Turbulence Theory for the Characterization of the Surface Urban Heat Island Signature
Abstract
:1. Introduction
1.1. General Framework
1.1.1. Energy Cascades and Thermal Dynamics in Urban Environments
1.1.2. Eddies and Instabilities in Urban LST Fields
1.1.3. Energy Spectrum in LST Fields
1.1.4. Surface Temperature as a Result of Energy Balance Components
2. Materials and Methods
2.1. Data Collection and Preprocessing
2.1.1. Selection of Study Areas
2.1.2. Satellite Image Selection
2.1.3. Generation of Square Images for Power Spectrum Estimation
2.1.4. Climatic and Geographic Diversity
2.1.5. Justification for Methodology
2.2. Generating the Power Spectrum from LST Images
2.3. Detecting the Optimal Breakpoint in a Power Spectrum of a Signal
2.3.1. Breakpoint Identification
2.3.2. Model Fitting and Evaluation
3. Results and Discussion
3.1. Observed Spectral Regimes
3.2. Summer Season: Enhanced Mixed-Layer Instabilities
3.3. Winter Season: Stabilized Boundary Layers
3.4. Spatial Scale Dependence Across Cities and Seasonal Trends
3.5. City-Level Analysis of Aggregated Patterns
3.6. Climatic Zone-Level Analysis Aggregated Patterns
3.7. Linking Energy Processes to Spectral Characteristics
- Inverse energy cascade (large scales): At larger spatial scales (low wavenumbers), solar radiation, urban heat island (UHI) effects, and anthropogenic heat sources generate broad, persistent thermal structures. These large-scale anomalies retain energy due to the thermal inertia of urban materials, creating an inverse cascade, where energy accumulates rather than dissipates immediately. The spectral slopes before the breakpoint (~K−1.6 to ~K−2.7 in winter and ~K−1.5 to ~K−2.4 in summer) indicate sustained energy at these larger scales.
- Spectral breakpoint and transition to direct cascade: The breakpoint represents the scale at which energy transitions from retention to dissipation, marking the point where convective turbulence begins to break down large-scale thermal structures. This shift corresponds to the onset of vertical mixing, where sensible heat flux (H) plays a dominant role in transferring heat into the urban boundary layer.
- Direct energy cascade (small scales): At smaller spatial scales (high wavenumbers), energy is transferred into fine-scale turbulent eddies, where it is dissipated through radiative cooling, conduction, and small-scale convective mixing. The steeper spectral slopes post-breakpoint (~K−3.5 to ~K−4.6 in winter and ~K−3.3 to ~K−4.3 in summer) indicate an increased rate of energy loss, confirming that heat dissipation dominates at these finer spatial scales.
- Seasonal and climatic modulation of energy transfer: The spectral differences between summer and winter align with the expected seasonal variations in SEB components. In summer, higher solar radiation and stronger convective mixing lead to more gradual energy dissipation, sustaining larger-scale temperature structures. In winter, weaker solar forcing and stable atmospheric conditions suppress vertical mixing, increasing energy loss at small scales. Similarly, climatic zone differences (e.g., steeper post-breakpoint slopes in desert and Mediterranean cities) reflect how regional climate influences heat dissipation efficiency.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- McManamay, R.A.; Vernon, C.R.; Chen, M.; Thompson, I.; Khan, Z.; Narayan, K.B. Dynamic urban land extensification is projected to lead to imbalances in the global land-carbon equilibrium. Commun. Earth Environ. 2024, 5, 70. [Google Scholar] [CrossRef]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2018, 11, 48. [Google Scholar] [CrossRef]
