Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = optimal distribution of heat exchangers area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2933 KB  
Article
Experimental Study on Wettability Characteristics of Falling Film Flow Outside Multi-Row Horizontal Tubes
by Zhenchuan Wang and Meijun Li
Processes 2025, 13(10), 3119; https://doi.org/10.3390/pr13103119 - 29 Sep 2025
Viewed by 278
Abstract
The wettability of falling film flow outside multi-row horizontal tubes is a core factor determining the heat and mass transfer performance of falling film heat exchangers, which is critical for their optimized design and stable operation. A visualization experimental platform for falling film [...] Read more.
The wettability of falling film flow outside multi-row horizontal tubes is a core factor determining the heat and mass transfer performance of falling film heat exchangers, which is critical for their optimized design and stable operation. A visualization experimental platform for falling film flow over ten rows of horizontal tubes was constructed, with water as the working fluid. High-definition imaging technology and image processing methods were employed to systematically investigate the liquid film distribution and wettability under three tube diameters (d = 0.016, 0.019, 0.025 m), four tube spacings (s = 0.75d, 1d, 1.25d, 1.5d), and four inter-tube flow patterns (droplet, columnar, column-sheet, and sheet flow). Two parameters, namely the “total wetting length” and the “total wetting area”, were proposed and defined. The distribution characteristics of the wetting ratio for each row of tubes were analyzed, along with the variation laws of the total wetting area of the ten rows of tubes with respect to tube diameter, tube spacing, and liquid film Reynolds number (Rel). The following results were indicated: (1) Increasing the fluid flow rate and the tube spacing both promote the growth of the wetting length. When Rel ≤ 505, with the increase of tube diameter, the percentage of the wetting length of the tenth tube row relative to that of the first tube row decreases under the same fluid flow rate; when Rel > 505, this percentage first decreases and then increases. (2) The total wetting area exhibits a trend of “first increasing then decreasing” or “continuous increasing” with the tube spacing, and the optimal tube spacing varies by flow pattern: s/d = 1 for droplet flow (d ≤ 0.016 m), s/d = 1.25 for columnar flow, and s/d = 1.25 (0.016 m), 1 (0.019 m), 1.5 (0.025 m) for sheet flow. (3) The effect of tube diameter on the total wetting area is a balance between the inhibitory effect (reduced inter-tube fluid dynamic potential energy) and promotional effect (thinner liquid film spreading). The optimal tube diameter is 0.016 m for droplet flow and 0.025 m for columnar/sheet flow (at s/d = 1.25). (4) The wetting performance follows the order 0.016 m > 0.025 m > 0.019 m when Rel > 505, and 0.025 m > 0.019 m > 0.016 m when Rel ≤ 505. Finally, an experimental correlation formula for the wetting ratio considering the Rel, the tube diameter, and tube spacing was fitted. Comparisons with the present experimental data, the literature simulation results, and the literature experimental data showed average errors of ≤10%, ≤8%, and ≤14%, respectively, indicating high prediction accuracy. This study provides quantitative data and theoretical support for the structural optimization and operation control of multi-row horizontal tube falling film heat exchangers. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

30 pages, 9380 KB  
Article
Optimal Planning of EVCS Considering Renewable Energy Uncertainty via Improved Thermal Exchange Optimizer: A Practical Case Study in China
by Haocheng Liu, Yongli Ruan, Yunmei He, Shuting Yang and Bo Yang
Processes 2025, 13(10), 3041; https://doi.org/10.3390/pr13103041 - 23 Sep 2025
Viewed by 254
Abstract
With the rapid development of distributed energy and electric vehicles (EVs), the limited hosting capacity of distribution networks has severely impacted their economic dispatch and safe operation. To address these challenges, in this work, an optimal planning model considering the uncertainty of wind [...] Read more.
With the rapid development of distributed energy and electric vehicles (EVs), the limited hosting capacity of distribution networks has severely impacted their economic dispatch and safe operation. To address these challenges, in this work, an optimal planning model considering the uncertainty of wind and solar power output is proposed, aiming to determine the location and capacity of electric vehicle charging stations (EVCSs). The model seeks to minimize the total costs, voltage fluctuations, and network losses, subject to constraints such as EV user satisfaction and grid company satisfaction. A multi-objective heat exchange optimization algorithm under Gaussian mutation (MOTEO-GM) is employed to validate the model on an extended IEEE-33 bus system and a real-world case in the University Town area of Chenggong District, Kunming City. Simulation results indicate that, in the test system, voltage fluctuations and system power losses are decreased by 43.05% and 37.47%, respectively, significantly enhancing the economic operation of the distribution grid. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

