Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = orange wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1621 KiB  
Article
The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets
by David Sango-Parco, Lizbeth Zamora-Mendoza, Yuliana Valdiviezo-Cuenca, Camilo Zamora-Ledezma, Si Amar Dahoumane, Floralba López and Frank Alexis
Bioengineering 2025, 12(8), 838; https://doi.org/10.3390/bioengineering12080838 - 1 Aug 2025
Viewed by 317
Abstract
This research demonstrates the potential of plant waste cellulose as a remarkable biomaterial for multilayer tablet formulation. Rice husks (RC) and orange peels (OC) were used as cellulose sources and characterized for a comparison with commercial cellulose. The FTIR characterization shows minimal differences [...] Read more.
This research demonstrates the potential of plant waste cellulose as a remarkable biomaterial for multilayer tablet formulation. Rice husks (RC) and orange peels (OC) were used as cellulose sources and characterized for a comparison with commercial cellulose. The FTIR characterization shows minimal differences in their chemical components, making them equivalent for compression into tablets containing ibuprofen. TGA measurements indicate that the RC is slightly better for multilayer formulations due to its favorable degradation profile. This is corroborated by an XRD analysis that reveals its higher crystalline fraction (~55%). The use of a heat press at combined high pressures and temperatures allows the layer-by-layer tablet formulation of ibuprofen, taken as a model drug. Additionally, this study compares the release profile of three types of tablets compressed with cellulose: mixed (MIX), two-layer (BL), and three-layer (TL). The MIX tablet shows a profile like that of conventional ibuprofen tablets. Although both BL and TL tablets significantly reduce their release percentage in the first hours, the TL ones have proven to be better in the long run. In fact, formulations made of extracted cellulose sandwiching ibuprofen display a zero-order release profile and prolonged release since the drug release amounts to ~70% after 120 h. This makes the TL formulations ideal for maintaining the therapeutic effect of the drug and improving patients’ wellbeing and compliance while reducing adverse effects. Full article
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 281
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Viewed by 350
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

39 pages, 18290 KiB  
Article
Turning Construction, Renovation, and Demolition (CRD) Wood Waste into Biochar: A Scalable and Sustainable Solution for Energy and Environmental Applications
by Aravind Ganesan, Simon Barnabé, Younès Bareha, Simon Langlois, Olivier Rezazgui and Cyrine Boussabbeh
Energies 2025, 18(15), 3902; https://doi.org/10.3390/en18153902 - 22 Jul 2025
Viewed by 367
Abstract
This study investigates the pyrolysis of construction, renovation, and demolition (CRD) wood waste to produce biochar, with a focus on its robustness, scalability, and characterization for energy and environmental applications. Pyrolysis conditions, including the temperature, biomass residence time (BRT), and feedstock mass, were [...] Read more.
This study investigates the pyrolysis of construction, renovation, and demolition (CRD) wood waste to produce biochar, with a focus on its robustness, scalability, and characterization for energy and environmental applications. Pyrolysis conditions, including the temperature, biomass residence time (BRT), and feedstock mass, were varied to evaluate their effects on biochar properties. High-temperature biochars (B800) showed the highest fixed carbon (FC) (87%) and thermostable fraction (TSF) (96%) and the lowest volatile carbon (VC) (9%), with a high carbon content (92%), a large BET surface area (300 m2/g), and a high micropore volume (0.146 cm3/g). However, the hydrogen (0.9%) and oxygen (2.2%) content, Van-Krevelen parameters (H/C: 0.1; O/C: 0.02), and biochar yield (21%) decreased with increasing temperature. Moderate-temperature biochars (B600) have balanced physicochemical properties and yields, making them suitable for adsorption applications. Methyl orange dye removal exceeded 90% under the optimal conditions, with B600 fitting well with the Freundlich isotherm model (R2 = 0.97; 1/n = 0.5) and pseudo-second-order kinetic model (R2 = 1). The study highlights biochar’s suitability for varied applications, emphasizing the need for scalability in CRD wood pyrolysis. Full article
Show Figures