- Huang, F.; Zhan, W.; Wang, Z.-H.; Voogt, J.; Hu, L.; Quan, J.; Liu, C.; Zhang, N.; Lai, J. Satellite identification of atmospheric-surface-subsurface urban heat islands under clear sky. Remote Sens. Environ. 2020, 250, 112039. [Google Scholar] [CrossRef]
- Weng, Q.; Larson, R.C. Satellite Remote Sensing of Urban Heat Islands: Current Practice and Prospects. In Geo-Spatial Technologies in Urban Environments; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Hurduc, A.; Ermida, S.L.; DaCamara, C.C. On the Suitability of Different Satellite Land Surface Temperature Products to Study Surface Urban Heat Islands. Remote Sens. 2024, 16, 3765. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Zheng, C.; Zhu, Y. Surface urban heat island effect and its driving factors for all the cities in China: Based on a new batch processing method. Ecol. Indic. 2023, 146, 109818. [Google Scholar] [CrossRef]
- Kabisch, N.; Remahne, F.; Ilsemann, C.; Fricke, L. The urban heat island under extreme heat conditions: A case study of Hannover, Germany. Sci. Rep. 2023, 13, 23017. [Google Scholar] [CrossRef]
- Garuma, G.F. Tropical surface urban heat islands in east Africa. Sci. Rep. 2023, 13, 4509. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Oke, T.R. The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects. Wind. Clim. Cities 1995, 277, 81–107. [Google Scholar] [CrossRef]
- Xian, J.; Qiu, Z.; Luo, H.; Hu, Y.; Lin, X.; Lu, C.; Yang, Y.; Yang, H.; Zhang, N. Turbulent energy budget analysis based on coherent wind lidar observations. Atmos. Chem. Phys. 2025, 25, 441–457. [Google Scholar] [CrossRef]
- Aliabadi, A.A.; Moradi, M.; Byerlay, R.A.E. The budgets of turbulence kinetic energy and heat in the urban roughness sublayer. Environ. Fluid Mech. 2021, 21, 843–884. [Google Scholar] [CrossRef]
- Kalogeropoulos, G.; Dimoudi, A.; Toumboulidis, P.; Zoras, S. Urban Heat Island and Thermal Comfort Assessment in a Medium-Sized Mediterranean City. Atmosphere 2022, 13, 1102. [Google Scholar] [CrossRef]
- Sarker, T.; Fan, P.; Messina, J.P.; Macatangay, R.; Varnakovida, P.; Chen, J. Land surface temperature and trans-boundary air pollution: A case of Bangkok Metropolitan Region. Sci. Rep. 2024, 14, 10955. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Hidalgo-García, D.; Arco-Díaz, J. Spatiotemporal analysis of the surface urban heat island (SUHI), air pollution and disease pattern: An applied study on the city of Granada (Spain). Environ. Sci. Pollut. Res. 2023, 30, 57617–57637. [Google Scholar] [CrossRef]
- Barlow, J.F. Progress in observing and modelling the urban boundary layer. Urban Clim. 2014, 10, 216–240. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Dissipation of Energy in the Locally Isotropic Turbulence Mathematical and Physical Sciences Vol. 434, No. 1890, Turbulence and Stochastic Process: Kolmogorov’s Ideas 50 Years on (Jul. 8, 1991), pp. 15–17 (3 Pages) Royal Society. Available online: https://www.jstor.org/stable/i203079 (accessed on 20 January 2025).