22 pages, 6968 KB  
Article
Signatures of Breaking Waves in a Coastal Polynya Covered with Frazil Ice: A High-Resolution Satellite Image Case Study of Terra Nova Bay Polynya
by Katarzyna Bradtke, Wojciech Brodziński and Agnieszka Herman
Remote Sens. 2025, 17(18), 3198; https://doi.org/10.3390/rs17183198 - 16 Sep 2025
Viewed by 437
Abstract
The study focuses on the detection of breaking wave crests in the highly dynamic waters of an Antarctic coastal polynya using high-resolution panchromatic satellite imagery. Accurate assessment of whitecap coverage is crucial for improving our understanding of the interactions between wave generation, air–sea [...] Read more.
The study focuses on the detection of breaking wave crests in the highly dynamic waters of an Antarctic coastal polynya using high-resolution panchromatic satellite imagery. Accurate assessment of whitecap coverage is crucial for improving our understanding of the interactions between wave generation, air–sea heat exchange, and sea ice formation in these complex environments. As open-ocean whitecap detection methods are inadequate in coastal polynyas partially covered with frazil ice, we discuss an approach that exploits specific lighting conditions: the alignment of sunlight with the dominant wind direction and low solar elevation. Under such conditions, steep breaking waves cast pronounced shadows, which are used as the primary indicator of wave crests, particularly in frazil streak zones. The algorithm is optimized to exploit these conditions and minimize false positives along frazil streak boundaries. We applied the algorithm to a WorldView-2 image covering different parts of Terra Nova Bay Polynya (Ross Sea), a dynamic polar coastal zone. This case study demonstrates that the spatial distribution of detected breaking waves is consistent with ice conditions and wind forcing patterns, while also revealing deviations that point to complex wind–wave–ice interactions. Although quantitative validation of satellite-derived whitecaps coverage was not possible due to the lack of in situ data, the method performs reliably under a range of conditions. Limitations of the proposed approach are pointed out and discussed. Finally, the study highlights the risk of misinterpretation of lower-resolution reflectance data in areas where whitecaps and sea ice coexist at subpixel scales. Full article
Show Figures

Figure 1

18 pages, 3348 KB  
Article
Numerical Study and Structural Optimization of Guided Bearing Heat Exchanger with Impurity-Contained Cooling Water
by Zheng Jiang, Lei Wang, Shen Hu and Tianren Huang
Water 2025, 17(17), 2609; https://doi.org/10.3390/w17172609 - 3 Sep 2025
Viewed by 914
Abstract
The cooling medium of the guide bearing heat exchanger in hydro generator sets comes from the upstream dam area, which contains numerous impurities even though it has undergone preliminary treatment. These impurities settle, accumulate, and adhere and form scaling layers in the heat [...] Read more.
The cooling medium of the guide bearing heat exchanger in hydro generator sets comes from the upstream dam area, which contains numerous impurities even though it has undergone preliminary treatment. These impurities settle, accumulate, and adhere and form scaling layers in the heat exchanger, seriously affecting its heat transfer performance. This paper presents an innovative investigation of heat exchanger performance under impurity-laden cooling water conditions and proposes an optimization by replacing the conventional round tube structure with a spiral flat tube structure. Numerical simulations are conducted to analyze the flow velocity, pressure, impurity deposition, and temperature distribution of the cooler under actual operating conditions. The results show that the optimized cooler achieves improved velocity uniformity with a lower standard deviation, effectively reducing sediment accumulation. Compared to the prototype, the maximum pressure increases by 55.2% (from 0.562 MPa to 0.872 MPa), which enhances turbulence and improves heat transfer. The sediment volume fraction is significantly reduced by 49% in low-flow operating conditions and 73.7% in high-flow operating conditions. Furthermore, the maximum temperature drops by 5.43 °C, indicating improved thermal performance. These findings confirm the effectiveness of the spiral flat tube design in impurity-rich environments. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

