Optimal Planning of EVCS Considering Renewable Energy Uncertainty via Improved Thermal Exchange Optimizer: A Practical Case Study in China
Abstract
1. Introduction
2. Uncertainty of Wind Power Output and Establishment of Electric Vehicle Load Models
2.1. Overall Framework
2.2. Consideration of Scenarios with Uncertain Wind and Solar Power Output
2.2.1. Wind Power Output Model
2.2.2. Photovoltaic Power Output Model
2.3. Electric Vehicle Load Model
2.3.1. EV Daily Mileage Distribution Function and Distribution Chart
2.3.2. EV Initial Driving Distribution Function and Its Distribution Chart
2.4. EV Initial Charge State
2.5. User Waiting Time Model
2.6. Method for Constructing Typical Scenarios
3. EVCS Site Selection and Capacity Planning Optimization Model
3.1. Objective Function
3.1.1. EVCS Investment and Construction Costs
3.1.2. Waiting Time Costs
3.1.3. Voltage Fluctuations
3.2. Constraints
3.2.1. Charging Station Distance Constraints
3.2.2. Charging Station Capacity Constraints
3.2.3. Node Voltage Constraints
3.2.4. SOC Constraints for BESS
3.2.5. BESS Charging and Discharging Power Constraints
4. Model Solving Based on MOTEO-GM
4.1. MOTEO Algorithm
4.2. Solving the Model Based on Gaussian Mutation
5. Case Study
5.1. Test Model
5.2. Planning of the Actual Area
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | operational and maintenance costs | ||
BESS | battery energy storage system | rated output of the photovoltaic panel | |
DG | distribution generations | rated capacity of the representative office’s wind farm | |
EVCS | electric vehicle charging station | rated power of BESS | |
EVs | electric vehicles | active and reactive power output | |
MOPSO | multi-objective particle swarm optimization | charging radius of the charging station | |
MOTEO-GM | multi-objective heat exchange optimization algorithm under Gaussian mutation | light irradiation point | |
MOALA | multi-objective artificial lemming algorithm | replacement cost | |
MOHFOA | multi-objective hawkfish optimization algorithm | SOC of BESS | |
MOMA | multi-objective mayfly algorithm | initial SOC of the EV | |
SOC | state of charge | scale parameter of the wind turbine | |
TEO | thermal exchange optimization | time when EV arrives at the nearest EVCS | |
Variables | total investment cost | ||
parking space area | operating period | ||
equipment area | mean of the daily mileage | ||
shape parameter of the wind turbine | average SOC | ||
capacity of EVCS | standard deviation of SOC | ||
total cost of the EVCS and BESS system | beta distribution at position | ||
construction cost | beta distribution at time | ||
operating and maintenance costs | cut-in wind speed | ||
the land purchase cost | light intensity maximum value | ||
operating and maintenance costs | wind speed | ||
distance between two charging stations | test condition of the photovoltaic module | ||
actual condition of the photovoltaic module | average discount rate | ||
annualized total cost of the EVCS investment and construction | rated wind speed | ||
full life cycle cost of the BESS investment | cut-out wind speed | ||