- Batchelor, G.K. Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 1959, 5, 113. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Inertial Ranges in Two-Dimensional Turbulence. Phys. Fluids 1967, 10, 1417–1423. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, R.; Mei, J.; Sun, J.; Liu, Q.; Wang, Y. Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer. Bound.-Layer Meteorol. 2017, 165, 277–294. [Google Scholar] [CrossRef]
- Roth, M.; Oke, T. Turbulent transfer relationships over an urban surface. I: Spectral characteristics. Q. J. R. Meteorol. Soc. 1993, 119, 1071–1104. [Google Scholar] [CrossRef]
- Horiguchi, M.; Tatsumi, K.; Poulidis, A.-P.; Yoshida, T.; Takemi, T. Large-Scale Turbulence Structures in the Atmospheric Boundary Layer Observed above the Suburbs of Kyoto City, Japan. Bound.-Layer Meteorol. 2022, 184, 333–354. [Google Scholar] [CrossRef]
- Fortuniak, K.; Pawlak, W. Selected Spectral Characteristics of Turbulence over an Urbanized Area in the Centre of Łódź, Poland. Bound.-Layer Meteorol. 2014, 154, 137–156. [Google Scholar] [CrossRef]
- Nordbo, A.; Järvi, L.; Haapanala, S.; Moilanen, J.; Vesala, T. Intra-City Variation in Urban Morphology and Turbulence Structure in Helsinki, Finland. Bound.-Layer Meteorol. 2012, 146, 469–496. [Google Scholar] [CrossRef]
- Roth, M.; Salmond, J.A.; Satyanarayana, A.N.V. Methodological Considerations Regarding the Measurement of Turbulent Fluxes in the Urban Roughness Sublayer: The Role of Scintillometery. Bound.-Layer Meteorol. 2006, 121, 351–375. [Google Scholar] [CrossRef]
- Fernando, H.J.S. Fluid mechanics of urban atmospheres in complex terrain. Annu. Rev. Fluid Mech. 2010, 42, 365–389. [Google Scholar] [CrossRef]
- Roth, M. Review of atmospheric turbulence over cities. Q. J. R. Meteorol. Soc. 2000, 126, 941–990. [Google Scholar] [CrossRef]
- Garai, A.; Pardyjak, E.; Steeneveld, G.-J.; Kleissl, J. Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer. Bound.-Layer Meteorol. 2013, 148, 51–72. [Google Scholar] [CrossRef]
- Bou-Zeid, E.; Meneveau, C.; Parlange, M.B. Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Tian, G.; Conan, B.; Calmet, I. Turbulence-Kinetic-Energy Budget in the Urban-Like Boundary Layer Using Large-Eddy Simulation. Bound.-Layer Meteorol. 2020, 178, 201–223. [Google Scholar] [CrossRef]
- Kanda, M. Large-Eddy Simulations on the Effects of Surface Geometry of Building Arrays on Turbulent Organized Structures. Bound.-Layer Meteorol. 2006, 118, 151–168. [Google Scholar] [CrossRef]
- Li, W.; Giometto, M.G. The structure of turbulence in unsteady flow over urban canopies. J. Fluid Mech. 2024, 985, A5. [Google Scholar] [CrossRef]
- Margairaz, F.; Pardyjak, E.R.; Calaf, M. Surface Thermal Heterogeneities and the Atmospheric Boundary Layer: The Relevance of Dispersive Fluxes. Bound.-Layer Meteorol. 2020, 175, 369–395. [Google Scholar] [CrossRef]
- Wang, W. The Influence of Thermally-Induced Mesoscale Circulations on Turbulence Statistics Over an Idealized Urban Area Under a Zero Background Wind. Bound.-Layer Meteorol. 2009, 131, 403–423. [Google Scholar] [CrossRef]
- Sha, J.; Zou, J.; Sun, J. Observational study of land-atmosphere turbulent flux exchange over complex underlying surfaces in urban and suburban areas. Sci. China Earth Sci. 2021, 64, 1050–1064. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Salmond, J.A.; Oke, T.R.; Offerle, B.; Lemonsu, A. Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Offerle, B.; Grimmond, C.S.B.; Fortuniak, K. Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city center. Int. J. Climatol. 2005, 25, 1405–1419. [Google Scholar] [CrossRef]
- Piringer, M.; Grimmond, C.S.B.; Joffre, S.M.; Mestayer, P.; Middleton, D.R.; Rotach, M.W.; Baklanov, A.; De Ridder, K.; Fer-reira, J.; Guilloteau, E.; et al. Investigating the Surface Energy Balance in Urban Areas—Recent Advances and Future Needs. Urban Air Qual.—Recent Adv. 2002, 1–16. [Google Scholar] [CrossRef]