20 pages, 2854 KB  
Article
Features of Three-Dimensional Calculation of Gas Coolers of Turbogenerators
by Oleksii Tretiak, Mariia Arefieva, Dmytro Krytskyi, Stanislav Kravchenko, Bogdan Shestak, Serhii Smakhtin, Anton Kovryga and Serhii Serhiienko
Computation 2025, 13(8), 192; https://doi.org/10.3390/computation13080192 - 8 Aug 2025
Viewed by 420
Abstract
Gas coolers are critical elements of turbogenerator cooling systems, which ensure the reliability and stability of the thermal mode of high-power electric machines. The aim of this research is to improve the accuracy of thermal calculations of gas coolers by combining analytical methods [...] Read more.
Gas coolers are critical elements of turbogenerator cooling systems, which ensure the reliability and stability of the thermal mode of high-power electric machines. The aim of this research is to improve the accuracy of thermal calculations of gas coolers by combining analytical methods with numerical CFD-modeling (Computation Fluid Dynamics). The cooler’s total cooling capacity is approximately 3.8 MW, distributed across three identical sections.An analytical calculation of heat transfer for a hydrogen-water gas cooler with finned tubes was performed, using classical dependencies to determine the heat transfer coefficients and pressure losses. The results were verified using three-dimensional CFD-modeling of the hydrogen flow through the cooler using the standard k-ε (k-epsilon) turbulence model. The discrepancy between the results of analytical and numerical calculations is less than 10%. The temperature of the cooled hydrogen at the outlet meets the design requirements (+40 °C); however, areas of uneven temperature distribution were identified that require further design optimization. The study introduces, for the first time, a combined approach using analytical calculations and CFD by thoroughly evaluating the heat exchange between the cooling tube fins and hydrogen. This scientific solution enabled the simulation of hydrogen flow within the multi-stage cooler system. The proposed method has proven to be reliable and can be applied both at the design stage and for the analysis of upgraded cooling systems of turbogenerators. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
Show Figures

Figure 1

16 pages, 2467 KB  
Article
Optimal Collector Tilt Angle to Maximize Solar Fraction in Residential Heating Systems: A Numerical Study for Temperate Climates
by Krzysztof Kupiec and Barbara Król
Sustainability 2025, 17(14), 6385; https://doi.org/10.3390/su17146385 - 11 Jul 2025
Viewed by 816
Abstract
The performance of solar thermal systems for space heating and domestic hot water (DHW) production depends on the tilt angle of solar collectors, which governs the amount and seasonal distribution of captured solar radiation. This study evaluates the impact of fixed collector tilt [...] Read more.
The performance of solar thermal systems for space heating and domestic hot water (DHW) production depends on the tilt angle of solar collectors, which governs the amount and seasonal distribution of captured solar radiation. This study evaluates the impact of fixed collector tilt angles on the annual solar fraction (SF) of a solar heating system designed for a typical single-family house located in Kraków, Poland (50° N latitude). A numerical model based on the f-Chart method was employed to simulate system performance under varying collector areas, storage tank volumes, heat exchanger characteristics, and DHW proportions. The analysis revealed that although total annual irradiation decreases with increasing tilt angle, the SF reaches a maximum at a tilt angle of approximately 60°, which is about 10° higher than the local geographic latitude. This configuration offers a favorable balance between winter energy gain and summer overheating mitigation. The results align with empirical recommendations in the literature and offer practical guidance for optimizing fixed-tilt solar heating systems in temperate climates. Full article
Show Figures

