Management of Neonates in the Special Care Nursery and Its Impact on the Developing Gut Microbiota: A Comprehensive Clinical Review
Abstract
1. Background
2. Mode of Delivery and Gut Microbiota
3. Antibiotic Exposure in the Neonatal Age Group (0–28 Days)
4. Risk-Based Approach for Starting Antibiotics
5. Skin-to-Skin Care
6. Probiotic and Prebiotic Supplementation
7. Neonatal-Feeding Practices
8. Vaginal Seeding
9. Neonatal Nursery Environment
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Turunen, J.; Tejesvi, M.V.; Paalanne, N.; Pokka, T.; Amatya, S.B.; Mishra, S.; Kaisanlahti, A.; Reunanen, J.; Tapiainen, T. Investigating prenatal and perinatal factors on meconium microbiota: A systematic review and cohort study. Pediatr. Res. 2024, 95, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Nuriel-Ohayon, M.; Neuman, H.; Koren, O. Microbial Changes during Pregnancy, Birth, and Infancy. Front. Microbiol. 2016, 7, 1031. [Google Scholar] [CrossRef]
- Aguilar-Lopez, M.; Dinsmoor, A.M.; Ho, T.T.B.; Donovan, S.M. A systematic review of the factors influencing microbial colonization of the preterm infant gut. Gut Microbes 2021, 13, 1–33. [Google Scholar] [CrossRef]
- Miko, E.; Csaszar, A.; Bodis, J.; Kovacs, K. The Maternal-Fetal Gut Microbiota Axis: Physiological Changes, Dietary Influence, and Modulation Possibilities. Life 2022, 12, 424. [Google Scholar] [CrossRef]
- Stewart, C.J.; Ajami, N.J.; O’Brien, J.L.; Hutchinson, D.S.; Smith, D.P.; Wong, M.C.; Ross, M.C.; Lloyd, R.E.; Doddapaneni, H.; Metcalf, G.A. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018, 562, 583–588. [Google Scholar] [CrossRef]
- Underwood, M.A.; Mukhopadhyay, S.; Lakshminrusimha, S.; Bevins, C.L. Neonatal intestinal dysbiosis. J. Perinatol. 2020, 40, 1597–1608. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Arnoux, J.; O’Toole, P.W. Metagenomic analysis reveals distinct patterns of gut lactobacillus prevalence, abundance, and geographical variation in health and disease. Gut Microbes 2020, 12, 1822729. [Google Scholar] [CrossRef]
- Sharif, S.; Meader, N.; Oddie, S.J.; Rojas-Reyes, M.X.; McGuire, W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst. Rev. 2023, 7, CD005496. [Google Scholar] [CrossRef]
- Campbell, C.; Kandalgaonkar, M.R.; Golonka, R.M.; Yeoh, B.S.; Vijay-Kumar, M.; Saha, P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Romano-Keeler, J.; Sun, J. The First 1000 Days: Assembly of the Neonatal Microbiome and Its Impact on Health Outcomes. Newborn 2022, 1, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.; Lui, K.; Day, A.S.; Leach, S.T. Manipulating the neonatal gut microbiome: Current understanding and future perspectives. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef]
- Lassi, Z.S.; Middleton, P.F.; Crowther, C.; Bhutta, Z.A. Interventions to Improve Neonatal Health and Later Survival: An Overview of Systematic Reviews. eBioMedicine 2015, 2, 985–1000. [Google Scholar] [CrossRef]
- Hajji Adam, A.; Daba, M. Preventing maternal and child mortality: Upcoming WHO Resolution must galvanise action to tackle the unacceptable weight of preventable deaths. Lancet Glob. Health 2024, 12, e1223–e1224. [Google Scholar] [CrossRef]
- Sarkar, A.; Yoo, J.Y.; Valeria Ozorio Dutra, S.; Morgan, K.H.; Groer, M. The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J. Clin. Med. 2021, 10, 459. [Google Scholar] [CrossRef]
- Dinan, T.G.; Cryan, J.F. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol. 2017, 595, 489–503. [Google Scholar] [CrossRef]