Figure 1

20 pages, 2143 KiB  
Article
Bioadsorption of Manganese with Modified Orange Peel in Aqueous Solution: Box–Behnken Design Optimization and Adsorption Isotherm
by Liz Marzano-Vasquez, Giselle Torres-López, Máximo Baca-Neglia, Wilmer Chávez-Sánchez, Roberto Solís-Farfán, José Curay-Tribeño, César Rodríguez-Aburto, Alex Vallejos-Zuta, Jesús Vara-Sanchez, César Madueño-Sulca, Cecilia Rios-Varillas de Oscanoa and Alex Pilco-Nuñez
Water 2025, 17(14), 2152; https://doi.org/10.3390/w17142152 - 19 Jul 2025
Viewed by 471
Abstract
Chemically demethoxylated and Ca-cross-linked orange-peel waste was engineered as a biosorbent for Mn(II) removal from water. A three-factor Box–Behnken design (biosorbent dose 3–10 g L−1, initial Mn2+ 100–300 mg L−1, contact time 3–8 h; pH 5.5 ± 0.1, [...] Read more.
Chemically demethoxylated and Ca-cross-linked orange-peel waste was engineered as a biosorbent for Mn(II) removal from water. A three-factor Box–Behnken design (biosorbent dose 3–10 g L−1, initial Mn2+ 100–300 mg L−1, contact time 3–8 h; pH 5.5 ± 0.1, 25 °C) required only 16 runs to locate the optimum (10 g L−1, 100 mg L−1, 8 h), at which the material removed 94.8% ± 0.3% manganese removal under the optimized conditions (10 g L−1, 100 mg L−1, 8 h, pH 5.5) of dissolved manganese and reached a Langmuir capacity of 29.7 mg g−1. Equilibrium data fitted the Freundlich (R2 = 0.968) and Sips (R2 = 0.969) models best, indicating a heterogeneous surface, whereas kinetic screening confirmed equilibrium within 6 h. FTIR and SEM–EDX verified abundant surface –COO/–OH groups and showed Mn deposits that partially replaced residual Ca, supporting an ion-exchange component in the uptake mechanism. A preliminary cost analysis (<USD 10 kg−1) and > 90% regeneration efficiency over three cycles highlight the economic and environmental promise of this modified agro-waste for polishing Mn-laden effluents. Full article
(This article belongs to the Special Issue Advances in Metal Removal and Recovery from Water)
Show Figures

Figure 1

13 pages, 4134 KiB  
Article
Use of Biodried Organic Waste as a Soil Amendment: Positive Effects on Germination and Growth of Lettuce (Lactuca sativa L., var. Buttercrunch) as a Model Crop
by Rosa María Contreras-Cisneros, Fabián Robles-Martínez, Marina Olivia Franco-Hernández and Ana Belem Piña-Guzmán
Processes 2025, 13(7), 2285; https://doi.org/10.3390/pr13072285 - 17 Jul 2025
Viewed by 309
Abstract
Biodrying and composting are aerobic processes to treat and stabilize organic solid waste, but biodrying involves a shorter process time and does not require the addition of water. The resulting biodried material (BM) is mainly used as an energy source in cement production [...] Read more.
Biodrying and composting are aerobic processes to treat and stabilize organic solid waste, but biodrying involves a shorter process time and does not require the addition of water. The resulting biodried material (BM) is mainly used as an energy source in cement production or in municipal solid waste incineration with energy recovery, but when obtained from agricultural or agroindustrial organic waste, it could also be used as a soil amendment, such as compost (CO). In this study, the phytotoxicity of BM compared to CO, both made from organic wastes (orange peel, mulch and grass), was evaluated on seed germination and growth (for 90 days) of lettuce (Lactuca sativa L.) seedlings on treatments prepared from mixtures of BM and soil, soil (100%) and a mixture of CO and soil. The germination index (GI%) was higher for BM extracts (200 g/L) than for CO extracts (68% vs. 53%, respectively). According to their dry weight, lettuce grew more on the CO mixture (16.5 g) than on the BM (5.4–7.4 g), but both materials far exceeded the soil values (0.15 g). The absence of phytotoxicity suggests that BM acts as a soil amendment, improving soil structure and providing nutrients to the soil. Therefore, biodrying is a quick and low-cost bioprocess to obtain a soil improver. Full article
Show Figures

