Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (167)

Search Parameters:
Keywords = optical wireless channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1804 KiB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 2500 KiB  
Article
Deep Learning-Based Optical Camera Communication with a 2D MIMO-OOK Scheme for IoT Networks
by Huy Nguyen and Yeng Min Jang
Electronics 2025, 14(15), 3011; https://doi.org/10.3390/electronics14153011 - 29 Jul 2025
Viewed by 312
Abstract
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as [...] Read more.
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as a result of worries about possible health problems connected to high-frequency radiofrequency transmission. Using the visible light spectrum is one promising approach; three cutting-edge technologies are emerging in this regard: Optical Camera Communication (OCC), Light Fidelity (Li-Fi), and Visible Light Communication (VLC). In this paper, we propose a Multiple-Input Multiple-Output (MIMO) modulation technology for Internet of Things (IoT) applications, utilizing an LED array and time-domain on-off keying (OOK). The proposed system is compatible with both rolling shutter and global shutter cameras, including commercially available models such as CCTV, webcams, and smart cameras, commonly deployed in buildings and industrial environments. Despite the compact size of the LED array, we demonstrate that, by optimizing parameters such as exposure time, camera focal length, and channel coding, our system can achieve up to 20 communication links over a 20 m distance with low bit error rate. Full article
(This article belongs to the Special Issue Advances in Optical Communications and Optical Networks)
Show Figures

Figure 1

12 pages, 1072 KiB  
Article
Performance Evaluation of IM/DD FSO Communication System Under Dust Storm Conditions
by Maged Abdullah Esmail
Technologies 2025, 13(7), 288; https://doi.org/10.3390/technologies13070288 - 7 Jul 2025
Viewed by 266
Abstract
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior [...] Read more.
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior studies have addressed atmospheric effects such as fog and turbulence, the specific impact of dust on signal performance remains insufficiently explored. This work presents a probabilistic modeling framework for evaluating the performance of an intensity modulation/direct detection (IM/DD) FSO system under dust storm conditions. Using a controlled laboratory environment, we conducted measurements of the optical signal under dust-induced channel conditions using real-world dust samples collected from an actual dust storm. We identified the Beta distribution as the most accurate model for the measured signal fluctuations. Closed-form expressions were derived for average bit error rate (BER), outage probability, and channel capacity. The close agreement between the analytical, approximate, and simulated results validates the proposed model as a reliable tool for evaluating FSO system performance. The results show that the forward error correction (FEC) BER threshold of 103 is achieved at approximately 10.5 dB, and the outage probability drops below 103 at 10 dB average SNR. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

18 pages, 4683 KiB  
Article
Transmission of LG Modes in High-Capacity 16 × 10 Gbps FSO System Using FBG Sensors Under Different Channel Scenarios
by Meet Kumari and Satyendra K. Mishra
Micromachines 2025, 16(7), 738; https://doi.org/10.3390/mi16070738 - 24 Jun 2025
Viewed by 560
Abstract
Free space optics (FSO) aims to perform as one of the best optical wireless channels to design a reliable, flexible, and cost-effective communication system. In FSO systems, mode-division multiplexing (MDM) transmission is a proven technique to expand transmission capacity per communication link. Thus, [...] Read more.
Free space optics (FSO) aims to perform as one of the best optical wireless channels to design a reliable, flexible, and cost-effective communication system. In FSO systems, mode-division multiplexing (MDM) transmission is a proven technique to expand transmission capacity per communication link. Thus, a 16 × 10 Gbps MDM-FSO system using fiber Bragg grating (FBG) sensors for the coexistence of communication and sensing, exploiting FSO links to transmit distinct Laguerre-Gaussian (LG) beams at a 1000–1900 m range, is proposed. The results illustrate that the system can transmit higher-order LG beams with sensor temperatures of 20–120 °C over a 1500 m range under clear air, drizzle, and moderate haze weather. Also, an improved performance is achieved in gamma–gamma compared to the log-normal distribution model for 10−6–10−2.5 index modulation under weak-to-strong turbulence. The proposed system is capable of offering a high optical signal-to-noise ratio (OSNR) and gain of 113.39 and 15.43 dB, respectively, at an aggregate data rate of 160 Gbps under different atmospheric scenarios. Moreover, the proposed system achieves better system performance compared to existing works. Full article
Show Figures

