Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,987)

Search Parameters:
Keywords = organic agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1228 KiB  
Review
Antimicrobial Effect of Graphene in Dentistry: A Scoping Review
by Ricardo Martuci, Susana João Oliveira, Mateus Martuci, José Reis-Campos and Maria Helena Figueiral
Dent. J. 2025, 13(8), 355; https://doi.org/10.3390/dj13080355 - 5 Aug 2025
Abstract
Background/Objectives: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials [...] Read more.
Background/Objectives: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials remain limited, and standardized guidelines for their production, handling, and dental applications are still lacking. This scoping review aims to map the available studies on various types of graphene, synthesize evidence on their antimicrobial effectiveness, and describe the main biological responses when functionalized in dental biomaterials. Methods: An electronic search was conducted in the Clarivate, PubMed, and Scopus databases using the descriptors as follows: ‘graphene’ AND ‘antimicrobial effect’ AND ‘bactericidal effect’ AND (‘graphene oxide’ OR ‘dental biofilm’ OR ‘antibacterial properties’ OR ‘dental materials’). Article screening and eligibility assessment were performed based on predefined inclusion and exclusion criteria, following the PRISMA-ScR guidelines. Results: The search identified 793 articles. After removing duplicates, applying the eligibility criteria, and performing a full-text analysis of 64 articles, 21 studies were included in the review. Graphene oxide, particularly at low concentrations, was the most commonly studied graphene variant, demonstrating significant antimicrobial efficacy against S. mutans, S. faecalis, E. coli, P. aeruginosa, and C. albicans. Both mechanical and chemical mechanisms have been linked to the biological responses of graphene-doped biomaterials. The biocompatibility and cytotoxicity of these compounds remain controversial, with some studies reporting favorable outcomes, while others raise significant concerns. Conclusions: Graphene shows great promise as an antimicrobial agent in dental biomaterials. Despite encouraging results, more in vitro and in vivo studies are needed to better understand its biocompatibility and cytotoxicity in dental applications. Additionally, standardized production protocols, clearly defined clinical applications in dentistry, and regulatory guidelines from the World Health Organization concerning handling procedures and occupational risks remain necessary. Full article
(This article belongs to the Special Issue Feature Review Papers in Dentistry)
Show Figures

Figure 1

19 pages, 4418 KiB  
Article
Interfacial Shrinkage Properties and Mechanism Analysis of Light-Conductive Resin–Cement-Based Materials
by Shengtian Zhai, Ran Hai, Zhihang Yu, Jianjun Ma, Chao Hou, Jiufu Zhang, Shaohua Du and Xingang Wang
Buildings 2025, 15(15), 2754; https://doi.org/10.3390/buildings15152754 - 5 Aug 2025
Abstract
To address the issue of interfacial shrinkage deformation in optical resin–cement-based composites, this study examined the effects of casting methods and coupling agent treatments on the interfacial deformation behavior and underlying mechanisms at the resin–cement interface. A self-developed interfacial shrinkage testing apparatus, combined [...] Read more.
To address the issue of interfacial shrinkage deformation in optical resin–cement-based composites, this study examined the effects of casting methods and coupling agent treatments on the interfacial deformation behavior and underlying mechanisms at the resin–cement interface. A self-developed interfacial shrinkage testing apparatus, combined with ABAQUS numerical simulations, was employed to facilitate this analysis. The results revealed that the interfacial shrinkage strain followed a characteristic distribution—higher at both ends and lower in the middle region—as the temperature increased. The experimental data showed a strong agreement with the simulation outcomes. A comparative analysis indicated that the pre-cast cement method reduced the interfacial shrinkage strain by 16% compared to the pre-cast resin method. Furthermore, treatment with a coupling agent resulted in a 31% reduction in the strain, while combining a serrated surface modification with a coupling agent treatment achieved a maximum reduction of 43.5%. Microscopic characterization confirmed that the synergy between the coupling agent and surface roughening significantly enhanced interfacial bonding by filling microcracks, improving adhesion, and increasing mechanical interlocking. This synergistic effect effectively suppressed the relative slippage caused by asynchronous shrinkage between dissimilar materials, thereby mitigating the interfacial cracking issue in optical resin–cement-based composites. These findings provide theoretical insights for optimizing the interface design in organic–inorganic composite systems. Full article
Show Figures