Figure 1

21 pages, 5735 KiB  
Article
Estimation of Tomato Quality During Storage by Means of Image Analysis, Instrumental Analytical Methods, and Statistical Approaches
by Paris Christodoulou, Eftichia Kritsi, Georgia Ladika, Panagiota Tsafou, Kostantinos Tsiantas, Thalia Tsiaka, Panagiotis Zoumpoulakis, Dionisis Cavouras and Vassilia J. Sinanoglou
Appl. Sci. 2025, 15(14), 7936; https://doi.org/10.3390/app15147936 - 16 Jul 2025
Viewed by 309
Abstract
The quality and freshness of fruits and vegetables are critical factors in consumer acceptance and are significantly affected during transport and storage. This study aimed to evaluate the quality of greenhouse-grown tomatoes stored for 24 days by combining non-destructive image analysis, spectrophotometric assays [...] Read more.
The quality and freshness of fruits and vegetables are critical factors in consumer acceptance and are significantly affected during transport and storage. This study aimed to evaluate the quality of greenhouse-grown tomatoes stored for 24 days by combining non-destructive image analysis, spectrophotometric assays (including total phenolic content and antioxidant and antiradical activity assessments), and attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy. Additionally, water activity, moisture content, total soluble solids, texture, and color were evaluated. Most physicochemical changes occurred between days 14 and 17, without major impact on overall fruit quality. A progressive transition in peel hue from orange to dark orange, and increased surface irregularity of their textural image were noted. Moreover, the combined use of instrumental and image analyses results via multivariate analysis allowed the clear discrimination of tomatoes according to storage days. In this sense, tomato samples were effectively classified by ATR-FTIR spectral bands, linked to carotenoids, phenolics, and polysaccharides. Machine learning (ML) models, including Random Forest and Gradient Boosting, were trained on image-derived features and accurately predicted shelf life and quality traits, achieving R2 values exceeding 0.9. The findings demonstrate the effectiveness of combining imaging, spectroscopy, and ML for non-invasive tomato quality monitoring and support the development of predictive tools to improve postharvest handling and reduce food waste. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

17 pages, 2950 KiB  
Article
Obtention of ZnO-Based Hybrid Pigments: Exploring Textile Dye Adsorption and Co-Adsorption with Copper Ion
by Taiane L. Dlugoviet, Andressa dos Santos, Julia de Oliveira Primo and Fauze Jacó Anaissi
Colorants 2025, 4(3), 23; https://doi.org/10.3390/colorants4030023 - 14 Jul 2025
Viewed by 236
Abstract
Annually, more than 10,000 synthetic dyes are produced worldwide, generating around 280,000 tons of waste, posing risks to human and aquatic life, and potentially creating even more toxic products than the dyes themselves. This study aims to immobilize organic dyes, forming hybrid pigments [...] Read more.
Annually, more than 10,000 synthetic dyes are produced worldwide, generating around 280,000 tons of waste, posing risks to human and aquatic life, and potentially creating even more toxic products than the dyes themselves. This study aims to immobilize organic dyes, forming hybrid pigments using ZnO as support obtained through starch combustion. ZnO was obtained by starch (sago) combustion and characterized by XRD, SEM and the BET method. It was then used for the adsorption of orange and green textile dyes, evaluating the adsorbent dosage, initial dye concentration, contact time, and selectivity with copper ions. The removal studies indicated up to 100% removal of both dyes at low concentrations. The co-adsorption system showed excellent performance, with removal percentages exceeding 90% for both textile dyes and Cu (II) ions. Hybrid pigments were assessed for solvent resistance and durability under extended white light exposure. ZnO immobilized the dyes, showing resistance to organic solvents and good stability under prolonged white light exposure. Full article
Show Figures

