Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,286)

Search Parameters:
Keywords = organic extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 681 KB  
Review
Organic Amendments for Sustainable Agriculture: Effects on Soil Function, Crop Productivity and Carbon Sequestration Under Variable Contexts
by Oluwatoyosi O. Oyebiyi, Antonio Laezza, Md Muzammal Hoque, Sounilan Thammavongsa, Meng Li, Sophia Tsipas, Anastasios J. Tasiopoulos, Antonio Scopa and Marios Drosos
C 2026, 12(1), 7; https://doi.org/10.3390/c12010007 - 19 Jan 2026
Abstract
Soil amendments play a critical role in improving soil health and supporting sustainable crop production, especially under declining soil fertility and climate-related stress. However, their impact varies because each amendment influences the soil through different biogeochemical processes rather than a single universal mechanism. [...] Read more.
Soil amendments play a critical role in improving soil health and supporting sustainable crop production, especially under declining soil fertility and climate-related stress. However, their impact varies because each amendment influences the soil through different biogeochemical processes rather than a single universal mechanism. This review synthesizes current knowledge on a wide range of soil amendments, including compost, biosolids, green and animal manure, biochar, hydrochar, bagasse, humic substances, algae extracts, chitosan, and newer engineered options such as metal–organic framework (MOF) composites, highlighting their underlying principles, modes of action, and contributions to soil function, crop productivity, and soil carbon dynamics. Across the literature, three main themes emerge: improvement of soil physicochemical properties, enhancement of nutrient cycling and nutrient-use efficiency, and reinforcement of plant resilience to biotic and abiotic stresses. Organic nutrient-based amendments mainly enrich the soil and build organic matter, influencing soil carbon inputs and short- to medium-term increases in soil organic carbon stocks. Biochar, hydrochar, and related materials act mainly as soil conditioners that improve structure, water retention, and soil function. Biostimulant-type amendments, such as algae extracts and chitosan, influence plant physiological responses and stress tolerance. Humic substances exhibit multifunctional effects at the soil–root interface, contributing to improved nutrient efficiency and, in some systems, enhanced carbon retention. The review highlights that no single amendment is universally superior, with outcomes governed by soil–crop context. Its novelty lies in its mechanism-based, cross-amendment synthesis that frames both yield and carbon outcomes as context-dependent rather than universally transferable. Within this framework, humic substances and carbon-rich materials show potential for climate-smart soil management, but long-term carbon sequestration effects remain uncertain and context-dependent. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

23 pages, 620 KB  
Article
CharSPBench: An Interaction-Aware Micro-Architecture Characterization Framework for Smartphone Benchmarks
by Chenghao Ouyang, Zhong Yang and Guohui Li
Electronics 2026, 15(2), 432; https://doi.org/10.3390/electronics15020432 - 19 Jan 2026
Abstract
Mobile application workloads are inherently driven by user interactions and are characterized by short execution phases and frequent behavioral changes. These properties make it difficult for traditional micro-architecture analysis approaches, which typically assume stable execution behavior, to accurately capture performance bottlenecks in realistic [...] Read more.
Mobile application workloads are inherently driven by user interactions and are characterized by short execution phases and frequent behavioral changes. These properties make it difficult for traditional micro-architecture analysis approaches, which typically assume stable execution behavior, to accurately capture performance bottlenecks in realistic mobile scenarios. To address this challenge, this paper presents CharSPBench, an interaction-aware micro-architecture characterization framework for analyzing mobile benchmarks under representative user interaction scenarios. CharSPBench organizes micro-architecture performance events in a structured and semantically consistent manner. It further enables systematic attribution of performance bottlenecks across different interaction conditions. The framework further supports intensity-based workload analysis to identify workload tendencies, such as memory-intensive and frontend-bound behaviors, under interaction-driven execution. Using the proposed framework, 126 micro-architecture performance events are systematically organized. This process leads to the identification of 19 key, semantically non-redundant features, further grouped into five major micro-architecture subsystems. Based on this structured representation, eight representative interaction-dependent micro-architecture insights are extracted to characterize performance behavior across mobile benchmarks. These quantitative results demonstrate that CharSPBench complements existing micro-architecture analysis techniques and provides practical support for interaction-aware benchmark design and mobile processor performance evaluation. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