Figure 1

19 pages, 1706 KiB  
Article
Demonstration of 50 Gbps Long-Haul D-Band Radio-over-Fiber System with 2D-Convolutional Neural Network Equalizer for Joint Phase Noise and Nonlinearity Mitigation
by Yachen Jiang, Sicong Xu, Qihang Wang, Jie Zhang, Jingtao Ge, Jingwen Lin, Yuan Ma, Siqi Wang, Zhihang Ou and Wen Zhou
Sensors 2025, 25(12), 3661; https://doi.org/10.3390/s25123661 - 11 Jun 2025
Viewed by 436
Abstract
High demand for 6G wireless has made photonics-aided D-band (110–170 GHz) communication a research priority. Photonics-aided technology integrates optical and wireless communications to boost spectral efficiency and transmission distance. This study presents a Radio-over-Fiber (RoF) communication system utilizing photonics-aided technology for 4600 m [...] Read more.
High demand for 6G wireless has made photonics-aided D-band (110–170 GHz) communication a research priority. Photonics-aided technology integrates optical and wireless communications to boost spectral efficiency and transmission distance. This study presents a Radio-over-Fiber (RoF) communication system utilizing photonics-aided technology for 4600 m long-distance D-band transmission. We successfully show the transmission of a 50 Gbps (25 Gbaud) QPSK signal utilizing a 128.75 GHz carrier frequency. Notwithstanding these encouraging outcomes, RoF systems encounter considerable obstacles, including pronounced nonlinear distortions and phase noise related to laser linewidth. Numerous factors can induce nonlinear impairments, including high-power amplifiers (PAs) in wireless channels, the operational mechanisms of optoelectronic devices (such as electrical amplifiers, modulators, and photodiodes), and elevated optical power levels during fiber transmission. Phase noise (PN) is generated by laser linewidth. Despite the notable advantages of classical Volterra series and deep neural network (DNN) methods in alleviating nonlinear distortion, they display considerable performance limitations in adjusting for phase noise. To address these problems, we propose a novel post-processing approach utilizing a two-dimensional convolutional neural network (2D-CNN). This methodology allows for the extraction of intricate features from data preprocessed using traditional Digital Signal Processing (DSP) techniques, enabling concurrent compensation for phase noise and nonlinear distortions. The 4600 m long-distance D-band transmission experiment demonstrated that the proposed 2D-CNN post-processing method achieved a Bit Error Rate (BER) of 5.3 × 10−3 at 8 dBm optical power, satisfying the soft-decision forward error correction (SD-FEC) criterion of 1.56 × 10−2 with a 15% overhead. The 2D-CNN outperformed Volterra series and deep neural network approaches in long-haul D-band RoF systems by compensating for phase noise and nonlinear distortions via spatiotemporal feature integration, hierarchical feature extraction, and nonlinear modelling. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

23 pages, 4015 KiB  
Article
Performance Analysis of FSO-UWOC Mixed Dual-Hop Relay System with Decode-and-Forward Protocol
by Yu Zhou, Yueheng Li, Meiyan Ju and Yong Lv
Electronics 2025, 14(11), 2227; https://doi.org/10.3390/electronics14112227 - 30 May 2025
Viewed by 358
Abstract
This study investigates the performance of a mixed dual-hop free-space optical/underwater wireless optical communication (FSO-UWOC) system employing a decode-and-forward (DF) relay protocol, particularly under a comprehensive hybrid channel fading model. The FSO link is assumed to experience Gamma–Gamma atmospheric turbulence fading, combined with [...] Read more.
This study investigates the performance of a mixed dual-hop free-space optical/underwater wireless optical communication (FSO-UWOC) system employing a decode-and-forward (DF) relay protocol, particularly under a comprehensive hybrid channel fading model. The FSO link is assumed to experience Gamma–Gamma atmospheric turbulence fading, combined with air path loss and pointing errors. Meanwhile, the UWOC link is modeled with generalized Gamma distribution (GGD) oceanic turbulence fading, along with underwater path loss and pointing errors. Based on the proposed hybrid channel fading model, closed-form expressions for the average outage probability (OP) and average bit error rate (BER) of the mixed dual-hop system are derived using the higher transcendental Meijer-G function. Similarly, the closed-form expression for the average ergodic capacity of the mixed relay system is obtained via the bivariate Fox-H function. Additionally, asymptotic performance analyses for the average outage probability and BER under high signal-to-noise ratio (SNR) conditions are provided. Finally, Monte Carlo simulations are conducted to validate the accuracy of the derived theoretical expressions and to illustrate the effects of key system parameters on the performance of the mixed relay FSO-UWOC system. Full article
Show Figures