Figure 1

26 pages, 3878 KB  
Article
Turbulence Theory for the Characterization of the Surface Urban Heat Island Signature
by Gabriel I. Cotlier, Juan Carlos Jimenez and José Antonio Sobrino
Land 2025, 14(3), 620; https://doi.org/10.3390/land14030620 - 14 Mar 2025
Cited by 1 | Viewed by 1407
Abstract
Urban heat islands (UHIs) constitute one of the most conspicuous anthropogenic impacts on local climates, characterized by elevated land surface temperatures in urban areas compared to surrounding rural regions. This study represents a novel and comprehensive effort to characterize the spectral signature of [...] Read more.
Urban heat islands (UHIs) constitute one of the most conspicuous anthropogenic impacts on local climates, characterized by elevated land surface temperatures in urban areas compared to surrounding rural regions. This study represents a novel and comprehensive effort to characterize the spectral signature of SUHI through the lens of the two-dimensional (2D) turbulence theory, with a particular focus on identifying energy cascade regimes and their climatic modulation. The theory of two-dimensional (2D) turbulence, first described by Kraichnan and Batchelor, predicts two distinct energy cascade regimes: an inverse energy cascade at larger scales (low wavenumbers) and a direct enstrophy cascade at smaller scales (high wavenumbers). These cascades can be detected and characterized through spatial power spectra analysis, offering a scale-dependent understanding of the SUHI phenomenon. Despite the theoretical appeal, empirical validation of the 2D turbulence hypothesis in urban thermal landscapes remains scarce. This study aims to fill this gap by analyzing the spatial power spectra of land surface temperatures across 14 cities representing diverse climatic zones, capturing varied urban morphologies, structures, and materials. We analyzed multi-decadal LST datasets to compute spatial power spectra across summer and winter seasons, identifying spectral breakpoints that separate large-scale energy retention from small-scale dissipative processes. The findings reveal systematic deviations from classical turbulence scaling laws, with spectral slopes before the breakpoint ranging from ~K−1.6 to ~K−2.7 in winter and ~K−1.5 to ~K−2.4 in summer, while post-breakpoint slopes steepened significantly to ~K−3.5 to ~K−4.6 in winter and ~K−3.3 to ~K−4.3 in summer. These deviations suggest that urban heat turbulence is modulated by anisotropic surface heterogeneities, mesoscale instabilities, and seasonally dependent energy dissipation mechanisms. Notably, desert and Mediterranean climates exhibited the most pronounced small-scale dissipation, whereas oceanic and humid subtropical cities showed more gradual spectral transitions, likely due to differences in moisture availability and convective mixing. These results underscore the necessity of incorporating turbulence theory into urban climate models to better capture the scale-dependent nature of urban heat exchange. The observed spectral breakpoints offer a diagnostic tool for identifying critical scales at which urban heat mitigation strategies—such as green infrastructure, optimized urban ventilation, and reflective materials—can be most effective. Furthermore, our findings highlight the importance of regional climatic context in shaping urban spectral energy distributions, necessitating climate-specific urban design interventions. By advancing our understanding of urban thermal turbulence, this research contributes to the broader discourse on sustainable urban development and resilience in a warming world. Full article
Show Figures

Figure 1

25 pages, 6102 KB  
Article
Inverse Properties Estimation of Methanol Adsorption in Activated Carbon to Utilise in Adsorption Cooling Applications: An Experimental and Numerical Study
by Maaed Ossman, Majid Siavashi and Masoud Babaei
Energies 2025, 18(3), 714; https://doi.org/10.3390/en18030714 - 4 Feb 2025
Viewed by 1425
Abstract
The precise estimation of influential parameters in adsorption is a key point in conducting simulations for the sensitivity analysis and optimal design of cooling systems. This study explores the critical role of a new type of granular activated carbon (GAC-208C) in adsorption refrigeration [...] Read more.
The precise estimation of influential parameters in adsorption is a key point in conducting simulations for the sensitivity analysis and optimal design of cooling systems. This study explores the critical role of a new type of granular activated carbon (GAC-208C) in adsorption refrigeration systems. By fitting experimental and numerical models to the thermophysical properties of GAC/methanol as a working pair, an advanced methodology is established for the thermal analysis of the adsorption bed, addressing the various operating conditions overlooked in prior studies. The physical properties of the studied carbon sample are determined in a laboratory using surface area and pore volume tests, thermal adsorption analysis, and weight loss. To determine the thermal properties of GAC/methanol, the adsorption process is experimentally tested inside an isolated heat exchanger. A three-dimensional (3D) model is created to simulate the procedure and then coupled with the particle swarm optimisation (PSO) algorithm in MATLAB. The optimal thermal parameters for adsorption are determined by minimising the mean square error (MSE) of the adsorption bed temperature between the numerical and experimental data. The laboratory studies yielded accurate results for the physical properties of GAC, including adsorption capacity, porosity, permeability, specific heat capacity, density, activation energy, and the heat of adsorption. The thermal analysis of the adsorption process identified the ideal values for the Dubinin–Astakhov equation constants, diffusion coefficients, heat transfer coefficients, and contact resistance. The numerical model demonstrated strong agreement with the experimental results, and the dynamic behaviour of pressure and uptake distribution showed good agreement with 1.2% relative error. This research study contributes to the improved estimation of adsorption parameters to conduct more accurate numerical simulations and design new adsorption systems with enhanced performance under different operating conditions. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