22 pages, 1243 KB  
Review
Global Lymphatic Filariasis Post-Validation Surveillance Activities in 2025: A Scoping Review
by Holly Jian, Harriet Lawford, Angus McLure, Colleen Lau and Adam Craig
Trop. Med. Infect. Dis. 2026, 11(1), 28; https://doi.org/10.3390/tropicalmed11010028 - 19 Jan 2026
Abstract
Following World Health Organization (WHO) validation of lymphatic filariasis (LF) elimination as a public health problem, countries are required to implement post-validation surveillance (PVS) to detect potential resurgence and ensure sustained elimination. WHO’s guidelines released in 2025 recommend implementation of at least two [...] Read more.
Following World Health Organization (WHO) validation of lymphatic filariasis (LF) elimination as a public health problem, countries are required to implement post-validation surveillance (PVS) to detect potential resurgence and ensure sustained elimination. WHO’s guidelines released in 2025 recommend implementation of at least two of four PVS strategies—targeted surveys, integration into standardised surveys, health facility-based screening, and molecular xenomonitoring (MX) of mosquitoes. This review synthesised global evidence on PVS activities from 2007 to 2025 in the 23 countries and territories validated as having eliminated LF. Studies were identified through PubMed, Scopus, Embase, Web of Science, and the WHO Institutional Repository for Information Sharing (IRIS). Data on publication information, surveillance strategies, priority populations, and operational challenges and enablers were extracted. Narrative synthesis using deductive content analysis was applied. Thirty documents from 17 countries were included. Targeted surveillance and integration of PVS with other health programmes were the most common approaches noted (reported in ten and nine countries, respectively), followed by MX (seven countries) and health facility-based screening (four countries). Surveillance often focused on migrants and previous hotspots, with operational challenges linked to limited funding, workforce, and supply chains. Documents indicated that Sri Lanka, Thailand, China, and South Korea developed sustained PVS through national policies and domestic funding. Findings highlight the need for clear, contextualised guidance to operationalise sustainable PVS in different settings. Full article
Show Figures

Figure 1

31 pages, 1713 KB  
Article
In Vitro Antioxidant, Anti-Platelet and Anti-Inflammatory Natural Extracts of Amphiphilic Bioactives from Organic Watermelon Juice and Its By-Products
by Emmanuel Nikolakakis, Anna Ofrydopoulou, Katie Shiels, Sushanta Kumar Saha and Alexandros Tsoupras
Metabolites 2026, 16(1), 81; https://doi.org/10.3390/metabo16010081 - 19 Jan 2026
Abstract
Background/Objectives: Watermelon (Citrullus lanatus) processing generates substantial quantities of rind, seeds, and residual pulp that are typically discarded despite being rich in polyunsaturated fatty acids, polar lipids, carotenoids, and phenolic compounds. These amphiphilic bioactives are increasingly recognized for their roles in [...] Read more.
Background/Objectives: Watermelon (Citrullus lanatus) processing generates substantial quantities of rind, seeds, and residual pulp that are typically discarded despite being rich in polyunsaturated fatty acids, polar lipids, carotenoids, and phenolic compounds. These amphiphilic bioactives are increasingly recognized for their roles in modulating oxidative stress, inflammation, and platelet activation; however, the lipid fraction of watermelon by-products remains insufficiently characterized. This study examined organic watermelon juice and its by-products to isolate, characterize, and evaluate extracts enriched in amphiphilic and lipophilic bioactives, with emphasis on their in vitro antioxidant, anti-inflammatory, and antithrombotic properties. Methods: total lipids were extracted using a modified Bligh–Dyer method and fractionated into total amphiphilic compounds (TAC) and total lipophilic compounds (TLC) via counter-current distribution. Phenolic and carotenoid levels were quantified, and antioxidant capacity was assessed using DPPH, ABTS, and FRAP assays. Anti-platelet and anti-inflammatory activities were evaluated against ADP- and PAF-induced platelet aggregation. Structural characterization of polar lipids was performed using ATR–FTIR, and LC–MS was used to determine fatty acid composition and phospholipid structures. Results and Discussion: Carotenoids were primarily concentrated in the TLC fractions with high ABTS values for antioxidant activity, while phenolics mostly in the juice, the TACs of which showed the strongest total antioxidant capacity based on DPPH. TAC fractions of both samples showed also higher FRAP values of antioxidant activity, likely due to greater phenolic content. TAC extracts also exhibited notable inhibition of PAF- and ADP-induced platelet aggregation, associated with their enriched ω-3 PUFA profiles and favorable ω-6/ω-3 ratios based on their LC-MS profiles. Conclusions: Overall, watermelon products (juice) and by-products represent a valuable and sustainable source of amphiphilic bioactives with significant antioxidant, anti-inflammatory, and anti-platelet potential, supporting their future use in functional foods, nutraceuticals, and cosmetic applications. Full article
Show Figures