Graphical abstract

22 pages, 1423 KiB  
Article
On the Performance of Non-Lambertian Relay-Assisted 6G Visible Light Communication Applications
by Jupeng Ding, Chih-Lin I, Jintao Wang and Hui Yang
Photonics 2025, 12(6), 541; https://doi.org/10.3390/photonics12060541 - 26 May 2025
Viewed by 317
Abstract
Visible light communication (VLC) has become one important candidate technology for beyond 5G and even 6G wireless networks, mainly thanks to its abundant unregulated light spectrum resource and the ubiquitous deployment of light-emitting diodes (LED)-based illumination infrastructures. Due to the high directivity of [...] Read more.
Visible light communication (VLC) has become one important candidate technology for beyond 5G and even 6G wireless networks, mainly thanks to its abundant unregulated light spectrum resource and the ubiquitous deployment of light-emitting diodes (LED)-based illumination infrastructures. Due to the high directivity of VLC channel propagation, relay-based cooperative techniques have been introduced and explored to enhance the transmission performance of VLC links. Nevertheless, almost all current works are limited to scenarios adopting well-known Lambertian transmitter and relay, which fail to characterize the scenarios with distinctive non-Lambertian transmitter or relay. For filling this gap, in this article, relay-assisted VLC employing diverse non-Lambertian optical beam configurations is proposed. Unlike the conventional Lambertian transmitter and relay-based research paradigm, the presented scheme employs the commercially available non-Lambertian transmitter and relay to configure the cooperative VLC links. Numerical results illustrate that up to 40.63 dB SNR could be provided by the proposed non-Lambertian relay-assisted VLC scheme, compared with about a 34.22 dB signal-to-noise ratio (SNR) of the benchmark Lambertian configuration. Full article
Show Figures

Figure 1

20 pages, 1134 KiB  
Article
Study on Outage Probability of RF-UWOC Hybrid Dual-Hop Relaying Systems with Decode-and-Forward Protocol
by Meng Guo, Yueheng Li, Yong Lv and Meiyan Ju
Electronics 2025, 14(11), 2110; https://doi.org/10.3390/electronics14112110 - 22 May 2025
Viewed by 290
Abstract
This paper investigates the outage probability of a hybrid Radio Frequency–Underwater Wireless Optical Communication (RF-UWOC) system that employs the Decode-and-Forward protocol under composite fading channels. It is assumed that the RF link experiences Generalized K distribution fading along with atmospheric path loss, while [...] Read more.
This paper investigates the outage probability of a hybrid Radio Frequency–Underwater Wireless Optical Communication (RF-UWOC) system that employs the Decode-and-Forward protocol under composite fading channels. It is assumed that the RF link experiences Generalized K distribution fading along with atmospheric path loss, while the UWOC link endures generalized Gamma distribution turbulent fading, accounting for underwater path loss and pointing errors. Based on these assumptions, when intensity modulation with direct detection (IM/DD) and heterodyne detection (HD) are, respectively, utilized at the receiver, the average outage probability and its corresponding asymptotic expression for the considered hybrid dual-hop systems under high signal-to-noise ratios are derived. Subsequently, Monte Carlo simulations are conducted to validate the accuracy of the theoretical analysis results and to explore the influence of various key system parameters on the dual-hop systems. Full article
Show Figures