25 pages, 8162 KB  
Article
Parametric Analysis of the Factors Impacting the Spatial Distribution of Particles in a Bus Environment
by Zeinab Bahman Zadeh, Bryan E. Cummings and L. James Lo
Sustainability 2025, 17(3), 1051; https://doi.org/10.3390/su17031051 - 27 Jan 2025
Viewed by 1245
Abstract
This study presents a parametric analysis of the factors impacting particle distribution within a bus environment using computational fluid dynamics (CFD) simulations, with a primary focus on the relative concentration (RC) of particles. The Novel Relative Concentration (RC) metric, which measures the deviation [...] Read more.
This study presents a parametric analysis of the factors impacting particle distribution within a bus environment using computational fluid dynamics (CFD) simulations, with a primary focus on the relative concentration (RC) of particles. The Novel Relative Concentration (RC) metric, which measures the deviation from a return concentration, was used to assess the effects of ventilation rates, the number and spatial arrangement of particle emitters, and thermal conditions. Our investigation reveals that increasing air changes per hour (ACHs) from 5.74 h−1 to 28.66 h−1 reduces the overall particle concentration by approximately 45%, but localized high concentration zones persist, with maximum RC values observed at 1.57. Scenarios with evenly distributed emitters achieved near-uniform particle distribution, with RC values averaging around 0.95, while clustered emitters resulted in localized high concentrations, with RC values exceeding 2.0. Thermal conditions were found to have a minimal effect on RC, with average values of 1.664 for cooling and 1.588 for heating, showing only a 4.68% difference. The RC metric provided clear insights into the non-uniformity of particle distribution, highlighting areas prone to higher concentrations, with some zones reaching RC values of 2.5, indicating concentrations 2.5 times higher than the well-mixed average. These findings underscore the importance of optimizing ventilation systems for both overall air exchange and uniform air distribution, offering practical implications for improving air quality and reducing the risk of airborne pathogen transmission in public transportation systems. Future research should explore real-time ventilation adjustments based on passenger load, the effects of different particle types, and the development of models incorporating human behavior and movement patterns. Full article
Show Figures

Figure 1

22 pages, 14942 KB  
Article
Numerical Study of the Thermo-Hydro-Mechanical Coupling Impacts of Shallow Geothermal Borehole Groups in Fractured Rock Mass on Geological Environment
by Yujin Ran, Jia Peng, Xiaolin Tian, Dengyun Luo, Bin Yang, Peng Pei and Long Tang
Energies 2024, 17(6), 1384; https://doi.org/10.3390/en17061384 - 13 Mar 2024
Cited by 1 | Viewed by 1506
Abstract
Fractured rock mass is extensively distributed in Karst topography regions, and its geological environment is different from that of the quaternary strata. In this study, the influences on geological environment induced by the construction and operation of a large-scale borehole group of ground [...] Read more.
Fractured rock mass is extensively distributed in Karst topography regions, and its geological environment is different from that of the quaternary strata. In this study, the influences on geological environment induced by the construction and operation of a large-scale borehole group of ground source heat pumps are analyzed by a thermo-hydro-mechanical (THM) coupling numerical model. It was found that groundwater is redirected as the boreholes can function as channels to the surface, and the flow velocity in the upstream of borehole group is higher than those downstream. This change in groundwater flow enhances heat transfer in the upstream boreholes but may disturb the original groundwater system and impact the local geological environment. Heat accumulation is more likely to occur downstream. The geo-stress concentration appears in the borehole area, mainly due to exaction and increasing with the depth. On the fracture plane, tensile stress and maximum shear stress simultaneously occur on the upstream of boreholes, inducing the possibility of fracturing or the expansion of existing fractures. There is a slight uplift displacement on the surface after the construction of boreholes. The correlations of the above THM phenomena are discussed and analyzed. From the modeling results, it is suggested that the consolidation of backfills can minimize the environmental disturbances in terms of groundwater redirection, thermal accumulation, occurrence of tensile stress, and possible fracturing. This study provides support for the assessment of impacts on geological environments resulting from shallow geothermal development and layout optimization of ground heat exchangers in engineering practices. Full article
(This article belongs to the Special Issue Geothermal Heat Pumps and Heat Exchangers)
Show Figures

