Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,016)

Search Parameters:
Keywords = order of growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5131 KiB  
Review
Coating Metal–Organic Frameworks (MOFs) and Associated Composites on Electrodes, Thin Film Polymeric Materials, and Glass Surfaces
by Md Zahidul Hasan, Tyeaba Tasnim Dipti, Liu Liu, Caixia Wan, Li Feng and Zhongyu Yang
Nanomaterials 2025, 15(15), 1187; https://doi.org/10.3390/nano15151187 (registering DOI) - 2 Aug 2025
Abstract
Metal–Organic Frameworks (MOFs) have emerged as advanced porous crystalline materials due to their highly ordered structures, ultra-high surface areas, fine-tunable pore sizes, and massive chemical diversity. These features, arising from the coordination between an almost unlimited number of metal ions/clusters and organic linkers, [...] Read more.
Metal–Organic Frameworks (MOFs) have emerged as advanced porous crystalline materials due to their highly ordered structures, ultra-high surface areas, fine-tunable pore sizes, and massive chemical diversity. These features, arising from the coordination between an almost unlimited number of metal ions/clusters and organic linkers, have resulted in significant interest in MOFs for applications in gas storage, catalysis, sensing, energy, and biomedicine. Beyond their stand-alone properties and applications, recent research has increasingly explored the integration of MOFs with other substrates, particularly electrodes, polymeric thin films, and glass surfaces, to create synergistic effects that enhance material performance and broaden application potential. Coating MOFs onto these substrates can yield significant benefits, including, but not limited to, improved sensitivity and selectivity in electrochemical sensors, enhanced mechanical and separation properties in membranes, and multifunctional coatings for optical and environmental applications. This review provides a comprehensive and up-to-date summary of recent advances (primarily from the past 3–5 years) in MOF coating techniques, including layer-by-layer assembly, in situ growth, and electrochemical deposition. This is followed by a discussion of the representative applications arising from MOF-substrate coating and an outline of key challenges and future directions in this rapidly evolving field. This article aims to serve as a focused reference point for researchers interested in both fundamental strategies and applied developments in MOF surface coatings. Full article
Show Figures

Figure 1

24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 (registering DOI) - 1 Aug 2025
Viewed by 55
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

23 pages, 458 KiB  
Article
Cross-Cultural Competence in Tourism and Hospitality: A Case Study of Quintana Roo, Mexico
by María del Pilar Arjona-Granados, Antonio Galván-Vera, José Ángel Sevilla-Morales and Martín Alfredo Legarreta-González
World 2025, 6(3), 108; https://doi.org/10.3390/world6030108 (registering DOI) - 1 Aug 2025
Viewed by 54
Abstract
Economic growth, especially in emerging economies, has altered the composition of international tourism. It is therefore essential to possess the skills necessary to understand the influence of culture on human behaviour, thereby enabling an appropriate response to the traveller. This research aims to [...] Read more.
Economic growth, especially in emerging economies, has altered the composition of international tourism. It is therefore essential to possess the skills necessary to understand the influence of culture on human behaviour, thereby enabling an appropriate response to the traveller. This research aims to develop a tool for identifying openness, flexibility, awareness, and intercultural preparedness. It focuses on the metacognitive and cognitive aspects of cultural intelligence that shape the development of empathy in customer service staff in hotels in Quintana Roo. The variables were validated and incorporated into a quantitative study using multivariate analysis and inferential statistics. A sample of 77 questionnaires was analysed using simple random sampling under a proportional design. Multiple Correspondence Analysis (MCA) was employed as a discriminatory technique to identify the most significant independent variables. These were subsequently entered as regressors into ordinal logistic regression (OLR), along with age and work experience, in order to estimate the probabilities associated with each level of the dependent variable. The results indicated that age had minimal influence on the metacognitive and cognitive variables, whereas years of experience among tourism staff exerted a significant effect. Full article
Show Figures