Figure 1

23 pages, 2777 KB  
Article
Isolation and Biophysical Characterization of Lipoxygenase-1 from Soybean Seed, a Versatile Biocatalyst for Industrial Applications
by Ioanna Gerogianni, Antiopi Vardaxi, Ilias Matis, Maria Karayianni, Maria Zoumpanioti, Thomas Mavromoustakos, Stergios Pispas and Evangelia D. Chrysina
Biomolecules 2026, 16(1), 162; https://doi.org/10.3390/biom16010162 - 19 Jan 2026
Abstract
Lipoxygenases are enzymes found in plants, mammals, and other organisms that catalyse the hydroperoxidation of polyunsaturated fatty acids, such as arachidonic, linoleic, and linolenic acids. They have attracted a lot of attention as molecular targets for industrial and biomedical applications, due to their [...] Read more.
Lipoxygenases are enzymes found in plants, mammals, and other organisms that catalyse the hydroperoxidation of polyunsaturated fatty acids, such as arachidonic, linoleic, and linolenic acids. They have attracted a lot of attention as molecular targets for industrial and biomedical applications, due to their implication in key biological processes, such as plant development and defence, cell growth, as well as immune response and inflammation. Soybean (Glycine max) lipoxygenase (LOX) is a versatile biocatalyst used in biotechnology, pharmaceutical, and food industries. sLOX1, a soybean LOX isoform, is central in various industrial applications; thus, it is of particular interest to develop an efficient sLOX1 isolation process, control its activity, and leverage its potential as an effective industrial biocatalyst, tailoring it to a specific desired outcome. In this study, sLOX1 was extracted and purified from soybean seeds using an optimized protocol that yielded an enzyme preparation with higher activity compared to the commercially available lipoxygenase. Comprehensive biophysical characterization employing dynamic and electrophoretic light scattering, fluorescence, and Fourier-transform infrared spectroscopies revealed that sLOX1 exhibits remarkable structural and functional stability, particularly in sodium borate buffer (pH 9), where it retains activity and integrity up to at least 55 °C and displays minimal aggregation under thermal, ionic, and temporal stress. In contrast, sLOX1 in sodium phosphate buffer (pH 6.8) remained relatively stable against ionic strength and time but showed thermally induced aggregation above 55 °C, while in sodium acetate buffer (pH 4.6), the enzyme exhibited a pronounced aggregation tendency under all tested conditions. Overall, this study provides physicochemical and stability assessments of sLOX1. The combination of enhanced catalytic activity, high purity, and well-defined stability profile across diverse buffer systems highlights sLOX1 as a promising and adaptable biocatalyst for industrial applications, offering valuable insights into optimizing lipoxygenase-based bioprocesses. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

17 pages, 1782 KB  
Article
Production of Antimicrobial and Antioxidant Metabolites by Penicillium crustosum Using Lemon Peel as a Co-Substrate in Submerged Fermentation
by Arely Núñez-Serrano, Refugio B. García-Reyes, Juan A. Ascasio-Valdés, Cristóbal N. Aguilar-González and Alcione García-González
Foods 2026, 15(2), 348; https://doi.org/10.3390/foods15020348 - 18 Jan 2026
Viewed by 101
Abstract
Fungal secondary metabolites are valuable sources of natural antioxidants and antimicrobials. This study evaluated the submerged fermentation of Penicillium crustosum OR889307 supplemented with lemon peel as a co-substrate to enhance the production of bioactive compounds. Lemon peel was selected for its phenolic precursors [...] Read more.
Fungal secondary metabolites are valuable sources of natural antioxidants and antimicrobials. This study evaluated the submerged fermentation of Penicillium crustosum OR889307 supplemented with lemon peel as a co-substrate to enhance the production of bioactive compounds. Lemon peel was selected for its phenolic precursors and sustainable availability as an agro-industrial byproduct. Crude extracts, aqueous and organic fractions, and molecular-weight partitions were assessed for antioxidant activity using the DPPH assay and for antimicrobial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Semi-purified extracts from co-substrate fermentations exhibited enhanced bioactivity, showing MIC values of 185 µg/mL against P. aeruginosa and 225 µg/mL against MRSA, along with strong ABTS radical-scavenging capacity (238.95 ± 2.17 µmol TE). RP-HPLC-ESI-MS profiling revealed phenolic acids, flavanones, flavonols, and lignans, including ferulic acid 4-O-glucoside, bisdemethoxycurcumin, secoisolariciresinol, and quercetin 3-O-xylosyl-glucuronide. These findings demonstrate that lemon peel supplementation promotes the biosynthesis of antimicrobial and antioxidant metabolites by P. crustosum. This approach supports sustainable agro-waste valorization and offers a promising strategy for obtaining natural bioactive compounds with potential applications in food preservation and health-related formulations. Full article
Show Figures