- Guo, F.; Sun, J.; Hu, D. Surface energy balance-based surface urban heat island decomposition at high resolution. Remote Sens. Environ. 2024, 315, 114447. [Google Scholar] [CrossRef]
- Feigenwinter, C.; Vogt, R. Detection and analysis of coherent structures in urban turbulence. Theor. Appl. Climatol. 2005, 81, 219–230. [Google Scholar] [CrossRef]
- Christen, A.; van Gorsel, E.; Vogt, R. Coherent structures in urban roughness sublayer turbulence. Int. J. Climatol. 2007, 27, 1955–1968. [Google Scholar] [CrossRef]
- Inagaki, A.; Kanda, M.; Ahmad, N.H.; Yagi, A.; Onodera, N.; Aoki, T. A Numerical Study of Turbulence Statistics and the Structure of a Spatially-Developing Boundary Layer Over a Realistic Urban Geometry. Bound.-Layer Meteorol. 2017, 164, 161–181. [Google Scholar] [CrossRef]
- de Wit, X.M.; Fruchart, M.; Khain, T.; Toschi, F.; Vitelli, V. Pattern formation by turbulent cascades. Nature 2024, 627, 515–521. [Google Scholar] [CrossRef]
- Zajic, D.; Fernando, H.J.S.; Calhoun, R.; Princevac, M.; Brown, M.J.; Pardyjak, E.R. Flow and Turbulence in an Urban Canyon. J. Appl. Meteorol. Climatol. 2011, 50, 203–223. [Google Scholar] [CrossRef]
- Mazzeo, N.A.; Venegas, L.E. Study of natural and traffic-producing turbulences analysing full-scale data from four street canyons. Int. J. Environ. Pollut. 2011, 47, 290. [Google Scholar] [CrossRef]
- Liu, P.; Liu, C.; Li, Q. Effects of landscape pattern on land surface temperature in Nanchang, China. Sci. Rep. 2024, 14, 3832. [Google Scholar] [CrossRef]
- Ayanlade, A.; Aigbiremolen, M.I.; Oladosu, O.R. Variations in urban land surface temperature intensity over four cities in different ecological zones. Sci. Rep. 2021, 11, 20537. [Google Scholar] [CrossRef]
- Akomolafe, G.F.; Rosazlina, R. Land use and land cover changes influence the land surface temperature and vegetation in Penang Island, Peninsular Malaysia. Sci. Rep. 2022, 12, 21250. [Google Scholar] [CrossRef] [PubMed]
- Boffetta, G.; Ecke, R.E. Two-Dimensional Turbulence. Annu. Rev. Fluid Mech. 2012, 44, 427–451. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK, 1987. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Chapman, S.; Thatcher, M.; Salazar, A.; Watson, J.E.M.; McAlpine, C.A. The Effect of Urban Density and Vegetation Cover on the Heat Island of a Subtropical City. J. Appl. Meteorol. Climatol. 2018, 57, 2531–2550. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Heat Storage in Urban Areas: Local-Scale Observations and Evaluation of a Simple Model. J. Appl. Meteorol. 1999, 38, 922–940. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P. Introduction to Heat Transfer; John Wiley and Sons: New York, NY, USA, 1990. [Google Scholar]
- Grimmond, C.S.B.; Oke, T.R. Turbulent Heat Fluxes in Urban Areas: Observations and a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). J. Appl. Meteorol. 2002, 41, 792–810. [Google Scholar] [CrossRef]
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Available online: https://daylightmap.org/2023/11/27/urban.html (accessed on 15 December 2024).
- QGIS Development Team. QGIS Version 3.34. Geographic Information System. Open-Source Geospatial Foundation Project. 2024. Available online: https://www.qgis.org/en/site/ (accessed on 10 August 2024).
- MathWorks 2024. MATLAB Ver. 2024a Computer Program. (The MathWorks Inc., 2024). Available online: https://www.mathworks.com/ (accessed on 11 November 2024).
- Available online: http://turbustat.readthedocs.org/en/latest/ (accessed on 10 November 2024).
- Python Software Foundation. Python Language Reference, Version 3.11.5. Available online: https://www.python.org (accessed on 10 August 2024).