Figure 1

20 pages, 4949 KiB  
Article
Steam Distillation of Citrus Waste Extract for Antimicrobial Metal Nanoparticle Synthesis
by Javier Emanuel Castañeda-Aude, Enrique Díaz Barriga-Castro, Lizbeth Liliana Díaz-Muñoz, Javier Alberto Garza-Cervantes, José Rodríguez-Mirasol, José Rubén Morones-Ramírez, Héctor Javier Amézquita-García, David Alejandro De Haro-Del Río, Angel León-Buitimea, Noe Macias-Segura and Carlos Enrique Escárcega-González
Technologies 2025, 13(7), 303; https://doi.org/10.3390/technologies13070303 - 14 Jul 2025
Viewed by 1515
Abstract
This research presents a novel, sustainable, and eco-friendly method for the rapid green synthesis of nanoparticles with antibacterial properties. This method employs steam distillation to extract reducing and stabilizing agents from orange peel waste, followed by ultrasound-assisted synthesis. To the best of our [...] Read more.
This research presents a novel, sustainable, and eco-friendly method for the rapid green synthesis of nanoparticles with antibacterial properties. This method employs steam distillation to extract reducing and stabilizing agents from orange peel waste, followed by ultrasound-assisted synthesis. To the best of our knowledge, this is the first reported integration of these two techniques for nanoparticle production. The extracted materials were then subjected to rigorous characterization through a combination of analytical techniques, including FTIR, HPLC, and TEM. These analytical approaches enabled a comprehensive analysis of the synthesized NPs, revealing their size distribution within the range of 1.5 to 14 nm. Among the synthesized nanomaterials, AgNPs exhibited the most potent antibacterial activity, with statistically significant minimum inhibitory concentrations (MICs) of 16 ppm for E. coli ATCC and 32 ppm for resistant E. coli and E. faecalis strains. This study underscored the promise of valorizing citrus waste for nanomaterial synthesis and introduced a novel, scalable methodology for producing bioactive nanoparticles, promoting a more sustainable technology for this purpose. Notably, this research aligns with United Nations Sustainable Development Goal 12, which promotes responsible consumption and production by transforming organic waste into high-value functional nanomaterials for biomedical and environmental applications. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

20 pages, 1759 KiB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 292
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

16 pages, 2720 KiB  
Article
Iron-Modified Biochar Derived from Poultry Manure for Efficient Removal of Methyl Orange Dye from Aqueous Solution
by Zafer Alasmary and Mutair A. Akanji
Sustainability 2025, 17(13), 6008; https://doi.org/10.3390/su17136008 - 30 Jun 2025
Viewed by 308
Abstract
Waste and chemicals generated from industry have been a major source of pollution and a prominent threat to human health via the food chain; hence, an efficient and durable material that can be used to detoxify polluted soil and water bodies is necessary [...] Read more.
Waste and chemicals generated from industry have been a major source of pollution and a prominent threat to human health via the food chain; hence, an efficient and durable material that can be used to detoxify polluted soil and water bodies is necessary to attain ecosystem equity and security. This study hypothesized that biochar (BC) made from poultry manure (PM) through pyrolysis and fortification with iron (Fe–BC) can be used to remove methyl orange dye from aqueous solution. Furthermore, this study evaluated the effect of solution pH on the sorption of methyl orange through batch sorption studies. The similarity in the modeled data and experimental data was measured by the standard error of estimate, whereas sorption isotherms were examined using nonlinear forms of different sorption equations. With the use of Langmuir models, a maximum sorption capacity of 136.25 mg·g−1 and 98.23 mg·g−1 was recorded for Fe–BC and BC, respectively. Fe–BC possessed a higher adsorption ability in comparison to BC. The pseudo-second-order best described the sorption kinetics of both adsorbents at R2 = 0.9973 and 0.9999, indicating a strong interaction between MO and Fe–BC. Furthermore, the efficiency with which MO was removed by the absorbent was highest at lower pH (pH = 4). It is therefore concluded that Fe–BC can be used as an effective and environmentally friendly material for detoxification of wastewater; however, further research on the application and usage of biochar modified techniques for enhancing adsorption efficacy on a large scale should be encouraged. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