Figure 1

23 pages, 819 KiB  
Article
The Nexus Between Economic Growth and Water Stress in Morocco: Empirical Evidence Based on ARDL Model
by Mariam El Haddadi, Hamida Lahjouji and Mohamed Tabaa
Sustainability 2025, 17(15), 6990; https://doi.org/10.3390/su17156990 (registering DOI) - 1 Aug 2025
Viewed by 97
Abstract
Morocco is facing a situation of alarming water stress, aggravated by climate change, overexploitation of resources, and unequal distribution of water, placing the country among the most vulnerable to water scarcity in the MENA region. This study aims to investigate the dynamic relationship [...] Read more.
Morocco is facing a situation of alarming water stress, aggravated by climate change, overexploitation of resources, and unequal distribution of water, placing the country among the most vulnerable to water scarcity in the MENA region. This study aims to investigate the dynamic relationship between economic growth and water stress in Morocco while highlighting the importance of integrated water management and adaptive economic policies to enhance resilience to water scarcity. A mixed methodology, integrating both qualitative and quantitative methods, was adopted to overview the economic–environmental Moroccan context, and to empirically analyze the GDP (gross domestic product) and water stress in Morocco over the period 1975–2021 using an Autoregressive Distributed Lag (ARDL) approach. The empirical analysis is based on annual data sourced from the World Bank and FAO databases for GDP, agricultural value added, renewable internal freshwater resources, and water productivity. The results suggest that water productivity has a significant positive effect on economic growth, while the impacts of agricultural value added and renewable water resources are less significant and vary depending on the model specification. Diagnostic tests confirm the reliability of the ARDL model; however, the presence of outliers in certain years reflects the influence of exogenous shocks, such as severe droughts or policy changes, on the Moroccan economy. The key contribution of this study lies in the fact that it is the first to analyze the intrinsic link between economic growth and the environmental aspect of water in Morocco. According to our findings, it is imperative to continuously improve water productivity and adopt adaptive management, rooted in science and innovation, in order to ensure water security and support the sustainable economic development of Morocco. Full article
Show Figures

Graphical abstract

32 pages, 2261 KiB  
Article
Influence of Superplasticizers on the Diffusion-Controlled Synthesis of Gypsum Crystals
by F. Kakar, C. Pritzel, T. Kowald and M. S. Killian
Crystals 2025, 15(8), 709; https://doi.org/10.3390/cryst15080709 (registering DOI) - 31 Jul 2025
Viewed by 102
Abstract
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and [...] Read more.
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and 120P—affect nucleation, growth kinetics, morphology, and thermal behavior. The superplasticizers, selected for their surface-active properties, were hypothesized to influence crystallization via interfacial interactions. Ion diffusion was maintained quasi-steadily for 12 weeks, with crystal evolution tracked weekly by macro-photography; scanning electron microscopy and thermogravimetric/differential scanning were performed at the final stage. All admixtures delayed nucleation in a concentration-dependent manner. Lower dosages (0.5–1.0 wt%) yielded platy-to-prismatic morphologies and higher dehydration enthalpies, indicating more ordered lattice formation. In contrast, higher dosages (1.5–2.0 wt%) produced denser, irregular crystals and shifted dehydration to lower temperatures, suggesting structural defects or increased hydration. Among the additives, 120P showed the strongest inhibitory effect, while 111P at 0.5 wt% resulted in the most uniform crystals. These results demonstrate that ViscoCrete® superplasticizers can modulate gypsum crystallization and thermal properties. Full article
(This article belongs to the Section Macromolecular Crystals)
12 pages, 1010 KiB  
Article
Effects of Yeast on the Growth and Development of Drosophila melanogaster and Pardosa pseudoannulata (Araneae: Lycsidae) Through the Food Chain
by Yaqi Peng, Rui Liu, Wei Li, Yao Zhao and Yu Peng
Insects 2025, 16(8), 795; https://doi.org/10.3390/insects16080795 (registering DOI) - 31 Jul 2025
Viewed by 102
Abstract
Pardosa pseudoannulata plays an important role in the biological control of insect pests. The inclusion of yeast in the culture medium is very important for the growth, development, and reproduction of Drosophila melanogaster, but there have been few studies on the influence [...] Read more.
Pardosa pseudoannulata plays an important role in the biological control of insect pests. The inclusion of yeast in the culture medium is very important for the growth, development, and reproduction of Drosophila melanogaster, but there have been few studies on the influence of nutrients in the culture medium on spider development. In order to explore the effects of different yeast treatments on the growth and development of D. melanogaster and as a predator, P.  pseudoannulata, three treatments (no yeast, active yeast added, and inactivated yeast added) were adopted to modify the conventional D. melanogaster culture medium. The addition of yeast to the medium shortened the development time from larva to pupation in D. melanogaster. The emergence and larval developmental times of D. melanogaster reared with activated yeast were shorter than those of the group without yeast addition, which promoted D. melanogaster emergence and increased body weight. The addition of yeast to the medium increased the fat, protein, and glucose content in D. melanogaster. The addition of activated yeast shortened the developmental time of P.  pseudoannulata at the second instar stage but had no effect on other instars. Different yeast treat-ments in the medium had no effect on the body length or body weight of P.  pseudoannulata. Adding yeast to D. melanogaster culture medium can increase the total fat content in P.  pseudoannulata, but it has no effect on glucose and total protein in P.  pseudoannulata. Our study shows the importance of yeast to the growth and development of fruit flies. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