- Pivrncova, E.; Buresova, L.; Kotaskova, I.; Videnska, P.; Andryskova, L.; Piler, P.; Janku, P.; Borek, I.; Bohm, J.; Klanova, J.; et al. Impact of intrapartum antibiotic prophylaxis on the oral and fecal bacteriomes of children in the first week of life. Sci. Rep. 2024, 14, 18163. [Google Scholar] [CrossRef]
- Mulinge, M.M.; Mwanza, S.S.; Kabahweza, H.M.; Wamalwa, D.C.; Nduati, R.W. The impact of neonatal intensive care unit antibiotics on gut bacterial microbiota of preterm infants: A systematic review. Front. Microbiomes 2023, 2, 1180565. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.M.; Latini, G.; Ferrante, L.; de Ruvo, E.; Campanelli, M.; Longo, M.; Palermo, A.; Inchingolo, A.D.; Dipalma, G. Difference in the Intestinal Microbiota between Breastfeed Infants and Infants Fed with Artificial Milk: A Systematic Review. Pathogens 2024, 13, 533. [Google Scholar] [CrossRef]
- Chen, J.; van Wesemael, A.J.; Denswil, N.P.; Niemarkt, H.J.; van Goudoever, J.B.; Muncan, V.; de Meij, T.G.J.; van den Akker, C.H.P. Impact of mother’s own milk vs. donor human milk on gut microbiota colonization in preterm infants: A systematic review. Microbiome Res. Rep. 2024, 4, 8. [Google Scholar] [CrossRef]
- Kebbe, M.; Leung, K.; Perrett, B.; Reimer, R.A.; Adamo, K.; Redman, L.M. Effects of Infant Formula Supplemented With Prebiotics on the Gut Microbiome, Gut Environment, Growth Parameters, and Safety and Tolerance: A Systematic Review and Meta-Analysis. Nutr. Rev. 2025, 83, 422–447. [Google Scholar] [CrossRef] [PubMed]
- Vievermanns, K.; Dierikx, T.H.; Oldenburger, N.J.; Jamaludin, F.S.; Niemarkt, H.J.; de Meij, T.G.J. Effect of probiotic supplementation on the gut microbiota in very preterm infants: A systematic review. Arch. Dis. Child. Fetal Neonatal Ed. 2024, 110, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Hartz, L.E.; Bradshaw, W.; Brandon, D.H. Potential NICU Environmental Influences on the Neonate’s Microbiome: A Systematic Review. Adv. Neonatal Care 2015, 15, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Rutayisire, E.; Huang, K.; Liu, Y.; Tao, F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterol. 2016, 16, 86. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.D.; Palumbo, I.; Trilli, I.; Guglielmo, M.; Mancini, A.; Palermo, A.; Inchingolo, A.M.; Dipalma, G. The Impact of Cesarean Section Delivery on Intestinal Microbiota: Mechanisms, Consequences, and Perspectives-A Systematic Review. Int. J. Mol. Sci. 2024, 25, 1055. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Cano-Ibáñez, N.; Pinto-Gallardo, M.; Amezcua-Prieto, C. The Impact of Probiotics, Prebiotics, and Synbiotics during Pregnancy or Lactation on the Intestinal Microbiota of Children Born by Cesarean Section: A Systematic Review. Nutrients 2022, 14, 341. [Google Scholar] [CrossRef]
- Neu, J.; Rushing, J. Cesarean versus vaginal delivery: Long-term infant outcomes and the hygiene hypothesis. Clin. Perinatol. 2011, 38, 321–331. [Google Scholar] [CrossRef]
- Shao, Y.; Forster, S.C.; Tsaliki, E.; Vervier, K.; Strang, A.; Simpson, N.; Kumar, N.; Stares, M.D.; Rodger, A.; Brocklehurst, P.; et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019, 574, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Chung, J.; Battaglia, T.; Henderson, N.; Jay, M.; Li, H.; Lieber, A.D.; Wu, F.; Perez-Perez, G.I.; Chen, Y.; et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 2016, 8, 343ra82. [Google Scholar] [CrossRef] [PubMed]
- Yassour, M.; Vatanen, T.; Siljander, H.; Hämäläinen, A.M.; Härkönen, T.; Ryhänen, S.J.; Franzosa, E.A.; Vlamakis, H.; Huttenhower, C.; Gevers, D.; et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 2016, 8, 343ra81. [Google Scholar] [CrossRef] [PubMed]