Figure 1

28 pages, 5548 KB  
Article
CVMFusion: ConvNeXtV2 and Visual Mamba Fusion for Remote Sensing Segmentation
by Zelin Wang, Li Qin, Cheng Xu, Dexi Liu, Zeyu Guo, Yu Hu and Tianyu Yang
Sensors 2026, 26(2), 640; https://doi.org/10.3390/s26020640 - 18 Jan 2026
Viewed by 56
Abstract
In recent years, extracting coastlines from high-resolution remote sensing imagery has proven difficult due to complex details and variable targets. Current methods struggle with the fact that CNNs cannot model long-range dependencies, while Transformers incur high computational costs. To address these issues, we [...] Read more.
In recent years, extracting coastlines from high-resolution remote sensing imagery has proven difficult due to complex details and variable targets. Current methods struggle with the fact that CNNs cannot model long-range dependencies, while Transformers incur high computational costs. To address these issues, we propose CVMFusion: a land–sea segmentation network based on a U-shaped encoder–decoder structure, whereby both the encoder and decoder are hierarchically organized. This architecture integrates the local feature extraction capabilities of CNNs with the global interaction efficiency of Mamba. The encoder uses parallel ConvNeXtV2 and VMamba branches to capture fine-grained details and long-range context, respectively. This network incorporates Dynamic Multi-Scale Attention (DyMSA) and Dynamic Weighted Cross-Attention (DyWCA) modules, which replace the traditional concatenation with an adaptive fusion mechanism to effectively fuse the features from the dual-branch encoder and utilize skip connections to complete the fusion between the encoder and decoder. Experiments on two public datasets demonstrate that CVMFusion attained MIoU accuracies of 98.05% and 96.28%, outperforming existing methods. It performs particularly well in segmenting small objects and intricate boundary regions. Full article
(This article belongs to the Special Issue Smart Remote Sensing Images Processing for Sensor-Based Applications)
Show Figures