22 pages, 2591 KiB  
Article
Could Hydroinfiltrators Made with Biochar Modify the Soil Microbiome? A Strategy of Soil Nature-Based Solution for Smart Agriculture
by Azahara Navarro, Ana del Moral, Gabriel Delgado, Jesús Párraga, José Ángel Rufián, Raúl Rojano and Juan Manuel Martín-García
Appl. Sci. 2025, 15(15), 8503; https://doi.org/10.3390/app15158503 (registering DOI) - 31 Jul 2025
Viewed by 175
Abstract
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged [...] Read more.
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged as a promising agricultural amendment, as it helps to optimise moisture retention and improve soil structure, key aspects for boosting crop yields. There is growing interest in microorganisms’ plant-growth-promoting activity (PGP) by carrying out different activities considered growth promoters. The aim of the present study is to evaluate the use of a biochar hydroinfiltrator as a promoter of microbial activity when it is used in soil. Metagenomic analysis of soils with and without the device reveals that genera Bacillus and Sphingomonas became particularly enriched in soils with hydroinfiltrators. Also, in order to understand the interaction between the uses of biochar together with bacteria PGP, an in vitro test was carried out. Two microorganisms, previously selected for their characteristics as plant growth promoters, were inoculated in soils with and without biochar and they grew better after 15 to 30 days of inoculation, showing major CFU counts. This combined strategy—biochar hydroinfiltrator and PGP bacteria—offers an innovative, eco-friendly approach to sustainable agriculture, particularly under drought stress. Full article
Show Figures