Figure 1

28 pages, 4137 KiB  
Review
The Genus Anisosciadium: A Comprehensive Review of Taxonomic Aspects, Traditional Uses, Phytochemistry, and Biological Activities
by Malek Besbes, Assia Hamdi, Hassiba Chahdoura, Abeer Ayed Alshammari, Wasimah B. Al-Shammari, Dalal AlArdan and Hichem Ben Jannet
Processes 2025, 13(8), 2475; https://doi.org/10.3390/pr13082475 - 5 Aug 2025
Abstract
The genus Anisosciadium, belonging to the Apiaceae family, has been traditionally recognized for its anti-inflammatory, antioxidant, and antimicrobial properties. However, scientific research on this genus is still limited, highlighting the need for a comprehensive review of its chemical composition and pharmacological characteristics. [...] Read more.
The genus Anisosciadium, belonging to the Apiaceae family, has been traditionally recognized for its anti-inflammatory, antioxidant, and antimicrobial properties. However, scientific research on this genus is still limited, highlighting the need for a comprehensive review of its chemical composition and pharmacological characteristics. A comprehensive compilation of data was conducted using major databases such as Google Scholar, Research Gate, Web of Science, Scopus, and ScienceDirect. In this review, we collected and organized the available information of identified compounds from different species of the genus Anisosciadium, covering the literature from 2003 to 2024. In total, 64 phytoconstituents were detected. The findings suggest that the traditional therapeutic properties of Anisosciadium are well supported by the reported pharmacological activities from previous studies. Notably, these studies highlight its antioxidant, antibacterial, and cytotoxic effects, emphasizing the potential of this genus in the development of new therapeutic agents. Nonetheless, the lack of comparative studies among Anisosciadium species and the scarcity of in vivo studies and clinical trials limit the full realization of its therapeutic potential. Specifically, comparative studies could be crucial in identifying species with unique chemical profiles and understanding how variations in secondary metabolite compositions may influence their pharmacological activities. Full article
(This article belongs to the Special Issue Analysis and Processes of Bioactive Components in Natural Products)
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Suspension Fertilizers Based on Waste Organic Matter from Peanut Oil Extraction By-Products
by Sainan Xiang, Baoshen Li and Yang Lyu
Agronomy 2025, 15(8), 1885; https://doi.org/10.3390/agronomy15081885 - 5 Aug 2025
Abstract
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop [...] Read more.
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop an easily applicable organic suspension fertilizer using peanut bran, the primary by-product of peanut oil extraction, as the main raw material. Fourier-transform infrared (FTIR) analysis revealed that 80 °C is the optimal heating temperature for forming a stable peanut-bran suspension. A comprehensive experimental investigation was conducted to evaluate the effects of different peanut bran addition levels, stabilizers, emulsifiers, and suspending agents on the stability of suspension fertilizers. The results identified the optimal suspension fertilizer formulation as comprising 20% peanut bran, 0.5% sodium bentonite, 0.1% monoglyceride, 0.2% sucrose ester, 0.02% carrageenan, and 0.3% xanthan gum. This formulation ensures good stability and fluidity of the suspension fertilizer while maintaining a low cost of 0.134 USD·kg−1. The findings provide a scalable technological framework for valorizing agro-industrial waste into high-performance organic fertilizers. Full article
Show Figures