Figure 1

15 pages, 4554 KB  
Article
Optimization of Structural Parameters of Venturi Vertical Cooling Furnace
by Haifeng Li, Tengfei Qi and Yongjie Zhang
Appl. Sci. 2023, 13(23), 12858; https://doi.org/10.3390/app132312858 - 30 Nov 2023
Cited by 2 | Viewed by 1411
Abstract
Theoretically, the vertical sinter sensible heat recovery process can significantly improve the recovery rate of sinter sensible heat. However, the segregated distribution of the sinter and uneven gas–solid flow in vertical cooling furnaces result in insufficient contact and heat exchange between the high-temperature [...] Read more.
Theoretically, the vertical sinter sensible heat recovery process can significantly improve the recovery rate of sinter sensible heat. However, the segregated distribution of the sinter and uneven gas–solid flow in vertical cooling furnaces result in insufficient contact and heat exchange between the high-temperature sinter and the cooling gas, thereby limiting the improvement in the sinter sensible heat recovery rate. A Venturi vertical cooling furnace can improve the contact heat transfer between gases and solids and the uniformity of the sinter and the cooling gas temperature. However, this leads to a significant increase in the gas pressure drop and affects the integrity of the downward movement of the sinter. To control the increase in the gas pressure drop while increasing the sensible heat recovery and maintaining the integral flow of the sinter, this study takes a Meishan Steel vertical cooling furnace as the research object and uses the DEM-CFD coupling model to optimize the structural parameters of the Venturi-type vertical cooling furnace. Firstly, a scaling method was designed to reduce the computational cost. Secondly, based on the on-site conditions, the selection range of structural parameters for the Venturi furnace was determined. Finally, an orthogonal experiment was designed. Taking the sensible heat recovery of the sinter and the pressure drop of the cooling gas as the main index, the integrity of the sinter flow was taken as the secondary index to study the Venturi structure parameters suitable for the Meishan Steel vertical cooling furnace, including the width of the vertical part w, the length of the vertical part l, the contraction angle of the contraction part β, and the expansion angle of the expansion part α. The results showed that the order of structural parameters affecting the sensible heat recovery was w, β, α, and l, and the order of parameters affecting the gas pressure drop was w, β, l, and α. The appropriate structural parameters of the Venturi furnace type, obtained by considering the sensible heat recovery and gas pressure drop, were w = 1.1 m, β = 16°, α = 13°, and l = 0.5 m. In addition, in order to improve the integrity of the sinter flow, it was also necessary to increase the wall friction of the particles in the central area of the vertical section by adding steel plates. The results can provide theoretical guidance for improvements to the Meishan Steel vertical cooling furnace. The operation parameters corresponding to the Venturi furnace type can be studied later. Full article
(This article belongs to the Special Issue Recent Advances in Metallurgical Process Engineering)
Show Figures