Figure 1

16 pages, 2902 KiB  
Article
Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag
by Liangjin Zhang, Zihao Yang, Yuzhu Zhang, Bao Liu and Shuang Cai
Sustainability 2025, 17(15), 6979; https://doi.org/10.3390/su17156979 (registering DOI) - 31 Jul 2025
Viewed by 198
Abstract
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer [...] Read more.
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer remains a topic of significant debate, however. In this work, pakchoi (Brassica chinensis L.) was planted in CAS-fertilized soil to investigate the accumulation and migration behavior of heavy metals in the soil–plant system and perform an associated risk assessment. Our results demonstrated that CAS addition increases Ca, Si, and Cr concentrations but decreases Mg and Fe concentrations in soil leachates. Low rates (0.25–1%) of CAS fertilization facilitate the growth of pakchoi, resulting in the absence of soil contamination and posing no threat to human health. At the optimal slag addition rate of 0.25%, the pakchoi leaf biomass, stem biomass, leaf area, and seedling height increased by 34.2%, 17.2%, 26.3%, and 8.7%, respectively. The accumulation of heavy metals results in diverging characteristics in pakchoi. Cr primarily accumulates in the roots; in comparison, Pb, Cd, Ni, and Hg preferentially accumulate in the leaves. The migration rate of the investigated heavy metals from the soil to pakchoi follows the order of Cr > Cd > Hg > Ni > Pb; in comparison, that from the roots to the leaves follows the order Cd > Ni > Hg > Cr > Pb. Appropriate utilization of CAS as a mineral fertilizer can aid in improving pakchoi yield, achieving sustainable economic benefits, and preventing environmental pollution. Full article
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Study on the Distribution and Quantification Characteristics of Soil Nutrients in the Dryland Albic Soils of the Sanjiang Plain, China
by Jingyang Li, Huanhuan Li, Qiuju Wang, Yiang Wang, Xu Hong and Chunwei Zhou
Agronomy 2025, 15(8), 1857; https://doi.org/10.3390/agronomy15081857 - 31 Jul 2025
Viewed by 137
Abstract
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination [...] Read more.
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination of paired t-test, geostatistics, correlation analysis, and principal component analysis to systematically reveal the spatial differentiation of soil nutrients in the black soil layer and white clay layer of dryland albic soil, and to clarify the impact mechanism of plow layer nutrient characteristics on crop productivity. The results show that the nutrient content order in both the black and white clay layers is consistent: total potassium (TK) > organic matter (OM) > total nitrogen (TN) > total phosphorus (TP) > alkali-hydrolyzable nitrogen (HN) > available potassium (AK) > available phosphorus (AP). Both layers exhibit a spatial pattern of overall consistency and local differentiation, with spatial heterogeneity dominated by altitude gradients—nutrient content increases with decreasing altitude. Significant differences exist in nutrient content and distribution between the black and white clay layers, with the comprehensive fertility of the black layer being significantly higher than that of the white clay layer, particularly for TN, TP, TK, HN, and OM contents (effect size > 8). NDVI during the full maize growth period is significantly positively correlated with TP, TN, AK, AP, and HN, and the NDVI dynamics (first increasing. then decreasing) closely align with the peak periods of available nitrogen/phosphorus and crop growth cycles, indicating a strong coupling relationship between vegetation biomass accumulation and nutrient availability. These findings provide important references for guiding rational fertilization, agricultural production layout, and ecological environmental protection, contributing to the sustainable utilization of dryland albic soil resources and sustainable agricultural development. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 2360 KiB  
Article
Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle
by Matiara S. C. Amaral, Marcella A. da Silva, Giovanna da S. Cidade, Diêgo N. Faria, Daniel F. Cipriano, Jair C. C. Freitas, Fabiana Soares dos Santos, Mendelssolm K. Pietre and André M. dos Santos
Processes 2025, 13(8), 2426; https://doi.org/10.3390/pr13082426 - 31 Jul 2025
Viewed by 198
Abstract
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial [...] Read more.
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial zeolite due to higher Al content and larger specific surface area, promoting better accessibility to active adsorption sites of the adsorbents. Synthetic FAU-type and BEA-type zeolites achieved a maximum adsorption capacity of 28.87 and 12.62 mg·g−1, respectively, outperforming commercial BEA-type zeolite (6.50 mg·g−1). Adsorption assays, associated with kinetic studies and adsorption isotherms, were better fitted using the pseudo-second order model and the Langmuir model, respectively, suggesting that chemisorption, involving ion exchange, and monolayer formation at the zeolite surface, was the main mechanism involved in the NH4+ adsorption process. After ammonium adsorption, the NH4+-loaded zeolite samples were used to stimulate the growth of tomato seedlings; the results revealed a change in the biomass production for seedlings grown in vitro, especially when the BEA_C_NH4 sample was employed, leading to a 15% increase in the fresh mass in comparison with the control sample. In contrast, the excess of ammonium adsorbed over the BEA_S_NH4 and FAU_NH4 samples probably caused a toxic effect on seedling growth. The elemental analysis results supported the hypothesis that the presence of NH4+-loaded zeolite into the culture medium was important for the release of nitrogen. The obtained results show then that the investigated zeolites are promising both as efficient adsorbents to mitigate the environmental impact of ammonium-contaminated water bodies and as nitrogen-rich fertilizers. Full article
(This article belongs to the Special Issue Novel Applications of Zeolites in Adsorption Processes)
Show Figures