Figure 1

16 pages, 2544 KiB  
Review
Aryl-Substituted Dihydro-Pyrimidines Effecting Kinesin Eg5 as Novel Approach for Cancer Treatment
by Dialekti Chlorou and Eleni Pontiki
Molecules 2025, 30(15), 3256; https://doi.org/10.3390/molecules30153256 - 3 Aug 2025
Viewed by 14
Abstract
Cancer is one of the most lethal diseases of this century. Unfortunately, many anticancer agents have harsh side effects or fail to work against cancer any longer due to tolerance. Dihydropyrimidinones are promising structures containing a pyrimidine ring. Targeting Eg5 is their most [...] Read more.
Cancer is one of the most lethal diseases of this century. Unfortunately, many anticancer agents have harsh side effects or fail to work against cancer any longer due to tolerance. Dihydropyrimidinones are promising structures containing a pyrimidine ring. Targeting Eg5 is their most well-known activity. Inhibition of this enzyme gives them the privilege of strong cytotoxic activity with less side effects. Phenyl ring is a group that can be found in the majority of organic molecules and possesses preferable pharmacokinetic and pharmacodynamic characteristics. This review studies DHPM derivatives that are substituted with a phenyl ring and possess antiproliferative ability by inhibiting Eg5. The compounds are able to inhibit different cancer cell lines, and some are more potent than the standard drug. The biological results are in accordance with the docking studies. Full article
Show Figures

Figure 1

14 pages, 2597 KiB  
Article
Chemical and Isotopic Investigation of Abiotic Oxidation of Lactate Substrate in the Presence of Varied Electron Acceptors and Under Circumneutral Anaerobic Conditions
by Tsigabu A. Gebrehiwet and R. V. Krishnamurthy
Water 2025, 17(15), 2308; https://doi.org/10.3390/w17152308 - 3 Aug 2025
Viewed by 48
Abstract
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide [...] Read more.
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide (HFO), media composition, and pH under anaerobic conditions, using sodium bicarbonate as the buffering agent. Dissolved inorganic carbon (DIC) was used as a proxy for the oxidation of substrates. HFO media generated more DIC compared to ferric citrate containing media. Light and pH had major roles in the oxidation of lactate in the presence of ferric iron. Under dark conditions in the presence or absence of Fe(III), the DIC produced was low in all pH conditions. Inhibition of DIC production was also observed upon photo exposure when Fe (III) was absent. Isotopically, the system showed initial mixing between the bicarbonate and the carbon dioxide produced from oxidation later being dominated by carbon isotope value of lactate used. These redox conditions align with previous studies suggesting cleavage of organic compounds by hydroxyl radicals. The slower redox processes observed here, compared to previous studies, could be due to the scavenging effect of chloride ion on the hydroxyl radical. Full article
Show Figures

Figure 1

32 pages, 2710 KiB  
Review
Polyphosphazene-Based Nanotherapeutics
by Sara Gutierrez-Gutierrez, Rocio Mellid-Carballal, Noemi Csaba and Marcos Garcia-Fuentes
J. Funct. Biomater. 2025, 16(8), 285; https://doi.org/10.3390/jfb16080285 - 2 Aug 2025
Viewed by 223
Abstract
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure—featuring an inorganic backbone and highly tunable organic side chains—confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide [...] Read more.
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure—featuring an inorganic backbone and highly tunable organic side chains—confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide spectrum of functional properties, including the formation of multifunctional nanostructures tailored for specific therapeutic needs. These attributes enable PPZs to address several critical challenges associated with conventional drug delivery systems, such as poor pharmacokinetics and pharmacodynamics. By modulating solubility profiles, enhancing drug stability, enabling targeted delivery, and supporting controlled release, PPZs offer a robust platform for improving therapeutic efficacy and patient outcomes. This review explores the fundamental chemistry, biopharmaceutical characteristics, and biomedical applications of PPZs, particularly emphasizing their role in zero-dimensional nanotherapeutic systems, including various nanoparticle formulations. PPZ-based nanotherapeutics are further examined based on their drug-loading mechanisms, which include electrostatic complexation in polyelectrolytic systems, self-assembly in amphiphilic constructs, and covalent conjugation with active pharmaceutical agents. Together, these strategies underscore the potential of PPZs as a next-generation material for advanced drug delivery platforms. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery (2nd Edition))
Show Figures