- Verani, J.R.; McGee, L.; Schrag, S.J. Prevention of perinatal group B streptococcal disease--revised guidelines from CDC, 2010. MMWR Recomm. Rep. 2010, 59, 1–36. [Google Scholar]
- Hasperhoven, G.F.; Al-Nasiry, S.; Bekker, V.; Villamor, E.; Kramer, B. Universal screening versus risk-based protocols for antibiotic prophylaxis during childbirth to prevent early-onset group B streptococcal disease: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 680–691. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Effect of intrapartum antibiotics on the intestinal microbiota of infants: A systematic review. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 201–208. [Google Scholar] [CrossRef]
- Combellick, J.L.; Shin, H.; Shin, D.; Cai, Y.; Hagan, H.; Lacher, C.; Lin, D.L.; McCauley, K.; Lynch, S.V.; Dominguez-Bello, M.G. Differences in the fecal microbiota of neonates born at home or in the hospital. Sci. Rep. 2018, 8, 15660. [Google Scholar] [CrossRef]
- Weiner, G.M.; Barks, J.D.; Wright, E.J.; Faix, R.G. Improving the timing of antibiotic administration to high-risk newborns. J. Perinatol. 1998, 18, 230–233. [Google Scholar]
- Celik, I.H.; Hanna, M.; Canpolat, F.E.; Mohan, P. Diagnosis of neonatal sepsis: The past, present and future. Pediatr. Res. 2022, 91, 337–350. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Sengupta, S.; Puopolo, K.M. Challenges and opportunities for antibiotic stewardship among preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F327–F332. [Google Scholar] [CrossRef]
- Ray, S.; Sundaram, V.; Dutta, S.; Kumar, P. Ensuring administration of first dose of antibiotics within the golden hour of management in neonates with sepsis. BMJ Open Qual. 2021, 10, e001365. [Google Scholar] [CrossRef]
- Wortham, J.M.; Hansen, N.I.; Schrag, S.J.; Hale, E.; Van Meurs, K.; Sánchez, P.J.; Cantey, J.B.; Faix, R.; Poindexter, B.; Goldberg, R.; et al. Chorioamnionitis and Culture-Confirmed, Early-Onset Neonatal Infections. Pediatrics 2016, 137, e20152323. [Google Scholar] [CrossRef]
- Espinosa, K.; Brown, S.R. Neonatal Early-Onset Sepsis Calculator. Am. Fam. Physician 2021, 104, 636–637. [Google Scholar]
- Zwittink, R.D.; Renes, I.B.; van Lingen, R.A.; van Zoeren-Grobben, D.; Konstanti, P.; Norbruis, O.F.; Martin, R.; Groot Jebbink, L.J.M.; Knol, J.; Belzer, C. Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 475–483. [Google Scholar] [CrossRef]
- Rooney, A.M.; Timberlake, K.; Brown, K.A.; Bansal, S.; Tomlinson, C.; Lee, K.-S.; Science, M.; Coburn, B. Each Additional Day of Antibiotics Is Associated With Lower Gut Anaerobes in Neonatal Intensive Care Unit Patients. Clin. Infect. Dis. 2019, 70, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Conde-Agudelo, A.; Diaz-Rossello, J.L. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database Syst. Rev. 2016, 2016, CD002771. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, V.; Devadas, S.; Shah, P.A.; Diggikar, S. Impact of Kangaroo Mother Care on Skin Microbiome of Very Preterm Infants—A Pilot Study. Indian. J. Pediatr. 2024, 91, 229–234. [Google Scholar] [CrossRef]
- Eckermann, H.A.; Meijer, J.; Cooijmans, K.; Lahti, L.; de Weerth, C. Daily skin-to-skin contact alters microbiota development in healthy full-term infants. Gut Microbes 2024, 16, 2295403. [Google Scholar] [CrossRef]