Figure 1

26 pages, 9475 KiB  
Article
Microalgae-Derived Vesicles: Natural Nanocarriers of Exogenous and Endogenous Proteins
by Luiza Garaeva, Eugene Tolstyko, Elena Putevich, Yury Kil, Anastasiia Spitsyna, Svetlana Emelianova, Anastasia Solianik, Eugeny Yastremsky, Yuri Garmay, Elena Komarova, Elena Varfolomeeva, Anton Ershov, Irina Sizova, Evgeny Pichkur, Ilya A. Vinnikov, Varvara Kvanchiani, Alina Kilasoniya Marfina, Andrey L. Konevega and Tatiana Shtam
Plants 2025, 14(15), 2354; https://doi.org/10.3390/plants14152354 - 31 Jul 2025
Viewed by 243
Abstract
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs [...] Read more.
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs for biomedical applications. In this study, the extracellular vesicles isolated from the culture medium of two unicellular microalgae, Chlamydomonas reinhardtii (Chlamy-EVs) and Parachlorella kessleri (Chlore-EVs), were characterized by atomic force microscopy (AFM), cryo-electronic microscopy (cryo-EM), and nanoparticle tracking analysis (NTA). The biocompatibility with human cells in vitro (HEK-293T, DF-2 and A172) and biodistribution in mouse organs and tissues in vivo were tested for both microalgal EVs. An exogenous therapeutic protein, human heat shock protein 70 (HSP70), was successfully loaded to Chlamy- and Chlore-EVs, and its efficient delivery to human glioma and colon carcinoma cell lines has been confirmed. Additionally, in order to search for potential therapeutic biomolecules within the EVs, their proteomes have been characterized. A total of 105 proteins were identified for Chlamy-EVs and 33 for Chlore-EVs. The presence of superoxide dismutase and catalase in the Chlamy-EV constituents allows for considering them as antioxidant agents. The effective delivery of exogenous cargo to human cells and the possibility of the particle yield optimization by varying the microalgae growth conditions make them favorable producers of EVs for biotechnology and biomedical application. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