Figure 1

21 pages, 7451 KB  
Article
Distinct Pathways of Cadmium Immobilization as Affected by Wheat Straw- and Soybean Meal-Mediated Reductive Soil Disinfestation
by Tengqi Xu, Jingyi Mei, Cui Li, Lijun Hou, Kun Wang, Risheng Xu, Xiaomeng Wei, Jingwei Zhang, Jianxiao Song, Zuoqiang Yuan, Xiaohong Tian and Yanlong Chen
Agriculture 2026, 16(2), 242; https://doi.org/10.3390/agriculture16020242 - 17 Jan 2026
Viewed by 97
Abstract
Both organic matter and iron oxide (FeO) dynamics pose key roles in soil cadmium (Cd) bioavailability. However, the microbially driven transformation of soil organic matter and FeO and their linkages to Cd fractions remain unclear under reductive soil disinfestation (RSD) with different organic [...] Read more.
Both organic matter and iron oxide (FeO) dynamics pose key roles in soil cadmium (Cd) bioavailability. However, the microbially driven transformation of soil organic matter and FeO and their linkages to Cd fractions remain unclear under reductive soil disinfestation (RSD) with different organic sources, which limits our mechanistic understanding of Cd immobilization by RSD. To address this gap, we conducted a 45 day microcosm experiment using a paddy soil contaminated with 22.8 mg/kg Cd. Six treatments were established: untreated control (CK), waterlogged (WF), and RSD-amended soils with 0.7% or 2.1% wheat straw (LWD, HWD) or soybean meal (LSD, HSD). We systematically assessed soil Cd fractionation, organic carbon and FeO concentrations, and bacterial community structure, aiming to clarify differences in Cd immobilization efficiency and the underlying mechanisms between wheat straw and soybean meal. For strongly extractable Cd, wheat straw RSD reduced the soil Cd concentrations from 6.02 mg/kg to 4.32 mg/kg (28.2%), whereas soybean meal RSD achieved a maximum reduction to 2.26 mg/kg (62.5%). Additionally, the soil mobility factor of Cd decreased from 44.6% (CK) to 39.2% (HWD) and 32.5% (HSD), while the distribution index increased from 58.5% (CK) to 62.2% (HWD) and 66.8% (HSD). Notably, the HWD treatment increased soil total organic carbon, humus, and humic acid concentrations by 34.8%, 24.6%, and 28.3%, respectively. Regarding amorphous FeO, their concentrations increased by 19.1% and 33.3% relative to CK. RSD treatments significantly altered soil C/N ratios (5.91–12.5). The higher C/N ratios associated with wheat straw stimulated r-strategist bacteria (e.g., Firmicutes, Bacteroidetes), which promoted carbohydrate degradation and fermentation, thereby enhancing the accumulation of humic substances. In contrast, the lower C/N ratios of soybean meal increased dissolved organic carbon and activated iron-reducing bacteria (FeRB; e.g., Anaeromyxobacter, Clostridium), driving iron reduction and amorphous iron oxide formation. PLS-PM analysis confirmed that wheat straw RSD immobilized Cd primarily through humification, whereas soybean meal RSD relied on FeRB-mediated FeO amorphization. These findings suggest that Cd immobilization in soil under RSD may be regulated by microbially mediated organic matter transformation and iron oxide dynamics, which was affected by organic materials of different C/N ratios. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