cost of power loss | standard deviation of the daily mileage | ||
number of EVCSs |
Appendix A
Appendix B
Step1: →Input dataset, . Set the number of clusters, ; fuzzifier, ; kernel function parameters; maximum iterations, |
Step2: →Initialize membership matrix U randomly (ensure for all ). Compute initial kernel matrix, , using selected kernel. |
Step3: While iteration < do |
Step4: ----For each cluster = 1 to do |
Step5: --------Calculate the sum of weighted memberships, |
Step6: --------Update the cluster center using the kernel-based formula |
Step7: ----End For |
Step8: ----For each sample and each cluster do |
Step9: --------Compute the high-dimensional distance , using the kernel function for RBF kernel) |
Step10: -------Update the membership |
Step11: ---End For |
Step12: ---Calculate the error |
Step13: End While |
Step14: Assign each sample to the cluster with the highest membership to get the clustering result. |
Step15: Return the clustering result and cluster centers. |
Time | Spring | Summer | Autumn | Winter | ||||
---|---|---|---|---|---|---|---|---|
Photovoltaic | Wind Power | Photovoltaic | Wind Power | Photovoltaic | Wind Power | Photovoltaic | Wind Power | |
1:00 | 0 | 0.129 | 0 | 0.112 | 0 | 0.072 | 0 | 0.075 |
2:00 | 0 | 0.114 | 0 | 0.119 | 0 | 0.048 | 0 | 0.057 |
3:00 | 0 | 0.117 | 0 | 0.084 | 0 | 0.065 | 0 | 0.056 |
4:00 | 0 | 0.095 | 0 | 0.102 | 0 | 0.054 | 0 | 0.082 |
5:00 | 0 | 0.116 | 0 | 0.086 | 0 | 0.055 | 0 | 0.072 |
6:00 | 0 | 0.137 | 0 | 0.064 | 0 | 0.042 | 0 | 0.062 |
7:00 | 0 | 0.125 | 0.035 | 0.087 | 0.001 | 0.044 | 0 | 0.047 |
8:00 | 0.032 | 0.104 | 0.262 | 0.064 | 0.133 | 0.049 | 0.057 | 0.048 |
9:00 | 0.682 | 0.09 | 0.684 | 0.071 | 0.686 | 0.043 | 0.673 | 0.06 |
10:00 | 0.71 | 0.105 | 0.692 | 0.086 | 0.71 | 0.042 | 0.681 | 0.076 |
11:00 | 1.068 | 0.236 | 1.187 | 0.133 | 1.068 | 0.066 | 0.94 | 0.123 |
12:00 | 1.317 | 0.284 | 1.345 | 0.149 | 1.296 | 0.073 | 1.059 | 0.195 |
13:00 | 1.287 | 0.293 | 1.468 | 0.162 | 1.394 | 0.094 | 1.123 | 0.281 |
14:00 | 1.23 | 0.34 | 1.5 | 0.181 | 1.311 | 0.117 | 1.187 | 0.413 |
15:00 | 1.23 | 0.33 | 1.5 | 0.153 | 1.311 | 0.189 | 1.187 | 0.362 |
16:00 | 0.886 | 0.33 | 1.12 | 0.184 | 0.854 | 0.204 | 0.844 | 0.339 |
17:00 | 0.643 | 0.421 | 0.754 | 0.205 | 0.615 | 0.152 | 0.531 | 0.251 |
18:00 | 0.383 | 0.372 | 0.441 | 0.18 | 0.405 | 0.138 | 0.183 | 0.259 |
19:00 | 0.069 | 0.342 | 0.179 | 0.179 | 0.159 | 0.11 | 0.046 | 0.135 |
20:00 | 0 | 0.247 | 0.023 | 0.108 | 0.002 | 0.09 | 0 | 0.096 |
21:00 | 0 | 0.239 | 0 | 0.122 | 0 | 0.064 | 0 | 0.152 |
22:00 | 0 | 0.204 | 0 | 0.144 | 0 | 0.059 | 0 | 0.121 |
23:00 | 0 | 0.154 | 0 | 0.12 | 0 | 0.063 | 0 | 0.09 |
0:00 | 0 | 0.147 | 0 | 0.058 | 0 | 0.065 | 0 | 0.05 |
Node Number | Node Type | Active Power | Reactive Power | Electrical Conductivity | Capacitance | Section Number of Cross-Section | Voltage Amplitude | Voltage Phase Angle | Reference Voltage | Loss Allocation Number | Voltage Limit | Voltage Lower Limit |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 12.66 | 1 | 1 | 1 |
2 | 1 | 0 | 0 | 0 | 0 | 1 | 0.999966497 | −0.001227666 | 12.66 | 1 | 1.1 | 0.9 |