Figure 1

19 pages, 3461 KB  
Article
Local Climate Zone in Xi’an City: A Novel Classification Approach Employing Spatial Indicators and Supervised Classification
by Duo Xu, Qian Zhang, Dian Zhou, Yujun Yang, Yiquan Wang and Alessandro Rogora
Buildings 2023, 13(11), 2806; https://doi.org/10.3390/buildings13112806 - 9 Nov 2023
Cited by 11 | Viewed by 2827
Abstract
The Local Climate Zone (LCZ), as a foundational element of urban climate zone classification proposed by Oke and Stewart, categorizes urban surface types based on 10 influential parameters affecting the urban heat island effect, such as building density, surface reflectivity, sky view factor, [...] Read more.
The Local Climate Zone (LCZ), as a foundational element of urban climate zone classification proposed by Oke and Stewart, categorizes urban surface types based on 10 influential parameters affecting the urban heat island effect, such as building density, surface reflectivity, sky view factor, and surface roughness length. This method divides cities into 17 different Local Climate Zones (LCZs) to standardize climate observations and promote global climate research exchange, offering valuable insights for heat island studies. In this study, we enhance the existing local climate zones spatial classification approach by focusing on Xi’an city’s urban layout and architectural features. By using urban spatial indicators and employing a supervised classification approach and a spatial clustering method with land parcels as statistical units, we investigate typical urban areas and classify Xi’an’s land parcels into 17 or 15 distinct local climate zones. Subsequently, through the evaluation of two distinct classification methods, the most suitable urban microclimate zoning method for Xi’an city was selected. This optimization of the local climate zoning representation introduces a spatial classification method tailored to urban climate planning and control, utilizing urban spatial indicators and remote sensing data. The resulting urban climate zoning map not only supports sample selection for urban heat environment parameter observation but also aids urban planners in identifying spatial distribution patterns for climate zoning. Full article
Show Figures

Figure 1

21 pages, 5729 KB  
Article
Numerical Investigation on the Performance of Horizontal Helical-Coil-Type Backfill Heat Exchangers with Different Configurations in Mine Stopes
by Bo Zhang, Long Shi, Wenxuan Zhang, Chao Huan, Yujiao Zhao and Jingyu Wang
Mathematics 2023, 11(19), 4173; https://doi.org/10.3390/math11194173 - 5 Oct 2023
Cited by 1 | Viewed by 1397
Abstract
The application of ground heat exchanger technology in backfill mines can actualize subterranean heat storage, which is one of the most effective solutions for addressing solar energy faults such as intermittence and fluctuation. This paper provides a 3D unsteady heat transfer numerical model [...] Read more.
The application of ground heat exchanger technology in backfill mines can actualize subterranean heat storage, which is one of the most effective solutions for addressing solar energy faults such as intermittence and fluctuation. This paper provides a 3D unsteady heat transfer numerical model for full-size horizontal backfill heat exchangers (BFHEs) with five configurations in a mining layer of a metal mine by using a COMSOL environment. In order to ensure the fairness of the comparative analysis, the pipes of BFHEs studied have the same heat exchange surface area. By comparing and evaluating the heat storage/release characteristics of BFHEs in continuous operation for three years, it was discovered that the helical pipe with serpentine layout may effectively enhance the performance of BFHEs. Compared with the traditional SS BFHEs, the heat storage capacity of the S-FH type is significantly increased by 21.7%, followed by the SA-FH type, which is increased by 11.1%, while the performances of U-DH and SH type are considerably lowered. Also, the impact of the critical structural factors (pitch length and pitch diameter) was further studied using the normalized parameters C1 and C2 based on the inner diameter of the pipe. It is discovered that BFHEs should be distributed in a pipe with a lower C1, and increasing C2 encourages BFHEs to increase the storaged/released heat of BFHEs. By comparatively analysing the effect of thermal conductivity, it is found that the positive effects of thermal conductivity on the performance of SH, U-DH, SA-FH, and S-FH type BFHEs are found to decrease successively. This work proposes a strategy for improving the heat storage and release potential of BFHEs in terms of optimal pipe arrangement. Full article
Show Figures