Figure 1

26 pages, 5185 KiB  
Article
Seamless Integration of UOWC/MMF/FSO Systems Using Orbital Angular Momentum Beams for Enhanced Data Transmission
by Mehtab Singh, Somia A. Abd El-Mottaleb, Hassan Yousif Ahmed, Medien Zeghid and Abu Sufian A. Osman
Photonics 2025, 12(5), 499; https://doi.org/10.3390/photonics12050499 - 16 May 2025
Viewed by 411
Abstract
This work presents a high-speed hybrid communication system integrating Underwater Optical Wireless Communication (UOWC), Multimode Fiber (MMF), and Free-Space Optics (FSO) channels, leveraging Orbital Angular Momentum (OAM) beams for enhanced data transmission. A Photodetector, Remodulate, and Forward Relay (PRFR) is employed to enable [...] Read more.
This work presents a high-speed hybrid communication system integrating Underwater Optical Wireless Communication (UOWC), Multimode Fiber (MMF), and Free-Space Optics (FSO) channels, leveraging Orbital Angular Momentum (OAM) beams for enhanced data transmission. A Photodetector, Remodulate, and Forward Relay (PRFR) is employed to enable wavelength conversion from 532 nm for UOWC to 1550 nm for MMF and FSO links. Four distinct OAM beams, each supporting a 5 Gbps data rate, are utilized to evaluate the system’s performance under two scenarios. The first scenario investigates the effects of absorption and scattering in five water types on underwater transmission range, while maintaining fixed MMF length and FSO link. The second scenario examines varying FSO propagation distances under different fog conditions, with a consistent underwater link length. Results demonstrate that water and atmospheric attenuation significantly impact transmission range and received optical power. The proposed hybrid system ensures reliable data transmission with a maximum overall transmission distance of 1125 m (comprising a 25 m UOWC link in Pure Sea (PS) water, a 100 m MMF span, and a 1000 m FSO range in clear weather) in the first scenario. In the second scenario, under Light Fog (LF) conditions, the system achieves a longer reach of up to 2020 m (20 m UOWC link + 100 m MMF span + 1900 m FSO range), maintaining a BER ≤ 10−4 and a Q-factor around 4. This hybrid design is well suited for applications such as oceanographic research, offshore monitoring, and the Internet of Underwater Things (IoUT), enabling efficient data transfer between underwater nodes and surface stations. Full article
(This article belongs to the Special Issue Optical Wireless Communication in 5G and Beyond)
Show Figures

Figure 1

22 pages, 6192 KiB  
Article
Advanced DFE, MLD, and RDE Equalization Techniques for Enhanced 5G mm-Wave A-RoF Performance at 60 GHz
by Umar Farooq and Amalia Miliou
Photonics 2025, 12(5), 496; https://doi.org/10.3390/photonics12050496 - 16 May 2025
Viewed by 706
Abstract
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality [...] Read more.
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality in several communication systems, including WiFi networks, cable modems, and long-term evolution (LTE) systems. Its capacity to mitigate inter-symbol interference (ISI) and rapidly adjust to channel variations renders it a flexible option for high-speed data transfer and wireless communications. Conversely, MLD is utilized in applications that require great precision and dependability, including multi-input–multi-output (MIMO) systems, satellite communications, and radar technology. The ability of MLD to optimize the probability of accurate symbol detection in complex, high-dimensional environments renders it crucial for systems where signal integrity and precision are critical. Lastly, RDE is implemented as an alternative algorithm to the CMA-based equalizer, utilizing the idea of adjusting the amplitude of the received distorted symbol so that its modulus is closer to the ideal value for that symbol. The algorithms are tested using a converged 5G mm-wave analog radio-over-fiber (A-RoF) system at 60 GHz. Their performance is measured regarding error vector magnitude (EVM) values before and after equalization for different optical fiber lengths and modulation formats (QPSK, 16-QAM, 64-QAM, and 128-QAM) and shows a clear performance improvement of the output signal. Moreover, the performance of the proposed algorithms is compared to three commonly used algorithms: the simple least mean square (LMS) algorithm, the constant modulus algorithm (CMA), and the adaptive median filtering (AMF), demonstrating superior results in both QPSK and 16-QAM and extending the transmission distance up to 120 km. DFE has a significant advantage over LMS and AMF in reducing the inter-symbol interference (ISI) in a dispersive channel by using previous decision feedback, resulting in quicker convergence and more precise equalization. MLD, on the other hand, is highly effective in improving detection accuracy by taking into account the probability of various symbol sequences achieving lower error rates and enhancing performance in advanced modulation schemes. RDE performs best for QPSK and 16-QAM constellations among all the other algorithms. Furthermore, DFE and MLD are particularly suitable for higher-order modulation formats like 64-QAM and 128-QAM, where accurate equalization and error detection are of utmost importance. The enhanced functionalities of DFE, RDE, and MLD in managing greater modulation orders and expanding transmission range highlight their efficacy in improving the performance and dependability of our system. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