25 pages, 2848 KB  
Article
Sustainable Hazardous Mitigation and Resource Recovery from Oil-Based Drill Cuttings Through Slow Pyrolysis: A Kinetic and Product Analysis
by Andres Reyes-Urrutia, Anabel Fernandez, Rodrigo Torres-Sciancalepore, Daniela Zalazar-García, César Venier, César Rozas-Formandoy, Gastón Fouga, Rosa Rodriguez and Germán Mazza
Sustainability 2026, 18(2), 969; https://doi.org/10.3390/su18020969 - 17 Jan 2026
Viewed by 106
Abstract
The expansion of unconventional hydrocarbon extraction in the Vaca Muerta Formation (Argentina) has increased the generation of oil-based drill cuttings (OBDCs), a hazardous waste containing up to 20 wt% total petroleum hydrocarbons (TPHs) and trace metals. These characteristics pose risks to soil and [...] Read more.
The expansion of unconventional hydrocarbon extraction in the Vaca Muerta Formation (Argentina) has increased the generation of oil-based drill cuttings (OBDCs), a hazardous waste containing up to 20 wt% total petroleum hydrocarbons (TPHs) and trace metals. These characteristics pose risks to soil and groundwater, highlighting the need for sustainable treatment technologies that minimize environmental impacts and enable resource recovery. This study evaluates slow pyrolysis as a thermochemical route for OBDC stabilization and valorization. Representative samples were characterized through proximate, ultimate, and metal analyses, confirming a complex hydrocarbon–mineral matrix with 78.1 wt% ash, 15.9 wt% volatile matter, and 12.5 wt% TPH. Thermogravimetric analysis (10–20 °C min−1), combined with isoconversional methods, identified three pseudo-components with activation energies ranging from 41.9 to 104.5 kJ mol−1. Slow pyrolysis experiments in a fixed bed (400–650 °C) reduced residual TPH to below 1 wt% at temperatures ≥ 400 °C, meeting Argentine criteria for non-hazardous solids. The process also produced a condensed liquid organic fraction, supporting its potential within circular-economy strategies. Overall, the results show that slow pyrolysis is a viable and sustainable technology for reducing environmental risks from OBDC while enabling resource and energy recovery, contributing to a broader understanding of their thermochemical treatment. Full article
(This article belongs to the Section Energy Sustainability)
19 pages, 3156 KB  
Article
Detecting Escherichia coli on Conventional Food Processing Surfaces Using UV-C Fluorescence Imaging and Deep Learning
by Zafar Iqbal, Thomas F. Burks, Snehit Vaddi, Pappu Kumar Yadav, Quentin Frederick, Satya Aakash Chowdary Obellaneni, Jianwei Qin, Moon Kim, Mark A. Ritenour, Jiuxu Zhang and Fartash Vasefi
Appl. Sci. 2026, 16(2), 968; https://doi.org/10.3390/app16020968 - 17 Jan 2026
Viewed by 157
Abstract
Detecting Escherichia coli on food preparation and processing surfaces is critical for ensuring food safety and preventing foodborne illness. This study focuses on detecting E. coli contamination on common food processing surfaces using UV-C fluorescence imaging and deep learning. Four concentrations of E. [...] Read more.
Detecting Escherichia coli on food preparation and processing surfaces is critical for ensuring food safety and preventing foodborne illness. This study focuses on detecting E. coli contamination on common food processing surfaces using UV-C fluorescence imaging and deep learning. Four concentrations of E. coli (0, 105, 107, and 108 colony forming units (CFU)/mL) and two egg solutions (white and yolk) were applied to stainless steel and white rubber to simulate realistic contamination with organic interference. For each concentration level, 256 droplets were inoculated in 16 groups, and fluorescence videos were captured. Droplet regions were extracted from the video frames, subdivided into quadrants, and augmented to generate a robust dataset, ensuring 3–4 droplets per sample. Wavelet-based denoising further improved image quality, with Haar wavelets producing the highest Peak Signal-to-Noise Ratio (PSNR) values, up to 51.0 dB on white rubber and 48.2 dB on stainless steel. Using this dataset, multiple deep learning (DL) models, including ConvNeXtBase, EfficientNetV2L, and five YOLO11-cls variants, were trained to classify E. coli concentration levels. Additionally, Eigen-CAM heatmaps were used to visualize model attention to bacterial fluorescence regions. Across four dataset groupings, YOLO11-cls models achieved consistently high performance, with peak test accuracies of 100% on white rubber and 99.60% on stainless steel, even in the presence of egg substances. YOLO11s-cls provided the best balance of accuracy (up to 98.88%) and inference speed (4–5 ms) whilst having a compact size (11 MB), outperforming larger models such as EfficientNetV2L. Classical machine learning models lagged significantly behind, with Random Forest reaching 89.65% accuracy and SVM only 67.62%. Overall, the results highlight the potential of combining UV-C fluorescence imaging with deep learning for rapid and reliable detection of E. coli on stainless steel and rubber conveyor belt surfaces. Additionally, this approach could support the design of effective interventions to remove E. coli from food processing environments. Full article
Show Figures

Figure 1

17 pages, 15287 KB  
Article
Tuning Optical Absorption and Device Performance in P3HT:PCBM Organic Solar Cells Using Annealed Silver Thin Films
by Alaa Y. Mahmoud
Polymers 2026, 18(2), 254; https://doi.org/10.3390/polym18020254 - 17 Jan 2026
Viewed by 115
Abstract
In this study, we investigated the effect of annealing ultrathin silver (Ag) films of varying thicknesses (1–6 nm) on both their optical absorption and the performance of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) organic solar cells (OSCs). The Ag [...] Read more.
In this study, we investigated the effect of annealing ultrathin silver (Ag) films of varying thicknesses (1–6 nm) on both their optical absorption and the performance of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) organic solar cells (OSCs). The Ag films were deposited on indium tin oxide (ITO) anodes and annealed at 300 °C for 1–2 h to modify the anodic interface. The optical and electrical properties of the resulting devices were systematically characterized and optimized. The results revealed that a 1 nm AgO layer annealed for 2 h significantly enhanced the device performance, yielding a 6% increase in power conversion efficiency compared to the standard configuration. This improvement is attributed to two main factors: (i) a 25% increase in light absorption of the AgO/P3HT:PCBM film due to localized surface plasmon resonance of Ag nanoparticles and (ii) an 11% reduction in series resistance resulting from the favorable alignment of the Ag work function with the ITO anode and the polymer HOMO, which facilitates efficient hole extraction. These findings highlight the potential of ultrathin, annealed Ag/AgO interfacial layers as an effective strategy to enhance light absorption and charge transport in OSCs. Full article
(This article belongs to the Special Issue Advances in Polymeric Organic Optoelectronic Materials and Devices)
Show Figures