- Hendricks-Munoz, K.D.; Xu, J.; Parikh, H.I.; Xu, P.; Fettweis, J.M.; Kim, Y.; Louie, M.; Buck, G.A.; Thacker, L.R.; Sheth, N.U. Skin-to-Skin Care and the Development of the Preterm Infant Oral Microbiome. Am. J. Perinatol. 2015, 32, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Lamy Filho, F.; de Sousa, S.H.; Freitas, I.J.; Lamy, Z.C.; Simoes, V.M.; da Silva, A.A.; Barbieri, M.A. Effect of maternal skin-to-skin contact on decolonization of Methicillin-Oxacillin-Resistant Staphylococcus in neonatal intensive care units: A randomized controlled trial. BMC Pregnancy Childbirth 2015, 15, 63. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Reid, G.; Sanders, M.E.; Gaskins, H.R.; Gibson, G.R.; Mercenier, A.; Rastall, R.; Roberfroid, M.; Rowland, I.; Cherbut, C.; Klaenhammer, T.R. New scientific paradigms for probiotics and prebiotics. J. Clin. Gastroenterol. 2003, 37, 105–118. [Google Scholar] [CrossRef]
- Deshpande, G.; Rao, S.; Patole, S. Probiotics for prevention of necrotising enterocolitis in preterm neonates with very low birthweight: A systematic review of randomised controlled trials. Lancet 2007, 369, 1614–1620. [Google Scholar] [CrossRef]
- Rath, C.P.; Athalye-Jape, G.; Nathan, E.; Doherty, D.; Rao, S.; Patole, S. Benefits of routine probiotic supplementation in preterm infants. Acta Paediatr. 2023, 112, 2352–2358. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Hickey, L.; Donath, S.; Opie, G.F.; Anderson, P.J.; Garland, S.M.; Cheong, J.L.Y. Probiotics, prematurity and neurodevelopment: Follow-up of a randomised trial. BMJ Paediatr. Open 2017, 1, e000176. [Google Scholar] [CrossRef]
- Cripps, E.K.; Dargaville, P.A.; De Paoli, A.G. Impact of probiotic administration on the incidence of necrotising enterocolitis: A single-centre cohort study. J. Paediatr. Child. Health 2023, 59, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Sant’Anna, A. Using probiotics in paediatric populations. Paediatr. Child. Health 2022, 27, 482–502. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, B.N.; Ting, J.; Lee, S.; Lemyre, B.; Wong, J.; Afifi, J.; Beltempo, M.; Shah, P.S. Effectiveness and Risks of Probiotics in Preterm Infants. Pediatrics 2025, 155, e2024069102. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, G.C.; Rao, S.C.; Keil, A.D.; Patole, S.K. Evidence-based guidelines for use of probiotics in preterm neonates. BMC Med. 2011, 9, 92. [Google Scholar] [CrossRef]
- Panchal, H.; Athalye-Jape, G.; Rao, S.; Patole, S. Growth and neuro-developmental outcomes of probiotic supplemented preterm infants—A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2023, 77, 855–871. [Google Scholar] [CrossRef]
- Endo, A.; Pärtty, A.; Kalliomäki, M.; Isolauri, E.; Salminen, S. Long-term monitoring of the human intestinal microbiota from the 2nd week to 13 years of age. Anaerobe 2014, 28, 149–156. [Google Scholar] [CrossRef]
- Thomas, D.W.; Greer, F.R.; Committee on Nutrition; Section on Gastroenterology, Hepatology, and Nutrition. Probiotics and Prebiotics in Pediatrics. Pediatrics 2010, 126, 1217–1231. [Google Scholar] [CrossRef]
- He, P.; Yu, L.; Tian, F.; Chen, W.; Zhang, H.; Zhai, Q. Effects of Probiotics on Preterm Infant Gut Microbiota Across Populations: A Systematic Review and Meta-Analysis. Adv. Nutr. 2024, 15, 100233. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010, 104 (Suppl. S2), S1–S63. [Google Scholar] [CrossRef]
- Srinivasjois, R.; Rao, S.; Patole, S. Prebiotic supplementation of formula in preterm neonates: A systematic review and meta-analysis of randomised controlled trials. Clin. Nutr. 2009, 28, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Lyons, K.E.; Shea, C.-A.O.; Grimaud, G.; Ryan, C.A.; Dempsey, E.; Kelly, A.L.; Ross, R.P.; Stanton, C. The human milk microbiome aligns with lactation stage and not birth mode. Sci. Rep. 2022, 12, 5598. [Google Scholar] [CrossRef] [PubMed]