3 | 1 | 0 | 0 | 0 | 0 | 1 | 0.999932994 | −0.002455415 | 12.66 | 1 | 1.1 | 0.9 |
4 | 1 | 0 | 0 | 0 | 0 | 1 | 0.999839452 | −0.005886544 | 12.66 | 1 | 1.1 | 0.9 |
5 | 1 | 0 | 0 | 0 | 0 | 1 | 0.999020282 | −0.018507242 | 12.66 | 1 | 1.1 | 0.9 |
6 | 1 | 0.0026 | 0.0022 | 0 | 0 | 1 | 0.990085012 | 0.049326521 | 12.66 | 1 | 1.1 | 0.9 |
7 | 1 | 0.0404 | 0.03 | 0 | 0 | 1 | 0.980793218 | 0.121065807 | 12.66 | 1 | 1.1 | 0.9 |
8 | 1 | 0.075 | 0.054 | 0 | 0 | 1 | 0.978577191 | 0.13827704 | 12.66 | 1 | 1.1 | 0.9 |
9 | 1 | 0.03 | 0.022 | 0 | 0 | 1 | 0.977443724 | 0.147095216 | 12.66 | 1 | 1.1 | 0.9 |
10 | 1 | 0.028 | 0.019 | 0 | 0 | 1 | 0.972443492 | 0.231898885 | 12.66 | 1 | 1.1 | 0.9 |
11 | 1 | 0.145 | 0.104 | 0 | 0 | 1 | 0.971341968 | 0.250706633 | 12.66 | 1 | 1.1 | 0.9 |
12 | 1 | 0.145 | 0.104 | 0 | 0 | 1 | 0.968180409 | 0.3035534 | 12.66 | 1 | 1.1 | 0.9 |
13 | 1 | 0.008 | 0.0055 | 0 | 0 | 1 | 0.965254673 | 0.350039842 | 12.66 | 1 | 1.1 | 0.9 |
14 | 1 | 0.008 | 0.0055 | 0 | 0 | 1 | 0.962362972 | 0.396922206 | 12.66 | 1 | 1.1 | 0.9 |
15 | 1 | 0 | 0 | 0 | 0 | 1 | 0.959492912 | 0.442861898 | 12.66 | 1 | 1.1 | 0.9 |
16 | 1 | 0.0455 | 0.03 | 0 | 0 | 1 | 0.958959606 | 0.451423951 | 12.66 | 1 | 1.1 | 0.9 |
17 | 1 | 0.06 | 0.035 | 0 | 0 | 1 | 0.958079017 | 0.46557271 | 12.66 | 1 | 1.1 | 0.9 |
18 | 1 | 0.06 | 0.035 | 0 | 0 | 1 | 0.958070106 | 0.465718512 | 12.66 | 1 | 1.1 | 0.9 |
19 | 1 | 0 | 0 | 0 | 0 | 1 | 0.95760504 | 0.474247655 | 12.66 | 1 | 1.1 | 0.9 |
20 | 1 | 0.001 | 0.0006 | 0 | 0 | 1 | 0.957306587 | 0.47977782 | 12.66 | 1 | 1.1 | 0.9 |
21 | 1 | 0.114 | 0.081 | 0 | 0 | 1 | 0.956824374 | 0.488651852 | 12.66 | 1 | 1.1 | 0.9 |
22 | 1 | 0.0053 | 0.0035 | 0 | 0 | 1 | 0.956817471 | 0.488779545 | 12.66 | 1 | 1.1 | 0.9 |
23 | 1 | 0 | 0 | 0 | 0 | 1 | 0.956745624 | 0.490114457 | 12.66 | 1 | 1.1 | 0.9 |
24 | 1 | 0.028 | 0.02 | 0 | 0 | 1 | 0.95658924 | 0.493020527 | 12.66 | 1 | 1.1 | 0.9 |
25 | 1 | 0 | 0 | 0 | 0 | 1 | 0.956420157 | 0.496164372 | 12.66 | 1 | 1.1 | 0.9 |
26 | 1 | 0.014 | 0.01 | 0 | 0 | 1 | 0.956350406 | 0.497461619 | 12.66 | 1 | 1.1 | 0.9 |
27 | 1 | 0.014 | 0.01 | 0 | 0 | 1 | 0.956330854 | 0.497825596 | 12.66 | 1 | 1.1 | 0.9 |
28 | 1 | 0.026 | 0.0186 | 0 | 0 | 1 | 0.999926086 | −0.002706277 | 12.66 | 1 | 1.1 | 0.9 |
29 | 1 | 0.026 | 0.0186 | 0 | 0 | 1 | 0.999854392 | −0.005306859 | 12.66 | 1 | 1.1 | 0.9 |
30 | 1 | 0 | 0 | 0 | 0 | 1 | 0.999733267 | −0.003181042 | 12.66 | 1 | 1.1 | 0.9 |
31 | 1 | 0 | 0 | 0 | 0 | 1 | 0.999711893 | −0.002805761 | 12.66 | 1 | 1.1 | 0.9 |
32 | 1 | 0 | 0 | 0 | 0 | 1 | 0.999605025 | −0.000929117 | 12.66 | 1 | 1.1 | 0.9 |
33 | 1 | 0.014 | 0.01 | 0 | 0 | 1 | 0.999348825 | 0.00349713 | 12.66 | 1 | 1.1 | 0.9 |
34 | 1 | 0.0195 | 0.014 | 0 | 0 | 1 | 0.99901333 | 0.009350378 | 12.66 | 1 | 1.1 | 0.9 |
35 | 1 | 0.006 | 0.004 | 0 | 0 | 1 | 0.998945917 | 0.01041506 | 12.66 | 1 | 1.1 | 0.9 |
36 | 1 | 0.026 | 0.0186 | 0 | 0 | 1 | 0.999919185 | −0.002969196 | 12.66 | 1 | 1.1 | 0.9 |
37 | 1 | 0.026 | 0.0186 | 0 | 0 | 1 | 0.999747353 | −0.00937513 | 12.66 | 1 | 1.1 | 0.9 |
38 | 1 | 0 | 0 | 0 | 0 | 1 | 0.999588856 | −0.011791768 | 12.66 | 1 | 1.1 | 0.9 |