Graphical abstract

22 pages, 11011 KiB  
Article
Flavonoid Extract of Senecio scandens Buch.-Ham. Ameliorates CTX-Induced Immunosuppression and Intestinal Damage via Activating the MyD88-Mediated Nuclear Factor-κB Signaling Pathway
by Xiaolin Zhu, Lulu Zhang, Xuan Ni, Jian Guo, Yizhuo Fang, Jianghan Xu, Zhuo Chen and Zhihui Hao
Nutrients 2025, 17(15), 2540; https://doi.org/10.3390/nu17152540 - 1 Aug 2025
Viewed by 127
Abstract
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated [...] Read more.
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated its efficacy against cyclophosphamide (CTX)-induced immunosuppression and intestinal injury. Methods: The constituents of SSF were identified using UHPLC/Q-Orbitrap/HRMS. Mice with CTX-induced immunosuppression were treated with SSF (80, 160, 320 mg/kg) for seven days. Immune parameters (organ indices, lymphocyte proliferation, cytokine, and immunoglobulin levels) and gut barrier integrity markers (ZO-1, Occludin, Claudin-1 protein expression; sIgA secretion; microbiota composition) were assessed. Network pharmacology combined with functional assays elucidated the underlying regulatory mechanisms. Results: Twenty flavonoids were identified in SSF, with six prototype compounds detectable in the blood. The SSF treatment significantly ameliorated CTX-induced weight loss and atrophy of the thymus and spleen. It enhanced splenic T- and B-lymphocyte proliferation by 43.6% and 29.7%, respectively; normalized the CD4+/CD8+ ratio (1.57-fold increase); and elevated levels of IL-2, IL-6, IL-10, TNF-α, IFN-γ, IgM, and IgG. Moreover, SSF reinforced the intestinal barrier by upregulating tight junction protein expression and sIgA levels while modulating the gut microbiota, enriching beneficial taxa (e.g., the Lachnospiraceae_NK4A136_group, Akkermansia) and suppressing pathogenic Alistipes. Mechanistically, SSF activated the TLR/MyD88/NF-κB pathway, with isoquercitrin identified as a pivotal bioactive constituent. Conclusions: SSF effectively mitigates CTX-induced immunosuppression and intestinal damage. These findings highlight SSF’s potential as a dual-functional natural agent for immunomodulation and intestinal protection. Subsequent research should validate isoquercitrin’s molecular targets and assess SSF’s clinical efficacy. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

40 pages, 1142 KiB  
Review
The Blurred Lines Between New Psychoactive Substances and Potential Chemical Weapons
by Loreto N. Valenzuela-Tapia, Cristóbal A. Quintul, Nataly D. Rubio-Concha, Luis Toledo-Ríos, Catalina Salas-Kuscevic, Andrea V. Leisewitz, Pamela Cámpora-Oñate and Javier Campanini-Salinas
Toxics 2025, 13(8), 659; https://doi.org/10.3390/toxics13080659 - 1 Aug 2025
Viewed by 159
Abstract
The historical use of toxic chemicals to cause intentional harm has evolved from blister agents in World War I to highly lethal organophosphates and emerging families of chemicals, such as Novichok. In turn, medical or recreational substances like fentanyl, lysergamides, and phencyclidine pose [...] Read more.
The historical use of toxic chemicals to cause intentional harm has evolved from blister agents in World War I to highly lethal organophosphates and emerging families of chemicals, such as Novichok. In turn, medical or recreational substances like fentanyl, lysergamides, and phencyclidine pose a growing risk of hostile use, particularly related to the rapid proliferation of new psychoactive substances (NPSs). A narrative literature review was conducted covering specialized databases (PubMed, ScienceDirect, SciELO, Google Scholar) and sources from international organizations (OPCW, UNODC, ONU), analyzing historical and recent cases of the use of nerve agents in conflicts and the use of NPSs for hostile purposes. The main families of conventional agents (G, V, A series, and Novichok) and NPSs (lysergamides, PCP, fentanyl derivatives) were identified, highlighting their ease of synthesis, high toxicity profiles, and the regulatory gaps that facilitate their illicit production. In this scenario, it is essential to strengthen regulatory frameworks, surveillance systems, and ethical protocols in chemical research, as well as to promote international cooperation to prevent these substances from becoming chemical threats. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