15 pages, 987 KiB  
Article
Valorization of Agro-Industrial Wastes as Organic Amendments to Reduce Herbicide Leaching into Soil
by Gabriel Pérez-Lucas, Andrea Martínez-Zapata and Simón Navarro
J. Xenobiot. 2025, 15(4), 100; https://doi.org/10.3390/jox15040100 - 30 Jun 2025
Viewed by 341
Abstract
High levels of pesticide use are associated with intensive crop production. Pesticides are increasingly prevalent in surface and groundwater, which is a major environmental concern. Various methods have been proposed to improve the retention and/or degradation of pesticides in soils. These methods are [...] Read more.
High levels of pesticide use are associated with intensive crop production. Pesticides are increasingly prevalent in surface and groundwater, which is a major environmental concern. Various methods have been proposed to improve the retention and/or degradation of pesticides in soils. These methods are mainly based on soil adaptation with organic wastes to mitigate soil and water pollution. In addition, there has recently been increased interest in assessing the influence of organic waste additions on pesticide movement in soils with low contents of organic matter. Agriculture and related industries generate large amounts of waste each year. Because of their components, they have the great ability to produce high-value products for environmental restoration. This study reports on the influence of four different agro-industrial wastes (orange peel, beer bagasse, grape pomace, and gazpacho waste) used as organic amendments on the leaching of metobromuron and chlorbromuron (phenylurea herbicides) on a silty clay loam soil (gypsic–calcaric regosol) with low organic matter contents from a semiarid area (southeastern Spain). The adsorption, leaching, and dissipation processes of these herbicides were evaluated on a laboratory scale in amended and unamended soils. In addition, the main leaching indices (GUS, LIX, LEACH, M LEACH, LIN, GLI, HI, and ELI) commonly used to assess groundwater protection against pesticide pollution were evaluated. The sorption coefficients (KOC) increased in the amended soils. Metobromuron was found in leachates in all cases, although a marked reduction was observed in amended soils, while chlorbromuron was mainly retained in soils, especially in the top layer. The disappearance time (DT50) for metobromuron and chlorbromuron in soil ranged from 11 to 56 d and 18 to 95 d, respectively. All indices except GLI categorize metobromuron as mobile or very mobile in unamended soil. For chlorbromuron, GUS, LIX, LEACH, MLEACH, and Hornsby classify this compound as a medium-to-high leache, while GLI and ELI classify it as having low mobility. In amended soils, most indices classify metobromuron as transitioning to mobile, while most indices catalog chlorbromuron as immobile/transition. Full article
Show Figures

Graphical abstract

23 pages, 5366 KiB  
Article
Agricultural Waste-Derived Cellulose/ZnO Composites: Dual Photocatalytic and Adsorptive Action for Textile Dye Removal
by Jihene Belhaj, Ramzi Khiari, Valentín García-Caballero, Antonio A. Romero and Araceli García
Polymers 2025, 17(13), 1737; https://doi.org/10.3390/polym17131737 - 22 Jun 2025
Viewed by 506
Abstract
The synthesis of cellulose extracted from agricultural waste, specifically almond and fig tree trimmings, and its combination with ZnO nanoparticles to form cellulose/ZnO composites was studied. These adsorbents/photocatalysts were fully characterized, confirming not only the effective deposition of zinc oxide nanoparticles on the [...] Read more.
The synthesis of cellulose extracted from agricultural waste, specifically almond and fig tree trimmings, and its combination with ZnO nanoparticles to form cellulose/ZnO composites was studied. These adsorbents/photocatalysts were fully characterized, confirming not only the effective deposition of zinc oxide nanoparticles on the cellulose surface but also the improvement in homogeneity and lower agglomeration and size of ZnO particles grown on these fibers (crystallites were 43 ± 12 nm for pristine ZnO and 13–26 nm for composites). The efficacy of these composites was evaluated against methylene blue (MB), methyl orange (MO), and bromophenol blue (BB), this study being the first time that BB removal results have been reported using dual photo-adsorptive cellulosic composites. After 20 min, removals of approximately 45% were achieved for the anionic dyes MO and BB under UV light and up to 65% for MB with either applied radiation, indicating a clear adsorption mechanism for this cationic dye. A reusability study was conducted for the BB removal system, with only a 15–19% loss in BB removal capacity under UV irradiation after the third reuse. These results demonstrated the potential and efficiency of cellulose/ZnO composites as promising photocatalysts for textile wastewater treatment, providing a sustainable and interesting approach to mitigate dye pollution. Full article
Show Figures