18 pages, 3845 KiB  
Article
Mutual Information Neural-Estimation-Driven Constellation Shaping Design and Performance Analysis
by Xiuli Ji, Qian Wang, Liping Qian and Pooi-Yuen Kam
Entropy 2025, 27(4), 451; https://doi.org/10.3390/e27040451 - 21 Apr 2025
Viewed by 618
Abstract
The choice of constellations largely affects the performance of both wireless and optical communications. To address increasing capacity requirements, constellation shaping, especially for high-order modulations, is imperative in high-speed coherent communication systems. This paper, thus, proposes novel mutual information neural estimation (MINE)-based geometric, [...] Read more.
The choice of constellations largely affects the performance of both wireless and optical communications. To address increasing capacity requirements, constellation shaping, especially for high-order modulations, is imperative in high-speed coherent communication systems. This paper, thus, proposes novel mutual information neural estimation (MINE)-based geometric, probabilistic, and joint constellation shaping schemes, i.e., the MINE-GCS, MINE-PCS, and MINE-JCS, to maximize mutual information (MI) via emerging deep learning (DL) techniques. Innovatively, we first introduce the MINE module to effectively estimate and maximize MI through backpropagation, without clear knowledge of the channel state information. Then, we train encoder and probability generator networks with different signal-to-noise ratios to optimize the distribution locations and probabilities of the points, respectively. Note that MINE transforms the precise MI calculation problem into a parameter optimization problem. Our MINE-based schemes only optimize the transmitter end, and avoid the computational and structural complexity in traditional shaping. All the designs were verified through simulations as having superior performance for MI, among which the MINE-JCS undoubtedly performed the best for additive white Gaussian noise, compared to the unshaped QAMs and even the end-to-end training and other DL-based joint shaping schemes. For example, the low-order 8-ary MINE-GCS could achieve an MI gain of about 0.1 bits/symbol compared to the unshaped Star-8QAM. It is worth emphasizing that our proposed schemes achieve a balance between implementation complexity and MI performance, and they are expected to be applied in various practical scenarios with different noise and fading levels in the future. Full article
(This article belongs to the Special Issue Advances in Modern Channel Coding)
Show Figures

Figure 1

32 pages, 2964 KiB  
Article
Enhancement of Optical Wireless Discrete Multitone Channel Capacity Based on Li-Fi Using Sparse Coded Mask Modeling
by Yong-Yuk Won, Heetae Han, Dongmin Choi and Sang Min Yoon
Photonics 2025, 12(4), 395; https://doi.org/10.3390/photonics12040395 - 18 Apr 2025
Viewed by 380
Abstract
A sparse coded mask modeling technique is proposed to increase the transmission capacity of an optical wireless link based on Li-Fi. The learning model for the discrete multitone (DMT) signal waveform is implemented using the proposed technique, which is designed based on a [...] Read more.
A sparse coded mask modeling technique is proposed to increase the transmission capacity of an optical wireless link based on Li-Fi. The learning model for the discrete multitone (DMT) signal waveform is implemented using the proposed technique, which is designed based on a masked auto-encoder. The entire length of the DMT signal waveform, encoded using quadrature phase shift keying (QPSK) or 16-quadrature amplitude modulation (16-QAM) symbols, is divided into equal intervals to generate DMT patches, which are subsequently compressed based on the specified masking ratio. After 1-m optical wireless transmission, the DMT signal waveform is reconstructed from the received DMT patch through a decoding process and then QPSK or 16-QAM symbols are recovered. Using the proposed technique, we demonstrate that we can increase the transmission capacity by up to 1.85 times for a 10 MHz physical bandwidth. Additionally, we verify that the proposed technique is feasible in Li-Fi networks with illumination environments above 240 lux. Full article
(This article belongs to the Special Issue Optical Signal Processing for Advanced Communication Systems)
Show Figures

Figure 1

15 pages, 3973 KiB  
Article
Modeling and Configuration Optimization of Spatial Angle Diversity Reception for Underwater Multi-Faceted Optical Base Station
by Junjie Shi, Jun Ao, Chunbo Ma, Xu Tian and Hanjun Guo
Photonics 2025, 12(4), 382; https://doi.org/10.3390/photonics12040382 - 15 Apr 2025
Viewed by 341
Abstract
Compared with point-to-point underwater wireless optical communication (UWOC) systems with a single direction, the underwater multi-faceted optical base station (OBS) offers independent fields of view and directions for each receiving detector, supporting multiple user access and mobile communication. This study aims at the [...] Read more.
Compared with point-to-point underwater wireless optical communication (UWOC) systems with a single direction, the underwater multi-faceted optical base station (OBS) offers independent fields of view and directions for each receiving detector, supporting multiple user access and mobile communication. This study aims at the issue of link interruptions and a limited communication area caused by restricted OBS receiver fields of view when underwater devices move. A field-of-view model and spatial angle diversity reception framework for the multi-faceted OBS in underwater channels have been developed, visualizing the effective reception field of the OBS. This model helps analyze the impact of multi-faceted OBS detector layouts on link performance in underwater environments. Furthermore, under constraints on the number of detectors, configuration adjustments are made to the field-of-view angles and deflection angles of detectors. Simulation results show that, under the same typical underwater environmental conditions, the optimized configuration reduces the blind area compared to the typical configuration, enhancing the effective spatial field of view of the OBS receiver by over 10%. The OBS’s effective communication coverage for mobile devices on different planes is also improved. This research provides a theoretical model and parameter configuration guidelines for the design of the underwater multi-faceted OBS. Full article
Show Figures

Figure 1

19 pages, 15035 KiB  
Article
Design and Implementation of Real-Time Optimal Power Allocation System with Neural Network in OFDM-Based Channel of Optical Wireless Communications
by Mahdi Akbari, Saeed Olyaee and Gholamreza Baghersalimi
Electronics 2025, 14(8), 1580; https://doi.org/10.3390/electronics14081580 - 13 Apr 2025
Viewed by 505
Abstract
In recent years, many studies have been conducted on OFDM-based optical wireless communications to develop a 6G communication infrastructure to improve data transmission and reduce the BER. Real-time optimal power management can enhance the data transmission speed and received power in an optical [...] Read more.
In recent years, many studies have been conducted on OFDM-based optical wireless communications to develop a 6G communication infrastructure to improve data transmission and reduce the BER. Real-time optimal power management can enhance the data transmission speed and received power in an optical wireless channel under various conditions. This paper discusses implementing a real-time optimal power allocation system using a neural network for OFDM-based optical wireless communications. The system is designed to manage transmitter power, enhancing data transmission rates in optical wireless channels. In system design, data concerning power allocation for various types of OFDM-based optical wireless channels are calculated analytically, including the BER, SNR, fog effects, and fading types in the channel model. Next, a DNN neural model is trained using data generated from the analytical method. The trained model is finally integrated into wireless optical communication transmitter hardware. The experimental results indicate that the embedded power allocation system processes power allocation quickly. The proposed system achieves an average accuracy of 98% in power allocation, surpassing the analytical method. When used in wireless optical communication transmitters, this embedded system enhances speed and accuracy in power management, optimizing the data transmission rate up to 16 Gbps for a 500 m channel. Full article
Show Figures

Figure 1

18 pages, 4345 KiB  
Article
Performance Optimization of 120 Gbps–120 GHz Hybrid MDM-FSO Utilizing Non-Coherent Modified Duobinary Modulations for Optical Wireless Distributed Networks
by Rabiu I. Sabitu and Amin Malek
Appl. Sci. 2025, 15(7), 3659; https://doi.org/10.3390/app15073659 - 26 Mar 2025
Viewed by 1269
Abstract
This study proposes optimizing the performance of free space optic signal transmission using spatial division multiplexing. The research uses different modified duobinary modulation schemes to model and optimize three hybrid mode division multiplexing-free-space optical (MDM-FSO) channels, each operating at 40 Gb/s–40 GHz. The [...] Read more.
This study proposes optimizing the performance of free space optic signal transmission using spatial division multiplexing. The research uses different modified duobinary modulation schemes to model and optimize three hybrid mode division multiplexing-free-space optical (MDM-FSO) channels, each operating at 40 Gb/s–40 GHz. The study also includes the parametric optimization of various components to enhance system performance. The findings are significant for achieving high data rate links for backhaul solutions and improving bandwidth for future MDM-based wireless distributed networks. The research shows that employing three linearly polarized modes as data transmission channels with direct detection can be effective. Additionally, it is discovered that adjusting the bias voltages of the two LiNbO3 modulators can improve power sharing between the modes, thereby mitigating the power penalty. Full article
(This article belongs to the Special Issue Novel Approaches for High Speed Optical Communication)
Show Figures

Figure 1

Back to TopTop