- Gungor, D.; Nadaud, P.; Dreibelbis, C.; LaPergola, C.C.; Wong, Y.P.; Terry, N.; Abrams, S.A.; Beker, L.; Jacobovits, T.; Jarvinen, K.M.; et al. Infant milk-feeding practices and diagnosed celiac disease and inflammatory bowel disease in offspring: A systematic review. Am. J. Clin. Nutr. 2019, 109, 838S–851S. [Google Scholar] [CrossRef]
- Parra-Llorca, A.; Gormaz, M.; Alcántara, C.; Cernada, M.; Nuñez-Ramiro, A.; Vento, M.; Collado, M.C. Preterm Gut Microbiome Depending on Feeding Type: Significance of Donor Human Milk. Front. Microbiol. 2018, 9, 1376. [Google Scholar] [CrossRef]
- Piñeiro-Ramos, J.D.; Parra-Llorca, A.; Ten-Doménech, I.; Gormaz, M.; Ramón-Beltrán, A.; Cernada, M.; Quintás, G.; Collado, M.C.; Kuligowski, J.; Vento, M. Effect of donor human milk on host-gut microbiota and metabolic interactions in preterm infants. Clin. Nutr. 2021, 40, 1296–1309. [Google Scholar] [CrossRef]
- Cartagena, D.; Penny, F.; McGrath, J.M.; Reyna, B.; Parker, L.A.; McInnis, J. Differences in Neonatal Outcomes Among Premature Infants Exposed to Mother’s Own Milk Versus Donor Human Milk. Adv. Neonatal Care 2022, 22, 539–549. [Google Scholar] [CrossRef]
- Stinson, L.F.; Ma, J.; Lai, C.T.; Rea, A.; Perrella, S.L.; Geddes, D.T. Milk microbiome transplantation: Recolonizing donor milk with mother’s own milk microbiota. Appl. Microbiol. Biotechnol. 2024, 108, 74. [Google Scholar] [CrossRef]
- Arslanoglu, S.; Boquien, C.Y.; King, C.; Lamireau, D.; Tonetto, P.; Barnett, D.; Bertino, E.; Gaya, A.; Gebauer, C.; Grovslien, A.; et al. Fortification of Human Milk for Preterm Infants: Update and Recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front. Pediatr. 2019, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Karamantziani, T.; Pouliakis, A.; Xanthos, T.; Ekmektzoglou, K.; Paliatsiou, S.; Sokou, R.; Iacovidou, N. The Effect of Oral Iron Supplementation/Fortification on the Gut Microbiota in Infancy: A Systematic Review and Meta-Analysis. Children 2024, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Hourigan, S.K.; Dominguez-Bello, M.G. Microbial seeding in early life. Cell Host Microbe 2023, 31, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Bello, M.G.; De Jesus-Laboy, K.M.; Shen, N.; Cox, L.M.; Amir, A.; Gonzalez, A.; Bokulich, N.A.; Song, S.J.; Hoashi, M.; Rivera-Vinas, J.I.; et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 2016, 22, 250–253. [Google Scholar] [CrossRef]
- Wilson, B.C.; Butler, É.M.; Grigg, C.P.; Derraik, J.G.B.; Chiavaroli, V.; Walker, N.; Thampi, S.; Creagh, C.; Reynolds, A.J.; Vatanen, T.; et al. Oral administration of maternal vaginal microbes at birth to restore gut microbiome development in infants born by caesarean section: A pilot randomised placebo-controlled trial. eBioMedicine 2021, 69, 103443. [Google Scholar] [CrossRef]
- Zhou, L.; Qiu, W.; Wang, J.; Zhao, A.; Zhou, C.; Sun, T.; Xiong, Z.; Cao, P.; Shen, W.; Chen, J.; et al. Effects of vaginal microbiota transfer on the neurodevelopment and microbiome of cesarean-born infants: A blinded randomized controlled trial. Cell Host Microbe 2023, 31, 1232–1247.e5. [Google Scholar] [CrossRef]
- Wang, X.; Cui, H.; Li, N.; Liu, B.; Zhang, X.; Yang, J.; Zheng, J.S.; Qiao, C.; Liu, H.X.; Hu, J.; et al. Impact of vaginal seeding on the gut microbiome of infants born via cesarean section: A systematic review. J. Infect. 2024, 89, 106348. [Google Scholar] [CrossRef]
