent delivery systems in future research, which can ensure the safe and efficient application of nano-agricultural technologies. Full article
(This article belongs to the Special Issue Effects of Nanoparticles on Living Organisms, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop