Numerical Study and Structural Optimization of Guided Bearing Heat Exchanger with Impurity-Contained Cooling Water
Abstract
1. Introduction
2. Enhanced Heat Transfer Mechanisms for Guided Bearing Cooler
3. Methodology
3.1. Prototype and Optimized Structural Model of Semi-Ring Cooler
3.2. Mesh Division and Working Condition Setting
3.3. Turbulence Model and Computational Setup
3.4. Numerical Definition of Cooling Water with Impurities
4. Analysis of Numerical Simulation Results
4.1. Experimental Validation
4.2. Flow Characteristics of Impurity-Laden Water in Cooler Pipe
4.3. Performance Comparison Between Prototype and Optimized Coolers
4.4. Comparison of Performance Metrics Between Prototype and Optimized Coolers
5. Conclusions
- By changing the prototype round tube cooler to a spiral flat tube, the flow of the cooling medium is well-organized to form good turbulence, reducing impurity accumulation and sedimentation, preventing pipe blockages, and enhancing the stability and reliability of the cooling system.
- The spiral flat tube cooler significantly improves heat transfer efficiency by increasing turbulence intensity, flow velocity, and heat transfer area. These improvements ensure that the cooler maintains high heat exchange efficiency under different mass flow conditions.
- The spiral flat tube design not only optimizes the flow characteristics of the cooling medium but also effectively reduces potential failures due to overheating of the guide bearing, significantly improving the safety and stability of the hydropower unit and ensuring the long-term operation of the cooler.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Definition |
Q | Total heat transfer of the cooler (W) |
K | Overall heat transfer coefficient (W/m2·K) |
S | Total heat transfer area (m2) |
Logarithmic mean temperature difference (K) | |
Temperature differences at two ends of the shell side (K) | |
Arithmetic mean temperature difference (K) | |
Specific heat capacity of cooling medium (J/kg·K) | |
Density of cooling medium (kg/m3) | |
Volume flow of cooling medium (m3/s) | |
Mass flow of cooling medium (kg/s) | |
Temperature difference between inlet and outlet cooling medium (K) | |
u | Flow velocity vector (m/s) |
k | Turbulent kinetic energy (m2/s2) |
Turbulent dissipation rate (m2/s3) | |
Turbulent viscosity (Pa·s) | |
Turbulence production term | |
Standard deviation of velocity distribution (m/s) | |
Local velocity at point i (m/s) | |
Average velocity of the flow (m/s) | |
N | Total number of sampling points |
Sediment volume fraction (%) | |
Volume of sediment accumulated (m3) | |
Total volume of fluid in cooler (m3) |
References
- Shi, Y.; Zhou, J. Stability and sensitivity analyses and multi-objective optimization control of the hydro-turbine generator unit. Nonlinear Dyn. 2022, 107, 2245–2273. [Google Scholar] [CrossRef]
- Cay, M.S.; Gezer, D. Assessment of an External Cooling System Using Experimental Methods for Thrust Bearing in a Large Hydraulic Unit. Water 2025, 17, 795. [Google Scholar] [CrossRef]
- Simmons, G.F.; Cha, M.; Aidanpaa, J.O.; Cervantes, M.J.; Glavatskih, S. Steady state and dynamic characteristics for guide bearings of a hydro-electric unit. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014, 228, 836–848. [Google Scholar] [CrossRef]