20 pages, 6929 KiB  
Article
Protective Effects of Sodium Copper Chlorophyllin and/or Ascorbic Acid Against Barium Chloride-Induced Oxidative Stress in Mouse Brain and Liver
by Salma Benayad, Basma Es-Sai, Yassir Laaziouez, Soufiane Rabbaa, Hicham Wahnou, Habiba Bouchab, Hicham El Attar, Bouchra Benabdelkhalek, Loubna Amahdar, Oualid Abboussi, Raphaël Emmanuel Duval, Riad El Kebbaj and Youness Limami
Molecules 2025, 30(15), 3231; https://doi.org/10.3390/molecules30153231 - 1 Aug 2025
Viewed by 143
Abstract
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in [...] Read more.
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in the liver and brain of mice using a two-phase experimental protocol. Animals received either SCC (40 mg/kg), ASC (160 mg/kg), or their combination for 14 days prior to BaCl2 exposure (150 mg/L in drinking water for 7 days), allowing evaluation of both preventive and therapeutic effects. Toxicological and behavioral assessments confirmed the absence of systemic toxicity or neurobehavioral alterations following supplementation. Body weight, liver and kidney indices, and biochemical markers (Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT), creatinine) remained within physiological ranges, and no anxiogenic or locomotor effects were observed. In the brain, BaCl2 exposure significantly increased SOD (+49%), CAT (+66%), GPx (+24%), and GSH (+26%) compared to controls, reflecting a robust compensatory antioxidant response. Although lipid peroxidation (MDA) showed a non-significant increase, SCC, ASC, and their combination reduced MDA levels by 42%, 37%, and 55%, respectively. These treatments normalized antioxidant enzyme activities and GSH, indicating an effective neuroprotective effect. In contrast, the liver exhibited a different oxidative profile. BaCl2 exposure increased MDA levels by 80% and GSH by 34%, with no activation of SOD, CAT, or GPx. Histological analysis revealed extensive hepatocellular necrosis, vacuolization, and inflammatory infiltration. SCC significantly reduced hepatic MDA by 39% and preserved tissue architecture, while ASC alone or combined with SCC exacerbated inflammation and depleted hepatic GSH by 71% and 78%, respectively, relative to BaCl2-exposed controls. Collectively, these results highlight a differential, organ-specific response to BaCl2-induced oxidative stress and the therapeutic potential of SCC and ASC. SCC emerged as a safer and more effective agent, particularly in hepatic protection, while both antioxidants demonstrated neuroprotective effects when used individually or in combination. Full article
Show Figures

Graphical abstract

18 pages, 590 KiB  
Review
FcRn Blockade as a Targeted Therapeutic Strategy in Antibody-Mediated Autoimmune Diseases: A Focus on Warm Autoimmune Hemolytic Anemia
by Michael Sandhu and Irina Murakhovskaya
Antibodies 2025, 14(3), 65; https://doi.org/10.3390/antib14030065 - 1 Aug 2025
Viewed by 241
Abstract
Antibody-mediated autoimmune diseases are common, can involve any organ system, and pose a large burden for patients and healthcare systems. Most antibody-mediated diseases are mediated by IgG antibodies. Selective targeting of pathogenic antibodies is an attractive treatment option which has already proven to [...] Read more.
Antibody-mediated autoimmune diseases are common, can involve any organ system, and pose a large burden for patients and healthcare systems. Most antibody-mediated diseases are mediated by IgG antibodies. Selective targeting of pathogenic antibodies is an attractive treatment option which has already proven to be effective in antibody-positive generalized myasthenia gravis, maternal-fetal alloimmune cytopenias, and immune thrombocytopenic purpura. Warm autoimmune hemolytic anemia (wAIHA) is an autoimmune disorder mediated by pathogenic antibodies mainly of the IgG class with no approved therapy. Current treatment includes non-specific immunosuppression with corticosteroids, rituximab, and other immunosuppressive agents. With most therapies, time to response can be delayed and transfusions may be needed. Neonatal Fc receptor (FcRN) therapies provide rapid and sustained reduction of pathogenic IgG levels providing potential for fast, effective therapy in antibody-mediated autoimmune diseases including warm autoimmune hemolytic anemia. This review focuses on the emerging role of FcRn inhibition in autoimmune hematologic diseases, and their therapeutic potential in wAIHA. Full article
(This article belongs to the Special Issue Antibody and Autoantibody Specificities in Autoimmunity)
Show Figures