Figure 1

16 pages, 3548 KiB  
Article
Green Extraction Technologies for Carotenoid Recovery from Citrus Peel: Comparative Study and Encapsulation for Stability Enhancement
by Vanja Travičić, Teodora Cvanić, Anja Vučetić, Marija Kostić, Milica Perović, Lato Pezo and Gordana Ćetković
Processes 2025, 13(7), 1962; https://doi.org/10.3390/pr13071962 - 21 Jun 2025
Viewed by 488
Abstract
Citrus peel, a significant by-product of fruit processing, represents a rich source of carotenoids with strong antioxidant and health-promoting properties. The present study evaluated two green extraction techniques, cloud point extraction (CPE) and supramolecular solvent (SUPRAS)-based extraction, for carotenoids recovered from citron, orange, [...] Read more.
Citrus peel, a significant by-product of fruit processing, represents a rich source of carotenoids with strong antioxidant and health-promoting properties. The present study evaluated two green extraction techniques, cloud point extraction (CPE) and supramolecular solvent (SUPRAS)-based extraction, for carotenoids recovered from citron, orange, and tangerine peels. Whereas SUPRAS methods rely on a supramolecular solvent made of water, ethanol, and octanoic acid, CPE methods use surfactants and water, and both show a high potential to extract lipophilic components. CPE demonstrated superior efficiency in extracting total carotenoids and enhancing antioxidant activity, with orange peel extracts showing the highest concentrations. CPE and SUPRAS extracts were subsequently encapsulated using freeze-drying with chickpea protein isolate, achieving high encapsulation efficiencies (82.40–88.97%). The use of encapsulation technology is an effective strategy to protect carotenoids from environmental stressors. Color, morphological, and FTIR analyses confirmed the successful encapsulation and retention of carotenoids. Environmental impact was assessed using the EcoScale tool, revealing excellent sustainability for CPE (92 points) and satisfactory performance for SUPRAS-based extraction (70 points). The use of Generally Recognized As Safe (GRAS) solvents and plant-derived encapsulation materials makes this method highly suitable for clean-label product development across the food, cosmetic, and nutraceutical industries. In summary, the results point to a practical and sustainable approach to citrus waste valorization into valuable, health-promoting ingredients—supporting both circular economy goals and eco-friendly innovation. Full article
Show Figures

Figure 1

12 pages, 709 KiB  
Article
Unlocking the Potential of Pomelo Albedo: A Novel Substrate for Alpha-Amylase Production Using Bacillus licheniformis
by Thi Ngoc Tran, Si-Chun Chen, Chien Thang Doan and San-Lang Wang
Fermentation 2025, 11(6), 336; https://doi.org/10.3390/fermentation11060336 - 11 Jun 2025
Cited by 1 | Viewed by 786
Abstract
The bioprocessing of agricultural wastes to produce microbial enzymes has become significant due to its benefits in reducing enzyme production costs and improving waste management. In this study, various substrates, including spent coffee grounds, coffee husks, coffee pulp, rice husks, rice bran, pomelo [...] Read more.
The bioprocessing of agricultural wastes to produce microbial enzymes has become significant due to its benefits in reducing enzyme production costs and improving waste management. In this study, various substrates, including spent coffee grounds, coffee husks, coffee pulp, rice husks, rice bran, pomelo albedo, pomelo flavedo, orange peel, banana peel, sugarcane bagasse, and starch, were used as organic nutrient sources for α-amylase biosynthesis by B. licheniformis TKU004. Among the tested substrates, pomelo albedo (3%, w/v) was the most suitable carbon source for amylase production, with a productivity of 80.645 U/mL. The purification process resulted in a 60 kDa amylase. The protein identification of B. licheniformis TKU004 amylase revealed a coverage rate of 39% with α-amylase from Bacillus subtilis 168. B. licheniformis TKU004 amylase exhibited optimal activity at 60 °C and pH = 7 and showed a high compatibility with EDTA (Ethylenediaminetetraacetic acid). HPLC (high-performance liquid chromatography) analysis demonstrated that B. licheniformis TKU004 amylase is an α-amylase with the final products of maltobiose, maltose, and glucose. Due to its important properties, such as tolerance to EDTA, B. licheniformis TKU 004 amylase may be valuable for industrial applications, especially in detergents and food processing. Full article
(This article belongs to the Special Issue Fermentation of Organic Waste for High-Value-Added Product Production)
Show Figures

Figure 1

Back to TopTop