- Dreyer, U.J.; da Silva, E.V.; Di Renzo, A.B.; Mezzadri, F.; Kalinowski, H.J.; de Oliveira, V.; Martelli, C.; da Silva, J.C.C. Fiber optic temperature sensing in heat exchangers and bearings for hydro generators. J. Microw. Optoelectron. Electromagn. Appl. 2015, 14, 35–44. [Google Scholar]
- Wang, Y.; Cai, Y.; Zhang, J.; Chen, Z.; Li, C.; Sun, W. Investigation on heat transfer mechanism simulation and structure optimization design of hydraulic turbine bearing semi-ring cooler. Heliyon 2025, 11, e42328. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Huang, X.; Zhang, H. Theoretical analysis on heat and mass transfer in a direct evaporative cooler. Appl. Therm. Eng. 2009, 29, 980–984. [Google Scholar] [CrossRef]
- Mousa, M.H.; Yang, C.M.; Nawaz, K.; Miljkovic, N. Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling. Renew. Sustain. Energy Rev. 2022, 155, 111896. [Google Scholar] [CrossRef]
- Feng, J.; Chen, W.; Tan, P.; Liu, C.; Wang, H.; Du, F. Experimental study on heat-transfer characteristics of spray cooling for microchannel radiators. Appl. Therm. Eng. 2024, 245, 122913. [Google Scholar] [CrossRef]
- Fawaz, A.; Hua, Y.; Le Corre, S.; Fan, Y.; Luo, L. Topology optimization of heat exchangers: A review. Energy 2022, 252, 124053. [Google Scholar] [CrossRef]
- Wang, S.; Jian, G.; Xiao, J.; Wen, J.; Zhang, Z.; Tu, J. Fluid-thermal-structural analysis and structural optimization of spiral-wound heat exchanger. Int. Commun. Heat Mass Transf. 2018, 95, 42–52. [Google Scholar] [CrossRef]
- Oclon, P.; Łopata, S.; Stelmach, T.; Li, M.; Zhang, J.F.; Mzad, H.; Tao, W.Q. Design optimization of a high-temperature fin-and-tube heat exchanger manifold—A case study. Energy 2021, 215, 119059. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, J.; Wang, J.; Jian, G.; Wen, J.; Zhang, Z. Configuration optimization of shell-and-tube heat exchangers with helical baffles using multi-objective genetic algorithm based on fluid-structure interaction. Int. Commun. Heat Mass Transf. 2017, 85, 62–69. [Google Scholar] [CrossRef]
- Yang, J.; Oh, S.R.; Liu, W. Optimization of shell-and-tube heat exchangers using a general design approach motivated by constructal theory. Int. J. Heat Mass Transf. 2014, 77, 1144–1154. [Google Scholar] [CrossRef]
- Mao, Q.; Hu, X.; Zhu, Y. Numerical investigation of heat transfer performance and structural optimization of fan-shaped finned tube heat exchanger. Energies 2022, 15, 5682. [Google Scholar] [CrossRef]
- Lee, G.; Joo, Y.; Lee, S.U.; Kim, T.; Yu, Y.; Kim, H.G. Design optimization of heat exchanger using deep reinforcement learning. Int. Commun. Heat Mass Transf. 2024, 159, 107991. [Google Scholar] [CrossRef]
- He, L.; Luo, Q.; Zhao, S.; Li, Y.; Liu, W.; Liu, Z. Structural optimization of dimple-plate heat exchanger via artificial neural network and multi-objective genetic algorithm. Appl. Therm. Eng. 2025, 263, 125297. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Wang, G.; Yuan, H.; Peng, X. Experimental and numerical study on the heat transfer and flow characteristics of convex plate heat exchanger based on multi-objective optimization. Int. J. Heat Mass Transf. 2023, 202, 123755. [Google Scholar] [CrossRef]
- Liu, C.; Bu, W.; Xu, D. Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm. Int. J. Heat Mass Transf. 2017, 111, 65–82. [Google Scholar] [CrossRef]