39 | 1 | 0.024 | 0.017 | 0 | 0 | 1 | 0.999543104 | −0.012489114 | 12.66 | 1 | 1.1 | 0.9 |
40 | 1 | 0.024 | 0.017 | 0 | 0 | 1 | 0.999540889 | −0.012523227 | 12.66 | 1 | 1.1 | 0.9 |
41 | 1 | 0.0012 | 0.001 | 0 | 0 | 1 | 0.998843384 | −0.023504257 | 12.66 | 1 | 1.1 | 0.9 |
42 | 1 | 0 | 0 | 0 | 0 | 1 | 0.998551048 | −0.028141779 | 12.66 | 1 | 1.1 | 0.9 |
43 | 1 | 0.006 | 0.0043 | 0 | 0 | 1 | 0.998512427 | −0.028751789 | 12.66 | 1 | 1.1 | 0.9 |
44 | 1 | 0 | 0 | 0 | 0 | 1 | 0.998504106 | −0.02890436 | 12.66 | 1 | 1.1 | 0.9 |
45 | 1 | 0.0392 | 0.0263 | 0 | 0 | 1 | 0.99840562 | −0.030710284 | 12.66 | 1 | 1.1 | 0.9 |
46 | 1 | 0.0392 | 0.0263 | 0 | 0 | 1 | 0.998405202 | −0.030718665 | 12.66 | 1 | 1.1 | 0.9 |
47 | 1 | 0 | 0 | 0 | 0 | 1 | 0.999789366 | −0.007699078 | 12.66 | 1 | 1.1 | 0.9 |
48 | 1 | 0.079 | 0.0564 | 0 | 0 | 1 | 0.998543487 | −0.052531491 | 12.66 | 1 | 1.1 | 0.9 |
49 | 1 | 0.3847 | 0.2745 | 0 | 0 | 1 | 0.994698618 | −0.191631031 | 12.66 | 1 | 1.1 | 0.9 |
50 | 1 | 0.3847 | 0.2745 | 0 | 0 | 1 | 0.994153654 | −0.211441054 | 12.66 | 1 | 1.1 | 0.9 |
51 | 1 | 0.0405 | 0.0283 | 0 | 0 | 1 | 0.978541748 | 0.138572287 | 12.66 | 1 | 1.1 | 0.9 |
52 | 1 | 0.0036 | 0.0027 | 0 | 0 | 1 | 0.978532166 | 0.138753628 | 12.66 | 1 | 1.1 | 0.9 |
53 | 1 | 0.0043 | 0.0035 | 0 | 0 | 1 | 0.974657359 | 0.169020609 | 12.66 | 1 | 1.1 | 0.9 |
54 | 1 | 0.0264 | 0.019 | 0 | 0 | 1 | 0.971414412 | 0.19463532 | 12.66 | 1 | 1.1 | 0.9 |
55 | 1 | 0.024 | 0.0172 | 0 | 0 | 1 | 0.966940947 | 0.230222883 | 12.66 | 1 | 1.1 | 0.9 |
56 | 1 | 0 | 0 | 0 | 0 | 1 | 0.962572345 | 0.265180456 | 12.66 | 1 | 1.1 | 0.9 |
57 | 1 | 0 | 0 | 0 | 0 | 1 | 0.940098457 | 0.661744946 | 12.66 | 1 | 1.1 | 0.9 |
58 | 1 | 0 | 0 | 0 | 0 | 1 | 0.929038861 | 0.864303071 | 12.66 | 1 | 1.1 | 0.9 |
59 | 1 | 0.1 | 0.072 | 0 | 0 | 1 | 0.92476117 | 0.945280836 | 12.66 | 1 | 1.1 | 0.9 |
60 | 1 | 0 | 0 | 0 | 0 | 1 | 0.919736665 | 1.049778681 | 12.66 | 1 | 1.1 | 0.9 |
61 | 1 | 1.244 | 0.888 | 0 | 0 | 1 | 0.912339563 | 1.118831179 | 12.66 | 1 | 1.1 | 0.9 |
62 | 1 | 0.032 | 0.023 | 0 | 0 | 1 | 0.912049951 | 1.121553655 | 12.66 | 1 | 1.1 | 0.9 |
63 | 1 | 0 | 0 | 0 | 0 | 1 | 0.911662223 | 1.125196596 | 12.66 | 1 | 1.1 | 0.9 |
64 | 1 | 0.227 | 0.162 | 0 | 0 | 1 | 0.909762018 | 1.143057298 | 12.66 | 1 | 1.1 | 0.9 |
65 | 1 | 0.059 | 0.042 | 0 | 0 | 1 | 0.909187714 | 1.148433818 | 12.66 | 1 | 1.1 | 0.9 |
66 | 1 | 0.018 | 0.013 | 0 | 0 | 1 | 0.971285235 | 0.251855337 | 12.66 | 1 | 1.1 | 0.9 |
67 | 1 | 0.018 | 0.013 | 0 | 0 | 1 | 0.971284575 | 0.251868941 | 12.66 | 1 | 1.1 | 0.9 |
68 | 1 | 0.028 | 0.02 | 0 | 0 | 1 | 0.967850456 | 0.309615229 | 12.66 | 1 | 1.1 | 0.9 |
69 | 1 | 0.028 | 0.02 | 0 | 0 | 1 | 0.967849401 | 0.309634005 | 12.66 | 1 | 1.1 | 0.9 |
References
- Qian, T.; Liang, Z.; Chen, S.; Hu, Q.; Wu, Z. A tri-level demand response framework for EVCS flexibility enhancement in coupled power and transportation networks. IEEE Trans. Smart Grid 2024, 16, 598–611. [Google Scholar] [CrossRef]
- Balu, K.; Mukherjee, V. Optimal allocation of electric vehicle charging stations and renewable distributed generation with battery energy storage in radial distribution system considering time sequence characteristics of generation and load demand. J. Energy Storage 2023, 59, 106533. [Google Scholar] [CrossRef]
- Barakat, S.; Osman, A.I.; Tag-Eldin, E.; Telba, A.A.; Mageed, H.M.A.; Samy, M.M. Achieving green mobility: Multi-objective optimization for sustainable electric vehicle charging. Energy Strategy Rev. 2024, 53, 101351. [Google Scholar] [CrossRef]
- Li, C.; Carta, D.; Benigni, A. EV charging station placement considering V2G and human factors in multi-energy systems. IEEE Trans. Smart Grid 2024, 16, 529–540. [Google Scholar] [CrossRef]
- Kaleybar, H.J.; Brenna, M.; Foiadelli, F.; Zaninelli, D. Electric railway system integrated with EV charging station realizing train-to-vehicle technology. IEEE Trans. Veh. Technol. 2023, 74, 2572–2586. [Google Scholar] [CrossRef]
- Han, Y.; He, B.; Yang, B.; Li, J. Optimal planning of electric vehicle charging stations combined with battery energy storage systems considering driving characteristics. J. Shanghai Jiaotong Univ. 2022, 46, 17899–17925. [Google Scholar] [CrossRef]
- Bonela, R.; Roy Ghatak, S.; Swain, S.C.; Lopes, F.; Nandi, S.; Sannigrahi, S.; Acharjee, P. Analysis of techno–economic and social impacts of electric vehicle charging ecosystem in the distribution network integrated with solar DG and DSTATCOM. Energies 2025, 18, 363. [Google Scholar] [CrossRef]
- Xiang, B.; Zhou, Z.; Gao, S.; Lei, G.; Tan, Z. A planning method for charging station based on long-term charging load forecasting of electric vehicles. Energies 2024, 17, 6437. [Google Scholar] [CrossRef]
- Kiani, S.; Sheshyekani, K.; Dagdougui, H. ADMM-based hierarchical single-loop framework for EV charging scheduling considering power flow constraints. IEEE Trans. Transp. Electrif. 2023, 10, 1089–1100. [Google Scholar] [CrossRef]
- Roslan, M.F.; Ramachandaramurthy, V.K.; Mansor, M.; Mokhzani, A.S.; Jern, K.P.; Begum, R.A.; Hannan, M.A. Techno-economic impact analysis for renewable energy-based hydrogen storage integrated grid electric vehicle charging stations in different potential locations of Malaysia. Energy Strategy Rev. 2024, 54, 101478. [Google Scholar] [CrossRef]
- Rani, G.S.A.; Priya, P.S.L.; Jayan, J.; Satheesh, R.; Kolhe, M.L. Data-driven energy management of an electric vehicle charging station using deep reinforcement learning. IEEE Access 2024, 12, 65956–65966. [Google Scholar] [CrossRef]
- Zhao, H.; Hao, X. Location decision of electric vehicle charging station based on a novel grey correlation comprehensive evaluation multi-criteria decision method. Energy 2024, 299, 131356. [Google Scholar] [CrossRef]
- Li, H.; Han, Q.; Bai, X.; Zhang, L.; Wang, W.; Chen, W.; Xiang, L. Electric vehicle charging station recommendations considering user charging preferences based on comment data. Energies 2024, 17, 5514. [Google Scholar] [CrossRef]
- Mazza, A.; Russo, A.; Chicco, G.; Di Martino, A.; Colombo, C.G.; Longo, M.; Ciliento, P.; De Donno, M.; Mapelli, F.; Lamberti, F. Categorization of attributes and features for the location of electric vehicle charging stations. Energies 2024, 17, 3920. [Google Scholar] [CrossRef]