Graphical abstract

19 pages, 8261 KB  
Article
Organic Acids for Lignin and Hemicellulose Extraction from Black Liquor: A Comparative Study in Structure Analysis and Heavy Metal Adsorption Potential
by Patrycja Miros-Kudra, Paulina Sobczak-Tyluś, Agata Jeziorna, Karolina Gzyra-Jagieła, Justyna Wietecha and Maciej Ciepliński
Polymers 2026, 18(2), 251; https://doi.org/10.3390/polym18020251 - 16 Jan 2026
Viewed by 181
Abstract
This study presents a method for extracting lignin and hemicellulose from black liquor using organic acids (citric, malic, and acetic) in comparison to the traditional sulfuric acid method. We investigated and compared the influence of the acid type on the structural properties of [...] Read more.
This study presents a method for extracting lignin and hemicellulose from black liquor using organic acids (citric, malic, and acetic) in comparison to the traditional sulfuric acid method. We investigated and compared the influence of the acid type on the structural properties of the resulting precipitates in the context of their potential applications. The lignin fractions were characterized for their chemical structure (ATR-FTIR, NMR), thermal stability (TGA), morphology and surface elemental composition (SEM-EDS), bulk elemental composition (C, H, N, S), and molecular weight distribution (GPC). The hemicellulose fractions were analyzed for their molecular weight (GPC), surface elemental composition (EDS), and chemical structure (ATR-FTIR). These analyses revealed subtle differences in the properties of the individual materials depending on the extraction method. We showed that organic acids, particularly citric acid, can effectively precipitate lignin with yields comparable to the sulfuric acid method (47–60 g/dm3 vs. 50 g/dm3). Simultaneously, this method produces lignin with higher purity (regarding sulfur content) and an increased content of carboxyl groups. This latter aspect is of particular interest due to the enhanced potential of lignin’s adsorption functions towards metal ions. AAS analysis confirmed that lignin precipitated with citric acid showed better adsorption efficiency towards heavy metals compared to lignin precipitated with sulfuric acid, especially for Cu2+ ions (80% vs. 20%) and Cr3+ ions (46% vs. 2%). This enhanced adsorption efficiency of the isolated lignins, combined with the environmental benefits of using organic acids, opens a promising perspective for their application in water treatment and environmental remediation. Furthermore, the presented research on the valorization and reuse of paper industry by-products fully aligns with the fundamental principles of the Circular Economy. Full article
(This article belongs to the Special Issue Biobased Polymers and Its Composites)
Show Figures

Graphical abstract

27 pages, 8939 KB  
Article
A Comprehensive GC-MS Approach for Monitoring Legacy and Emerging Halogenated Contaminants in Human Biomonitoring
by Rossana Comito, Nicholas Kassouf, Alessandro Zappi, Nicolò Interino, Emanuele Porru, Jessica Fiori, Dora Melucci and Francesco Saverio Violante
Separations 2026, 13(1), 36; https://doi.org/10.3390/separations13010036 - 16 Jan 2026
Viewed by 170
Abstract
Human exposure to persistent organic pollutants such as polychlorinated biphenyls (PCB) and brominated flame retardants (BFR), including both legacy and emerging compounds, remains a concern due to their bioaccumulative nature and potential health effects. Comprehensive analytical methods are necessary to monitor these substances [...] Read more.
Human exposure to persistent organic pollutants such as polychlorinated biphenyls (PCB) and brominated flame retardants (BFR), including both legacy and emerging compounds, remains a concern due to their bioaccumulative nature and potential health effects. Comprehensive analytical methods are necessary to monitor these substances in complex biological matrices, such as human serum. A gas chromatography–mass spectrometry (GC-MS) method was developed for the simultaneous determination of 44 analytes, encompassing PCB and a broad spectrum of BFR with diverse physicochemical properties. The extraction procedure and GC-MS parameters were optimized using a design of experiments approach to maximize performance while minimizing analysis time. The method demonstrated high sensitivity, precision, and accuracy, thereby meeting internationally recognized validation criteria for biomonitoring applications. To further ensure analytical reliability, compound confirmation was achieved using gas chromatography–high-resolution mass spectrometry, providing enhanced selectivity and confidence in identification, particularly for low-level analytes. Key advantages of the method include its applicability to analytes with significantly different chemical behaviors and its capacity to quantify a large number of target compounds simultaneously. This makes it a powerful tool for assessing human exposure to both regulated and emerging halogenated contaminants. Full article
(This article belongs to the Special Issue Novel Solvents and Methods for Extraction of Chemicals)
Show Figures