- Marzouk, S.A.; Abou Al-Sood, M.M.; El-Said, E.M.S.; Younes, M.M.; El-Fakharany, M.K. A comprehensive review of methods of heat transfer enhancement in shell and tube heat exchangers. J. Therm. Anal. Calorim. 2023, 148, 7539–7578. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, X.; Mondejar, M.E.; Haglind, F. A review of heat transfer enhancement techniques in plate heat exchangers. Renew. Sustain. Energy Rev. 2019, 101, 305–328. [Google Scholar] [CrossRef]
- Sadeghianjahromi, A.; Wang, C.C. Heat transfer enhancement in fin-and-tube heat exchangers—A review on different mechanisms. Renew. Sustain. Energy Rev. 2021, 137, 110470. [Google Scholar] [CrossRef]
- Hoghoj, L.C.; Norhave, D.R.; Alexandersen, J.; Sigmund, O.; Andreasen, C.S. Topology optimization of two fluid heat exchangers. Int. J. Heat Mass Transf. 2020, 163, 120543. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Farhadi, M.; Rezaniakolaei, A. Effect of Turbulators on Sediment Accumulation in Home Heating Radiators: Experimental Analysis. Int. J. Eng. Trans. Basics 2025, 38, 1708–1725. [Google Scholar] [CrossRef]
Feature | Prototype Cooler | Optimized Cooler |
---|---|---|
Tube Diameter (mm) | 20 | - |
Tube Major Axis (mm) | - | 30 |
Tube Minor Axis (mm) | - | 15 |
Wall Thickness (mm) | 1.5 | 1.5 |
Spiral Pitch (mm) | - | 60 |
Rotation Angle (° per 60 mm length) | - | 45° |
Corrugation Wavelength (mm) | - | 10 |
Corrugation Amplitude (mm) | - | 2 |
Effective Heat Transfer Area Increase (%) | - | 18 |
Parameter | Value | Unit |
---|---|---|
Material | Copper | / |
Positive water pressure | 0.14–0.2 | MPa |
Reverse water pressure | 0.03–0.2 | MPa |
Case | Positive Water Pressure | Reverse Water Pressure | ||
---|---|---|---|---|
Case 1 | 0.2 MPa | 0.03 MPa | 11.18 kg/s | 40.37 m3/h |
Case 2 | 0.2 MPa | 0.13 MPa | 21.73 kg/s | 78.46 m3/h |
Case 3 | 0.2 MPa | 0.18 MPa | 34.65 kg/s | 125.11 m3/h |
Quantity | Standard k– | k– SST | Difference (%) |
---|---|---|---|
Pressure drop, (MPa) | 0.583 | 0.601 | |
Heat transfer coefficient, h (W/m2K) | 1140 | 1113 | |
Max. tube-wall temperature, (K) | 332.1 | 331.5 | |
Iterations to convergence | 650 | 720 | |
Relative CPU time |
Performance Metric | Prototype Cooler | Optimized Cooler |
---|---|---|
Flow Uniformity (Standard Deviation) | High | Low |
Maximum Pressure (MPa) | ||
Case 1 | 0.436 | 0.576 |
Case 2 | 0.519 | 0.833 |
Case 3 | 0.562 | 0.872 |
Sediment Volume Fraction (%) | ||
Case 1 | 25.7 | 13.1 |
Case 2 | 21.2 | 8.9 |
Case 3 | 19.8 | 5.2 |
Maximum Temperature (°C) | ||
Case 1 | 46.21 | 40.78 |
Case 2 | 45.17 | 39.65 |
Case 3 | 43.62 | 47.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Wang, L.; Hu, S.; Huang, T. Numerical Study and Structural Optimization of Guided Bearing Heat Exchanger with Impurity-Contained Cooling Water. Water 2025, 17, 2609. https://doi.org/10.3390/w17172609
Jiang Z, Wang L, Hu S, Huang T. Numerical Study and Structural Optimization of Guided Bearing Heat Exchanger with Impurity-Contained Cooling Water. Water. 2025; 17(17):2609. https://doi.org/10.3390/w17172609
Chicago/Turabian StyleJiang, Zheng, Lei Wang, Shen Hu, and Tianren Huang. 2025. "Numerical Study and Structural Optimization of Guided Bearing Heat Exchanger with Impurity-Contained Cooling Water" Water 17, no. 17: 2609. https://doi.org/10.3390/w17172609
APA StyleJiang, Z., Wang, L., Hu, S., & Huang, T. (2025). Numerical Study and Structural Optimization of Guided Bearing Heat Exchanger with Impurity-Contained Cooling Water. Water, 17(17), 2609. https://doi.org/10.3390/w17172609