- Ozturk, Z.; Demirci, A.; Terkes, M.; Yumurtaci, R. Optimal planning of solar PV-based electric vehicle charging stations empowered by energy storage system: Feasibility and green charge potential. Renew. Energy 2025, 255, 123715. [Google Scholar] [CrossRef]
- Chen, C.Y.; Hong, I.H.; Chen, R.C.; Chang, W.T.; Chang, C.C. A robust Pareto model for electric vehicle charging station deployment in urban areas considering psychology effects of drivers. Int. J. Prod. Res. 2024, 63, 3564–3588. [Google Scholar] [CrossRef]
- Wahby, G.; Manhrawy, I.I.; Bouallegue, B.; El-Gaafary, A.A.; Elbaset, A.A. Enhancing conventional power grids: Analyzing the impact of renewable distributed generation integration using PSO in the 118-bus IEEE system. Int. J. Energy Res. 2025, 2025, 3601747. [Google Scholar] [CrossRef]
- Dong, X.J.; Shen, J.N.; Ma, Z.F.; He, Y.J. Stochastic optimization of integrated electric vehicle charging stations under photovoltaic uncertainty and battery power constraints. Energy 2025, 314, 134163. [Google Scholar] [CrossRef]
- Yousuf, A.K.M.; Wang, Z.; Paranjape, R.; Tang, Y. An in-depth exploration of electric vehicle charging station infrastructure: A comprehensive review of challenges, mitigation approaches, and optimization strategies. IEEE Access 2024, 12, 51570–51589. [Google Scholar] [CrossRef]
- Nareshkumar, K.; Das, D. Economic planning of EV charging stations and renewable DGs in a coupled transportation-reconfigurable distribution network considering EV range anxiety. Electr. Eng. 2025, 107, 5787–5806. [Google Scholar] [CrossRef]
- Talha, H.; Altamash, S.; Adeel, W. Techno-economic appraisal of electric vehicle charging stations integrated with on-grid photovoltaics on existing fuel stations: A multicity study framework. Renew. Energy 2023, 209, 133–144. [Google Scholar] [CrossRef]
- Lee, S.; Choi, D.H. Three-Stage deep reinforcement learning for privacy-and safety-aware smart electric vehicle charging station scheduling and volt/var control. IEEE Internet Things J. 2024, 11, 8578–8589. [Google Scholar] [CrossRef]
- Chowdhury, R.; Mishra, P.; Mathur, H.D. Optimal scheduling of mobile and stationary electric vehicle charging stations in a distribution system with stochastic loading. Energy 2025, 326, 136305. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, A.; Wang, Q.; Hu, Y.; Fang, F.; Cheng, L. Quantum reinforcement learning for real-time optimization in electric vehicle charging systems. Appl. Energy 2025, 383, 125279. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D.; Demir, G. Decision-analytics-based electric vehicle charging station location selection: A cutting-edge fuzzy rough framework. Energy Rep. 2025, 14, 711–735. [Google Scholar] [CrossRef]
- Nareshkumar, K.; Das, D. Optimal location and sizing of electric vehicles charging stations and renewable sources in a coupled transportation-power distribution network. Renew. Sustain. Energy Rev. 2024, 203, 114767. [Google Scholar] [CrossRef]