- Committee on Obstetric Practice. Committee Opinion No. 725: Vaginal Seeding. Obstet. Gynecol. 2017, 130, e274–e278. [Google Scholar] [CrossRef]
- Brooks, B.; Olm, M.R.; Firek, B.A.; Baker, R.; Geller-McGrath, D.; Reimer, S.R.; Soenjoyo, K.R.; Yip, J.S.; Dahan, D.; Thomas, B.C.; et al. The developing premature infant gut microbiome is a major factor shaping the microbiome of neonatal intensive care unit rooms. Microbiome 2018, 6, 112. [Google Scholar] [CrossRef]
- Ferraris, L.; Butel, M.J.; Campeotto, F.; Vodovar, M.; Rozé, J.C.; Aires, J. Clostridia in premature neonates’ gut: Incidence, antibiotic susceptibility, and perinatal determinants influencing colonization. PLoS ONE 2012, 7, e30594. [Google Scholar] [CrossRef]
- Ferraris, L.; Couturier, J.; Eckert, C.; Delannoy, J.; Barbut, F.; Butel, M.J.; Aires, J. Carriage and colonization of C. difficile in preterm neonates: A longitudinal prospective study. PLoS ONE 2019, 14, e0212568. [Google Scholar] [CrossRef] [PubMed]
- de Goffau, M.C.; Bergman, K.A.; de Vries, H.J.; Meessen, N.E.; Degener, J.E.; van Dijl, J.M.; Harmsen, H.J. Cold spots in neonatal incubators are hot spots for microbial contamination. Appl. Environ. Microbiol. 2011, 77, 8568–8572. [Google Scholar] [CrossRef]
- Costeloe, K.; Hardy, P.; Juszczak, E.; Wilks, M.; Millar, M.R. Bifidobacterium breve BBG-001 in very preterm infants: A randomised controlled phase 3 trial. Lancet 2016, 387, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Isolauri, E.; Laitinen, K.; Salminen, S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy. Am. J. Clin. Nutr. 2010, 92, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Naimi, S.; Viennois, E.; Gewirtz, A.T.; Chassaing, B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 2021, 9, 66. [Google Scholar] [CrossRef]
- Christensen, E.D.; Hjelmsø, M.H.; Thorsen, J.; Shah, S.; Redgwell, T.; Poulsen, C.E.; Trivedi, U.; Russel, J.; Gupta, S.; Chawes, B.L.; et al. The developing airway and gut microbiota in early life is influenced by age of older siblings. Microbiome 2022, 10, 106. [Google Scholar] [CrossRef]
- Tun, H.M.; Konya, T.; Takaro, T.K.; Brook, J.R.; Chari, R.; Field, C.J.; Guttman, D.S.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; et al. Exposure to household furry pets influences the gut microbiota of infant at 3–4 months following various birth scenarios. Microbiome 2017, 5, 40. [Google Scholar] [CrossRef]
- Suárez-Martínez, C.; Santaella-Pascual, M.; Yagüe-Guirao, G.; Martínez-Graciá, C. Infant gut microbiota colonization: Influence of prenatal and postnatal factors, focusing on diet. Front. Microbiol. 2023, 14, 1236254. [Google Scholar] [CrossRef]
Neonatal Interventions | Key Systematic Review [Reference] Author Year | Results and Comments |
---|---|---|
Delivery by caesarean section | Pivrncova et al., 2024 [20] No of studies 14 | Infants born by caesarean section showed depletion of Bacteroides. This result was observed despite breastfeeding in the first 3 months. In total, 48% of breastfed infants born by vaginal delivery vs. 19% infants born by caesarean section showed predominance of Bifidobacteria in the first 2 weeks, which persisted up to 3 months. |
Exposure to antibiotics in neonatal age | Mulinge et al., 2023 [21] No of studies 21 | Preterm infants treated with cephalosporin antibiotics showed a reduced Shannon index, a measure of alpha diversity, reduced evenness of bacterial species identified in stool specimen, decreased abundance of Bifidobacteria species, increased pathogenic bacteria such as Enterobacteriaceae and Bacteroides, and an increase in Staphylococcus spp., Streptococcus spp., Serratia spp., and Parabacteroides spp. compared with controls. |