Figure 1

23 pages, 11491 KB  
Article
Numerical Study of Flow and Heat Transfer Characteristics in a Simplified Dual Fluid Reactor
by Hisham Elgendy and Konrad Czerski
Energies 2023, 16(13), 4989; https://doi.org/10.3390/en16134989 - 27 Jun 2023
Cited by 4 | Viewed by 2028
Abstract
This study presents the design and computational fluid dynamics (CFD) analysis of a mini demonstrator for a dual fluid reactor (DFR). The DFR is a novel concept currently under investigation. The DFR is characterized by the implementation of two distinct liquid loops dedicated [...] Read more.
This study presents the design and computational fluid dynamics (CFD) analysis of a mini demonstrator for a dual fluid reactor (DFR). The DFR is a novel concept currently under investigation. The DFR is characterized by the implementation of two distinct liquid loops dedicated to fuel and coolant. It integrates the principles of molten salt reactors and liquid metal cooled reactors; thus, it operates in a high temperature and fast neutron spectrum, presenting a distinct approach in the field of advanced nuclear reactor design. The mini demonstrator serves as a scaled-down version of the actual reactor, primarily aimed at gaining insights into the CFD analysis intricacies of the reactor while minimizing computational costs. The CFD modeling of the MD intends to add valuable data for the purpose of modeling validation against experiments to be conducted on the MD. These experiments can be used for DFR licensing and design optimization. The coolant and fuel utilized in the mini demonstrator are of low Prandtl number (Pr = 0.01) liquid lead, operating at two distinct inlet temperatures, namely 873 K and 1473 K. The study showed a rapid increase in turbulence due to intense mixing and abrupt changes in flow areas and directions, despite the relatively low inlet velocities. Hot spots characterized by elevated temperatures were identified, analyzed, and justified based on their spatial distribution and flow conditions. Flow swirling within pipes was identified and a remedy approach was suggested. Inconsistent mass flow rates were observed among the fuel pipes, with higher rates observed in the lateral pipes. Although lower fuel temperatures were observed in the lateral pipes, they consistently exhibited higher heat exchange characteristics. The study concludes by giving physical insights into the heat transfer and flow behavior, and proposing design considerations for the dual fluid reactor to enhance structural safety and durability, based on the preliminary analysis conducted. Full article
(This article belongs to the Topic Computational Fluid Dynamics (CFD) and Its Applications)
Show Figures

Figure 1

21 pages, 12566 KB  
Article
Modelling a Prototype of Bidirectional Substation for District Heating with Thermal Prosumers
by Paolo Sdringola, Mattia Ricci, Maria Alessandra Ancona, Federico Gianaroli, Cristina Capodaglio and Francesco Melino
Sustainability 2023, 15(6), 4938; https://doi.org/10.3390/su15064938 - 10 Mar 2023
Cited by 13 | Viewed by 2899
Abstract
The performance of the innovative configurations of the “efficient” thermal networks is a key topic in scientific research, focusing on distribution temperatures and integration with high-efficiency plants and renewable sources. As it already happens for the electricity prosumers, a thermal prosumer may feed [...] Read more.
The performance of the innovative configurations of the “efficient” thermal networks is a key topic in scientific research, focusing on distribution temperatures and integration with high-efficiency plants and renewable sources. As it already happens for the electricity prosumers, a thermal prosumer may feed the district heating network through a bidirectional exchange substation with the excess of the locally produced thermal energy (e.g., by means of solar thermal plant) or with the waste heat recovered in the industrial processes. The Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) and the Alma Mater Studiorum University of Bologna (UNIBO) designed a bidirectional substation prototype, based on a return-to-supply configuration, and tested steady-state and dynamic conditions to evaluate performances and optimization measures. In this paper, the Modelica language and Dymola software were used to run a multi-domain simulation and model-based design of the substation, starting from a new heat exchanger model featuring variable efficiency, based on the thermal resistance scaling method. Control systems and components were customized from models in standard libraries in order to reproduce the substation behavior under defined operating settings, and the model was validated on the abovementioned experimental tests. Numerical results in terms of exchanged powers, temperatures and flow rates were systematically compared to experimental data, demonstrating a sufficient agreement. In particular, the absolute mean deviation—in terms of temperature—between experimental and numerical data assessed over the entire tests remains contained in +/−1 °C. As further step of the analysis, an optimized model could be included as a component in a district heating network for further investigations on the prosumers’ effects on an existing traditional grid (e.g., in case of deep renovation of urban areas connected to district heating and/or creation of micro energy communities). Full article
(This article belongs to the Special Issue Sustainable Integration of Renewable Power Generation Systems)
Show Figures

Figure 1

Back to TopTop