- Woo, H.; Son, Y.; Cho, J.; Kim, S.Y.; Choi, S. Optimal expansion planning of electric vehicle fast charging stations. Appl. Energy 2023, 342, 121116. [Google Scholar] [CrossRef]
- Ramul, A.R.; Shahraki, A.S.; Bachache, N.K.; Sadeghi, R. Cyberspace enhancement of electric vehicle charging stations in smart grids based on detection and resilience measures against hybrid cyberattacks: A multi-agent deep reinforcement learning approach. Energy 2025, 325, 136038. [Google Scholar] [CrossRef]
- Himabindu, N.; Hampannavar, S.; Deepa, B.; Longe, O.M.; Mansani, S.; Komanapalli, V. Assessment of microgrid integrated biogas–photovoltaic powered electric vehicle charging station (EVCS) for sustainable future. Energy Rep. 2023, 9, 139–143. [Google Scholar] [CrossRef]
- Liu, F.; Masago, Y. Assessing the geographical diversity of climate change risks in Japan by overlaying climatic impacts with exposure and vulnerability indicators. Sci. Total Environ. 2025, 959, 178076. [Google Scholar] [CrossRef]
- Nour, A.M.; Helal, A.A.; El-Saadawi, M.M.; Hatata, A.Y. Voltage imbalance mitigation in an active distribution network using decentralized current control. Prot. Control Mod. Power Syst. 2023, 8, 332–348. [Google Scholar] [CrossRef]
- Shu, H.; Li, C.; Dai, Y.; Tang, Y.; Han, Y. An adaptive single-phase reclosing technique for wind farm transmission lines based on SOD transformation of CVT secondary voltage. Prot. Control Mod. Power Syst. 2025, 10, 58–71. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Li, H.; Xu, X. Enhanced photovoltaic-powered distribution network resilience aided by electric vehicle emergency response with willingness and reward. Appl. Energy 2025, 389, 125619. [Google Scholar] [CrossRef]
- Wang, J.; Wen, J.; Wang, J.; Yang, B.; Jiang, L. Water electrolyzer operation scheduling for green hydrogen production: A review. Renew. Sustain. Energy Rev. 2024, 203, 114779. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, Y.; Bi, R.; Hu, D.; Gao, P. Coordinated grid-power source expansion planning for distribution network considering cluster partition. Proc. CSU-EPSA 2021, 3, 136–143. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Installed capacity of wind turbines | 0.45 MW | SOC range [6] | 0.2–0.9 |
Installed photovoltaic capacity | 1.5 MW | Number of Monte Carlo simulations | 100 |
BESS capacity range | 0–4 MWh | BESS power range | (−1.2) MW–1.2 MW |
Number of EVs | 2000 |
Algorithm | Parameters | Value |
---|---|---|
Shared parameters | Maximum number of iterations | 300 |
Population size | 100 | |
Size of Pareto solution set | 100 | |
NSGA-III | Number of intervals | 10 |
Crossover percentage | 0.5 | |
MOTEO-GM | Cross-probability | 0.7 |
Mutation rate | 0.4 | |
Mutation probability | 0.02 | |
Individual learning factors | 1.1 | |
Social learning factor | 2.2 | |
MOPSO | Deletion selection pressure | 2 |
Inertia weight damping rate | 0.99 | |
Inertia weight | 0.5 | |
MOMA | Random flight coefficient | 0.77 |
Random flight damping ratio | 0.99 | |
Distance perception coefficient | 2 | |
MOHFOA | Expansion rate | 0.05 |
Leadership selection | 1.8 | |
MOALA | Migration rate | 0.6 |