Figure 1

52 pages, 470 KiB  
Conference Report
Abstracts of the 3rd International Electronic Conference on Microbiology
by Nico Jehmlich
Biol. Life Sci. Forum 2025, 46(1), 3; https://doi.org/10.3390/blsf2025046003 - 31 Jul 2025
Abstract
The current proceedings summarize the presentations delivered during the third International Electronic Conference on Microbiology (ECM 2025), which was held online from 1 to 3 April 2025, via the SciForum platform. This virtual event brought together researchers from around the world to share [...] Read more.
The current proceedings summarize the presentations delivered during the third International Electronic Conference on Microbiology (ECM 2025), which was held online from 1 to 3 April 2025, via the SciForum platform. This virtual event brought together researchers from around the world to share recent advances in microbiological sciences. The ECM 2025 highlighted recent developments across a broad spectrum of microbiological research, including antimicrobial resistance, gut microbiota, infectious diseases, and environmental microbiomes. Participants shared their work through online presentations and abstracts, with selected submissions invited for full publication. The event fostered global collaboration, promoted open-access science, and showcased innovative tools for studying and managing microbial systems in health, agriculture, and industry. The multidisciplinary program was organized into several thematic sessions: S1. Gut Microbiota and Health Disease. S2. Foodborne Pathogens and Food Safety. S3. Antimicrobial Agents and Resistance. S4. Emerging Infectious Diseases. S5. Microbiome and Soil Science. S6. Microbial Characterization and Bioprocess. S7. Microbe–Plant Interactions. This conference report presents summaries of the contributions made by participating authors over the three-day event. Full article
16 pages, 782 KiB  
Review
The Journey of the Bacterial Symbiont Through the Olive Fruit Fly: Lessons Learned and Open Questions
by Inga Siden-Kiamos, Georgia Pantidi and John Vontas
Insects 2025, 16(8), 789; https://doi.org/10.3390/insects16080789 (registering DOI) - 31 Jul 2025
Viewed by 322
Abstract
Dysbiosis is a strategy to control insect pests through disrupting symbiotic bacteria essential for their life cycle. The olive fly, Bactrocera oleae, has been considered a suitable system for dysbiosis, as the insect is strictly dependent on its unique symbiont Candidatus Erwinia [...] Read more.
Dysbiosis is a strategy to control insect pests through disrupting symbiotic bacteria essential for their life cycle. The olive fly, Bactrocera oleae, has been considered a suitable system for dysbiosis, as the insect is strictly dependent on its unique symbiont Candidatus Erwinia dacicola. Here, we review older and recent results from studies of the interaction of the symbiont and its host fly. We then discuss possible methods for disrupting the symbiosis as a means to control the fly. Specifically, we summarize studies using microscopy methods that have investigated in great detail the organs where the bacterium resides and it is always extracellular. Furthermore, we discuss how genome sequences of both host and bacterium can provide valuable resources for understanding the interaction and transcriptomic analyses that have revealed important insights that can be exploited for dysbiosis strategies. We also assess experiments where compounds have been tested against the symbiont. The hitherto limited efficacy in decreasing bacterial abundance suggests that novel molecules and/or new ways for the delivery of agents will be important for successful dysbiosis strategies. Finally, we discuss how gene drive methods could be implemented in olive fly control, though a number of hurdles would need to be overcome. Full article
Show Figures