Breastfeeding infants and formula feeding | Inchingolo et al., 2024 [22] No of studies 13 | Breastfed infants showed higher levels of Bifidobacterium and Lactobacillus, while formula-fed infants had a higher prevalence of Clostridium and Enterobacteriaceae considered to be potentially pathogenic. |
Donor human milk | Chen et al., 2024 [23] No of studies 12 | Donor-milk-fed infants showed reduced diversity of bacteria. The Shannon index and Gini–Simpson index was used as measures of alpha diversity of stool samples from birth to day 60 of life. Donor-milk-fed infants showed higher abundances of Staphylococcaceae and Clostridiaceae and lower abundances of Bacteroidetes and Bifidobacterium compared to breastfed infants. At one month of life, concentrations of fecal metabolite such as propionate were higher and those of acetate were lower in the donor milk group. |
Formula supplemented with Prebiotics | Kebbe et al., 2025 [24] Number of studies 30 | Use of prebiotic oligosaccharide in infant formula compared with standard formula showed increased Bifidobacterium counts (k = 7 [MD: 0.49; 95% CI, 0.27–0.71]; I2 = 13% and decreased fecal pH. Use of fructo oligosaccharides showed variable results on the counts of Bifidobacteria, with mild increase in some trials and no difference observed in other trials. Meta-analysis showed no difference in the mean counts of Lactobacilli, bifidobacterium species in prebiotic vs. human milk-fed infants. |
Probiotic supplementatio on | Vievermanns et al., 2024 [25] No of studies 29 | Probiotic supplementation with Bifidobacteria and Lactobacilli led to increased relative abundance of probiotic strains used for supplementation. Clostridium, Streptococcus, Klebsiella and Escherichia genera were decreased in abundance in probiotic-exposed infants. |
Neonatal intensive care environment | Hartz et al., 2015 [26] No of studies 11 | In an intensive care environment, including ventilation, etc., tubing was colonized with Streptococcus, Staphylococcus, Neisseria, and Enterobacteriaceae, which was reflected in the gut microbiome profile of infants. Incubators were likely to be colonized with staphylococcus. This reflected in the gut microbiome of neonates and showed increased Clostridia and Escherichia, and reduced Bifidobacteria. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasjois, R.; Rao, S.; Pereira, G. Management of Neonates in the Special Care Nursery and Its Impact on the Developing Gut Microbiota: A Comprehensive Clinical Review. Microorganisms 2025, 13, 1772. https://doi.org/10.3390/microorganisms13081772
Srinivasjois R, Rao S, Pereira G. Management of Neonates in the Special Care Nursery and Its Impact on the Developing Gut Microbiota: A Comprehensive Clinical Review. Microorganisms. 2025; 13(8):1772. https://doi.org/10.3390/microorganisms13081772
Chicago/Turabian StyleSrinivasjois, Ravisha, Shripada Rao, and Gavin Pereira. 2025. "Management of Neonates in the Special Care Nursery and Its Impact on the Developing Gut Microbiota: A Comprehensive Clinical Review" Microorganisms 13, no. 8: 1772. https://doi.org/10.3390/microorganisms13081772
APA StyleSrinivasjois, R., Rao, S., & Pereira, G. (2025). Management of Neonates in the Special Care Nursery and Its Impact on the Developing Gut Microbiota: A Comprehensive Clinical Review. Microorganisms, 13(8), 1772. https://doi.org/10.3390/microorganisms13081772