Suicide rate | 0.6 | |
Fertility rate | 0.1 |
Parameter Symbols | Meaning | Value |
---|---|---|
EV battery capacity | 80 | |
EV charging power | 120 | |
EV energy consumption | 0.2 | |
Need to charge SOC | 0.3 | |
Minimum SOC | 0.1 | |
Maximum SOC | 0.9 | |
Average speed | 35 |
Cost (CNY 1000) | System Network Loss (MWh) | Voltage Fluctuation (p.u) | |
---|---|---|---|
MOALA | 7729.139 | 4.8862 | 0.7932 |
MOHFOA | 5097.80 | 3.5126 | 0.5759 |
NSGA-III | 5347.48 | 3.0713 | 0.4818 |
MOPSO | 4749.10 | 3.1638 | 0.5218 |
MOMA | 4978.28 | 3.2022 | 0.4917 |
MOTEO-GM | 5454.11 | 3.0551 | 0.4517 |
Algorithm | MOALA | MOHFOA | MOMA | MOPSO | MOTEO-GM | NSGA-III | ||
---|---|---|---|---|---|---|---|---|
Charging Station | ||||||||
Charging station #1 | EVCS capacity (kWh) | 632.8559 | 499.6351 | 360.0720 | 894.2439 | 360 | 360 | |
Location (node) | 11 | 2 | 2 | 2 | 19 | 20 | ||
Number of charging stations | 10 | 5 | 4 | 8 | 3 | 3 | ||
Charging station #2 | EVCS capacity (kWh) | 470.5486 | 437.8286 | 484.8423 | 366.4698 | 360 | 360 | |
Location (node) | 1 | 19 | 5 | 19 | 20 | 5 | ||
Number of charging stations | 6 | 4 | 5 | 4 | 3 | 3 | ||
Charging station #3 | EVCS capacity (kWh) | 669.8371 | 989.4701 | 553.7209 | 363.7630 | 440.2740 | 465.1220 | |
Location (node) | 17 | 27 | 21 | 20 | 5 | 17 | ||
Number of charging stations | 6 | 9 | 5 | 4 | 4 | 4 | ||
Charging station #4 | EVCS capacity (kWh) | 616.9071 | 947.8585 | 836.2983 | 649.0001 | 979.6140 | 767.9872 | |
Location (node) | 13 | 25 | 3 | 25 | 3 | 3 | ||
Number of charging stations | 9 | 8 | 7 | 6 | 9 | 7 | ||
Charging station #5 | EVCS capacity (kWh) | 423.4923 | 438.4271 | 360.3348 | 665.0405 | 839.6769 | 839.6769 | |
Location (node) | 28 | 20 | 20 | 23 | 22 | 20 | ||
Number of charging stations | 9 | 4 | 4 | 5 | 7 | 7 | ||
Charging station #6 | EVCS capacity (kWh) | 652.8598 | 654.5450 | 724.8534 | 818.9534 | 458.4150 | 458.4149 | |
Location (node) | 17 | 21 | 19 | 3 | 2 | 17 | ||
Number of charging stations | 7 | 7 | 7 | 5 | 4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Ruan, Y.; He, Y.; Yang, S.; Yang, B. Optimal Planning of EVCS Considering Renewable Energy Uncertainty via Improved Thermal Exchange Optimizer: A Practical Case Study in China. Processes 2025, 13, 3041. https://doi.org/10.3390/pr13103041
Liu H, Ruan Y, He Y, Yang S, Yang B. Optimal Planning of EVCS Considering Renewable Energy Uncertainty via Improved Thermal Exchange Optimizer: A Practical Case Study in China. Processes. 2025; 13(10):3041. https://doi.org/10.3390/pr13103041
Chicago/Turabian StyleLiu, Haocheng, Yongli Ruan, Yunmei He, Shuting Yang, and Bo Yang. 2025. "Optimal Planning of EVCS Considering Renewable Energy Uncertainty via Improved Thermal Exchange Optimizer: A Practical Case Study in China" Processes 13, no. 10: 3041. https://doi.org/10.3390/pr13103041
APA StyleLiu, H., Ruan, Y., He, Y., Yang, S., & Yang, B. (2025). Optimal Planning of EVCS Considering Renewable Energy Uncertainty via Improved Thermal Exchange Optimizer: A Practical Case Study in China. Processes, 13(10), 3041. https://doi.org/10.3390/pr13103041