- Bou-Zeid, E.; Anderson, W.; Katul, G.G.; Mahrt, L. The Persistent Challenge of Surface Heterogeneity in Boundary-Layer Meteorology: A Review. Bound.-Layer Meteorol. 2020, 177, 227–245. [Google Scholar] [CrossRef]
- Ward, H.C.; Rotach, M.W.; Gohm, A.; Graus, M.; Karl, T.; Haid, M.; Umek, L.; Muschinski, T. Energy and mass exchange at an urban site in mountainous terrain—The Alpine city of Innsbruck. Atmos. Chem. Phys. 2022, 22, 6559–6593. [Google Scholar] [CrossRef]
- Rios, G.; Ramamurthy, P. Turbulence in the Mixed Layer Over an Urban Area: A New York City Case Study. Bound.-Layer Meteorol. 2023, 188, 419–440. [Google Scholar] [CrossRef]
- Alcayaga, L.; Larsen, G.C.; Kelly, M.; Mann, J. Large-Scale Coherent Turbulence Structures in the Atmospheric Boundary Layer over Flat Terrain. J. Atmos. Sci. 2022, 79, 3219–3243. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yu, W.; Ren, J.; Xiao, X.; Xia, J.C. Relationship between urban spatial form and seasonal land surface temperature under different grid scales. Sustain. Cities Soc. 2023, 89, 104374. [Google Scholar] [CrossRef]
- Schwaab, J.; Meier, R.; Mussetti, G.; Seneviratne, S.; Bürgi, C.; Davin, E.L. The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 2021, 12, 6763. [Google Scholar] [CrossRef] [PubMed]
City | Country | Köppen–Geiger Classification | Climate Zone |
---|---|---|---|
Santiago | Chile | Csb | Temperate |
Córdoba | Argentina | Cwa | Temperate |
Chandigarh | India | Cwa | Temperate |
Skopje | North Macedonia | Cfb | Temperate |
Tirana | Albania | Csa | Mediterranean |
Madrid | Spain | Csa | Mediterranean |
Paris | France | Cfb | Oceanic |
Tbilisi | Georgia | Cfa | Temperate |
Ankara | Turkey | Csa | Mediterranean |
Amman | Jordan | BSh | Arid |
Las Vegas | USA | BWh | Desert |
Nashville | USA | Cfa | Humid Subtropical |
Wuhan | China | Cfa | Humid Subtropical |
Belo Horizonte | Brazil | Cfa | Humid Subtropical |
Aspect | Summer (Enhanced Instabilities) | Winter (Stabilized Layers) |
---|---|---|
Primary Driver | Buoyancy-driven convection | Horizontal energy transport |
Dominant Scale | Small-scale turbulence dominates | Larger-scale advection dominates |
Energy Cascade | Chaotic and steep slopes (~K−4.5 to ~K−5.0) | Smooth and organized slopes (~K−1.7 to ~K−2.0) |
Urban Effects | Wake turbulence, strong UHI | Residual mixing, weaker UHI |
Thermal Gradient | Strong vertical temperature gradient | Weak vertical gradient |
Boundary Layer Stability | Unstable, mixed-layer dominance | Stable, stratified layer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotlier, G.I.; Jimenez, J.C.; Sobrino, J.A. Turbulence Theory for the Characterization of the Surface Urban Heat Island Signature. Land 2025, 14, 620. https://doi.org/10.3390/land14030620
Cotlier GI, Jimenez JC, Sobrino JA. Turbulence Theory for the Characterization of the Surface Urban Heat Island Signature. Land. 2025; 14(3):620. https://doi.org/10.3390/land14030620
Chicago/Turabian StyleCotlier, Gabriel I., Juan Carlos Jimenez, and José Antonio Sobrino. 2025. "Turbulence Theory for the Characterization of the Surface Urban Heat Island Signature" Land 14, no. 3: 620. https://doi.org/10.3390/land14030620
APA StyleCotlier, G. I., Jimenez, J. C., & Sobrino, J. A. (2025). Turbulence Theory for the Characterization of the Surface Urban Heat Island Signature. Land, 14(3), 620. https://doi.org/10.3390/land14030620