13 pages, 414 KiB  
Essay
Zhuangzi’s De 德 and Transcendence: The Temporal Order of “Ten Suns Rose in the Sky at Once” in the Qiwu lun 齊物論
by Yuqi Lv and Gongyu Chen
Religions 2025, 16(8), 995; https://doi.org/10.3390/rel16080995 (registering DOI) - 30 Jul 2025
Viewed by 226
Abstract
The phrase shiri bing chu 十日並出 (ten suns rose in the sky at once) from the Qiwu lun 齊物論 can also be interpreted as shiri dai chu 十日代出 (ten suns alternately appearing). Here, “ten suns rose in the sky at once” is not [...] Read more.
The phrase shiri bing chu 十日並出 (ten suns rose in the sky at once) from the Qiwu lun 齊物論 can also be interpreted as shiri dai chu 十日代出 (ten suns alternately appearing). Here, “ten suns rose in the sky at once” is not merely a spatial concept but also a temporal one. Thus, the concept of De 德 (virtue), connected to the idea of “ten suns shining together,” is a transcendent force with its own inner sense of time. It acts as the foundation for all things to exist and grow continuously. Under the endless cycle of day and night and the nourishing power of tiande 天德 (heavenly virtue), everything flourishes according to its true nature. Here, De combines two aspects: mingde 明德 (luminous virtue) and xuande 玄德 (inconspicuous virtue). “luminous virtue” focuses on order and building, highlighting the uniqueness within human growth. “inconspicuous virtue” emphasizes harmony and equalizing with all things, revealing our shared connection with the world. These two concepts are not opposites. The highest goal of luminous virtue lies in mysterious virtue, which itself contains the roots of luminous virtue. Both work together to reflect the natural flow of the Dao 道 (the Way), thus demonstrating that Zhuangzi’s philosophy is not merely about criticism or deconstruction—it has a deeply constructive side. Virtue transcends both individuality and universality. Human nature holds both virtues. By balancing the order of growth and equalizing with all things, we can harmonize our uniqueness with our shared bonds, revealing our true value in both action and spirit. Full article
10 pages, 1727 KiB  
Article
Chemical–Mechanical Super-Polishing of Al2O3 (0001) Wafer for Epitaxial Purposes
by Chih-Hao Lee and Chih-Hong Lee
Crystals 2025, 15(8), 694; https://doi.org/10.3390/cryst15080694 - 30 Jul 2025
Viewed by 174
Abstract
A super-polishing procedure was performed on the Al2O3 (0001) surface for epitaxial purposes. The roughness of the final polished surface was measured to be 0.16 nm using atomic force microscopy and X-ray reflectivity techniques. After heat treatment at 130 °C, [...] Read more.
A super-polishing procedure was performed on the Al2O3 (0001) surface for epitaxial purposes. The roughness of the final polished surface was measured to be 0.16 nm using atomic force microscopy and X-ray reflectivity techniques. After heat treatment at 130 °C, results from low-energy electron diffraction and Auger energy spectroscopy indicated that the top surface was well ordered and clean, rendering it suitable for epitaxial growth. The successful growth of a GaN thin film on an Al2O3 (0001) substrate was confirmed by the hk-circle scan in XRD and the presence of a sharp peak in the rocking curve of the GaN (0002) Bragg peak. These findings indicate that the top surface of the substrate is conducive to epitaxial growth. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 618 KiB  
Review
Management of Neonates in the Special Care Nursery and Its Impact on the Developing Gut Microbiota: A Comprehensive Clinical Review
by Ravisha Srinivasjois, Shripada Rao and Gavin Pereira
Microorganisms 2025, 13(8), 1772; https://doi.org/10.3390/microorganisms13081772 - 29 Jul 2025
Viewed by 337
Abstract
The first few days following the birth are a vulnerable time for the neonate. Sick infants experience various interventions during their stay in the neonatal unit in order to stay alive and grow. Acquisition of gut microbes is critical for the short- and [...] Read more.
The first few days following the birth are a vulnerable time for the neonate. Sick infants experience various interventions during their stay in the neonatal unit in order to stay alive and grow. Acquisition of gut microbes is critical for the short- and long-term health of the neonate. At a time when the gut microbiome is starting to take shape, crucial interventions directed at improving the growth, development and survival of the neonate impact its development. Events prior to and after the birth of the neonate, such as maternal conditions, antibiotic exposure, type of feeds, supplemental probiotics, and neonatal intensive care environment, contribute significantly to shaping the gut microbiome over the first few weeks and maintain its healthy balance crucial for long-term health. In this comprehensive review, we address common interventions the neonate is exposed to in its journey and their impact on gut microbiome, and discuss various interventions that minimize the dysbiosis of the gut. Full article
(This article belongs to the Collection Feature Papers in Gut Microbiota Research)
Show Figures

Figure 1

21 pages, 362 KiB  
Article
Impact of Digital Transformation on Sustainable Development of Port Performance: Evidence from Tangshan Port
by Yuanxu Li, Xin Tian, Zhaoxu Lu and Junfeng Wu
Sustainability 2025, 17(15), 6902; https://doi.org/10.3390/su17156902 (registering DOI) - 29 Jul 2025
Viewed by 203
Abstract
Although the importance of digital transformation in contemporary port development has been widely acknowledged, there is little empirical research on the extent to which it promotes sustainable development by reducing costs and increasing efficiency. This study takes the digital transformation of one of [...] Read more.
Although the importance of digital transformation in contemporary port development has been widely acknowledged, there is little empirical research on the extent to which it promotes sustainable development by reducing costs and increasing efficiency. This study takes the digital transformation of one of the largest ports in northern China—Tangshan Port—as an example, as the application of digital technologies has greatly improved its operational efficiency. By using cargo throughput and container throughput data from Tangshan Port as the experimental group and from Qinhuangdao Port as the control group, difference-in-differences regression models with monthly data and port fixed effects were adopted to clarify the impact of digital transformation on sustainability for different types of cargo throughput, as well as the differential effects of policy impact on port production efficiency and economic performance in the short and long term, in order to examine the impact of digitalization on port operation performance. Our findings demonstrate that digital transformation has a significant positive impact on both port cargo and container throughput, with the long-term effect surpassing the short-term effect. Additionally, regional economic level positively moderates policy impact. These findings provide critical evidence that ports can balance economic growth and environmental sustainability within sustainable development frameworks. Full article
Show Figures

Figure 1

Back to TopTop