Figure 1

31 pages, 1537 KiB  
Review
Hepatitis C Virus: Epidemiological Challenges and Global Strategies for Elimination
by Daniela Toma, Lucreția Anghel, Diana Patraș and Anamaria Ciubară
Viruses 2025, 17(8), 1069; https://doi.org/10.3390/v17081069 - 31 Jul 2025
Viewed by 336
Abstract
The global elimination of hepatitis C virus (HCV) has been prioritized by the World Health Organization (WHO) as a key public health target, with a deadline set for 2030. This initiative aims to significantly reduce both new infection rates and HCV-associated mortality. A [...] Read more.
The global elimination of hepatitis C virus (HCV) has been prioritized by the World Health Organization (WHO) as a key public health target, with a deadline set for 2030. This initiative aims to significantly reduce both new infection rates and HCV-associated mortality. A major breakthrough in achieving this goal has been the development of direct-acting antiviral agents (DAAs), which offer cure rates exceeding 95%, along with excellent safety and tolerability. Nevertheless, transmission via parenteral routes continues to be the dominant pathway, particularly among high-risk groups, such as individuals who inject drugs, incarcerated populations, those exposed to unsafe medical practices, and healthcare professionals. Identifying, monitoring, and delivering tailored interventions to these groups is crucial to interrupt ongoing transmission and to reduce the burden of chronic liver disease. On a global scale, several nations have demonstrated measurable progress toward HCV elimination, with some nearing the targets set by WHO. These achievements have largely resulted from context-adapted policies that enhanced diagnostic and therapeutic access while emphasizing outreach to vulnerable communities. This review synthesizes current advancements in HCV prevention and control and proposes strategic frameworks to expedite global elimination efforts. Full article
(This article belongs to the Special Issue Advancing Hepatitis Elimination: HBV, HDV, and HCV)
Show Figures

Figure 1

26 pages, 9475 KiB  
Article
Microalgae-Derived Vesicles: Natural Nanocarriers of Exogenous and Endogenous Proteins
by Luiza Garaeva, Eugene Tolstyko, Elena Putevich, Yury Kil, Anastasiia Spitsyna, Svetlana Emelianova, Anastasia Solianik, Eugeny Yastremsky, Yuri Garmay, Elena Komarova, Elena Varfolomeeva, Anton Ershov, Irina Sizova, Evgeny Pichkur, Ilya A. Vinnikov, Varvara Kvanchiani, Alina Kilasoniya Marfina, Andrey L. Konevega and Tatiana Shtam
Plants 2025, 14(15), 2354; https://doi.org/10.3390/plants14152354 - 31 Jul 2025
Viewed by 295
Abstract
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs [...] Read more.
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs for biomedical applications. In this study, the extracellular vesicles isolated from the culture medium of two unicellular microalgae, Chlamydomonas reinhardtii (Chlamy-EVs) and Parachlorella kessleri (Chlore-EVs), were characterized by atomic force microscopy (AFM), cryo-electronic microscopy (cryo-EM), and nanoparticle tracking analysis (NTA). The biocompatibility with human cells in vitro (HEK-293T, DF-2 and A172) and biodistribution in mouse organs and tissues in vivo were tested for both microalgal EVs. An exogenous therapeutic protein, human heat shock protein 70 (HSP70), was successfully loaded to Chlamy- and Chlore-EVs, and its efficient delivery to human glioma and colon carcinoma cell lines has been confirmed. Additionally, in order to search for potential therapeutic biomolecules within the EVs, their proteomes have been characterized. A total of 105 proteins were identified for Chlamy-EVs and 33 for Chlore-EVs. The presence of superoxide dismutase and catalase in the Chlamy-EV constituents allows for considering them as antioxidant agents. The effective delivery of exogenous cargo to human cells and the possibility of the particle yield optimization by varying the microalgae growth conditions make them favorable producers of EVs for biotechnology and biomedical application. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

Back to TopTop