Figure 1

29 pages, 55768 KB  
Article
Distributed Artificial Intelligence for Organizational and Behavioral Recognition of Bees and Ants
by Apolinar Velarde Martinez and Gilberto Gonzalez Rodriguez
Sensors 2026, 26(2), 622; https://doi.org/10.3390/s26020622 - 16 Jan 2026
Viewed by 127
Abstract
Scientific studies have demonstrated how certain insect species can be used as bioindicators and reverse environmental degradation through their behavior and organization. Studying these species involves capturing and extracting hundreds of insects from a colony for subsequent study, analysis, and observation. This allows [...] Read more.
Scientific studies have demonstrated how certain insect species can be used as bioindicators and reverse environmental degradation through their behavior and organization. Studying these species involves capturing and extracting hundreds of insects from a colony for subsequent study, analysis, and observation. This allows researchers to classify the individuals and also determine the organizational structure and behavioral patterns of the insects within colonies. The miniaturization of hardware devices for data and image acquisition, coupled with new Artificial Intelligence techniques such as Scene Graph Generation (SGG), has evolved from the detection and recognition of objects in an image to the understanding of relationships between objects and the ability to produce textual descriptions based on image content and environmental parameters. This research paper presents the design and functionality of a distributed computing architecture for image and video acquisition of bees and ants in their natural environment, in addition to a parallel computing architecture that hosts two datasets with images of real environments from which scene graphs are generated to recognize, classify, and analyze the behaviors of bees and ants while preserving and protecting these species. The experiments that were carried out are classified into two categories, namely the recognition and classification of objects in the image and the understanding of the relationships between objects and the generation of textual descriptions of the images. The results of the experiments, conducted in real-life environments, show recognition rates above 70%, classification rates above 80%, and comprehension and generation of textual descriptions with an assertive rate of 85%. Full article
26 pages, 495 KB  
Review
The Role of Bio-Based Products in Plant Responses to Salt and Drought Stress
by Rossella Saccone, Giancarlo Fascella, Giuseppe Bonfante, Erika Salvagno, Enzo Montoneri, Andrea Baglieri and Ivana Puglisi
Horticulturae 2026, 12(1), 95; https://doi.org/10.3390/horticulturae12010095 - 16 Jan 2026
Viewed by 71
Abstract
Agriculture faces increasing challenges in ensuring food security under a changing climate, where abiotic stresses such as salinity and drought represent major constraints to crop productivity. These stresses induce complex physiological and biochemical alterations in plants, including osmotic imbalance, oxidative damage, and disruption [...] Read more.
Agriculture faces increasing challenges in ensuring food security under a changing climate, where abiotic stresses such as salinity and drought represent major constraints to crop productivity. These stresses induce complex physiological and biochemical alterations in plants, including osmotic imbalance, oxidative damage, and disruption of metabolic pathways, ultimately impairing growth and yield. In this context, the application of biostimulants has emerged as a sustainable strategy to enhance plant resilience. While synthetic products are widely available, growing attention is being directed toward natural bio-based products, particularly those derived from renewable biomasses and organic wastes, in line with circular economy principles. This review critically examines the current literature on bio-based products with biostimulant properties, with particular emphasis on vermicompost-derived extracts, humic-like substances, and macro- and microalgae extracts, focusing on their role in mitigating salt and drought stress in plants. The reviewed studies consistently demonstrate that these bio-products enhance plant tolerance to abiotic stress by modulating key physiological and biochemical processes, including hormonal regulation, activation of antioxidant defence systems, accumulation of osmoprotectants, and regulation of secondary metabolism. Moreover, evidence indicates that these bio-based inputs can improve nutrient use efficiency, photosynthetic performance, and overall plant growth under stress conditions. Overall, this review highlights the potential of non-microbial bio-based biostimulants as effective and sustainable tools for climate-resilient agriculture, while also underlining the need for further research to standardize formulations, clarify mechanisms of action, and validate their performance under field conditions. Full article
Show Figures

Graphical abstract

Back to TopTop