Modeling and Configuration Optimization of Spatial Angle Diversity Reception for Underwater Multi-Faceted Optical Base Station
Abstract
:1. Introduction
2. Main Assumptions and Channel Model
2.1. Signal Transmission
2.2. Channel Model
3. Optical Base Station Diversity Reception
3.1. Detector Output and Data Detection
3.2. Multi-Faceted OBS Angle Diversity Receiver
4. Numerical Results and Discussions
4.1. Multi-Faceted OBS Modeling
4.2. Multi-Faceted OBS Receiving Configuration Parameter Optimization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-García, J.; Gómez-Espinosa, A.; Cuan-Urquizo, E.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Escobedo Cabello, J.A. Autonomous underwater vehicles: Localization, navigation, and communication for collaborative missions. Appl. Sci. 2020, 10, 1256. [Google Scholar] [CrossRef]
- Schill, F.; Bahr, A.; Martinoli, A. Vertex: A new distributed underwater robotic platform for environmental monitoring. In Distributed Autonomous Robotic Systems: The 13th International Symposium; Springer: Cham, Switzerland, 2018; pp. 679–693. [Google Scholar] [CrossRef]
- Hoeher, P.A.; Sticklus, J.; Harlakin, A. Underwater optical wireless communications in swarm robotics: A tutorial. IEEE Commun. Surv. Tutor. 2021, 23, 2630–2659. [Google Scholar] [CrossRef]
- Connor, J.; Champion, B.; Joordens, M.A. Current algorithms, communication methods and designs for underwater swarm robotics: A review. IEEE Sens. J. 2020, 21, 153–169. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Saeed, N.; Celik, A.; Al-Naffouri, T.Y.; Alouini, M.-S. Underwater optical wireless communications, networking, and localization: A survey. Ad Hoc Netw. 2019, 94, 101935. [Google Scholar] [CrossRef]
- Sabril, S.; Jasman, F.; Hassan, W.H.W.; Mutalip, Z.A.; Mohd-Mokhtar, R.; Hassan, Z. The Effect of Medium Inhomogeneity in Modeling Underwater Optical Wireless Communication. J. Commun. 2021, 16, 386–393. [Google Scholar] [CrossRef]
- Lv, Z.; He, G.; Qiu, C.; Liu, Z. Investigation of underwater wireless optical communications links with surface currents and tides for oceanic signal transmission. IEEE Photonics J. 2021, 13, 1–8. [Google Scholar] [CrossRef]
- Nasser, A.G.; Ali, M.A.A. Performance of LED for line-of-sight (LoS) underwater wireless optical communication system. J. Opt. Commun. 2024, 44, s1355–s1363. [Google Scholar] [CrossRef]
- Jasman, F.; Green, R.J.; Leeson, M.S. Impact of receiver field of view on underwater optical wireless communications. Microw. Opt. Technol. Lett. 2017, 59, 837–840. [Google Scholar] [CrossRef]
- Doniec, M.; Angermann, M.; Rus, D. An end-to-end signal strength model for underwater optical communications. IEEE J. Ocean. Eng. 2013, 38, 743–757. [Google Scholar] [CrossRef]
- Li, J.; Yang, B.; Ye, D.; Wang, L.; Fu, K.; Piao, J.; Wang, Y. A real-time, full-duplex system for underwater wireless optical communication: Hardware structure and optical link model. IEEE Access 2020, 8, 109372–109387. [Google Scholar] [CrossRef]
- Baiden, G.; Bissiri, Y.; Masoti, A. Paving the way for a future underwater omni-directional wireless optical communication systems. Ocean Eng. 2009, 36, 633–640. [Google Scholar] [CrossRef]
- Barroso, A.R.F.; Baiden, G.; Johnson, J. Teleoperation of mining equipment using optical wireless communications. In Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks, Sapporo, Japan, 7–10 July 2015; pp. 727–733. [Google Scholar] [CrossRef]
- Shi, J.; Ma, C.; Tian, X.; Guo, H.; Ao, J. Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations. Photonics 2024, 12, 4. [Google Scholar] [CrossRef]
- Kong, M.; Guo, Y.; Sait, M.; Alkhazragi, O.; Kang, C.H.; Ng, T.K.; Ooi, B.S. Toward automatic subsea operations using real-time underwater optical wireless sensor networks. IEEE Photonics J. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Tong, Z.; Yang, X.; Zhang, Y.; Zhang, C.; Xu, J. Omnidirectional optical communication system designed for underwater swarm robotics. Opt. Express 2023, 31, 18630–18644. [Google Scholar] [CrossRef]
- Burton, A.; Ghassemlooy, Z.; Rajbhandari, S.; Liaw, S.K. Design and analysis of an angular-segmented full-mobility visible light communications receiver. Trans. Emerg. Telecommun. Technol. 2014, 25, 591–599. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.-D.; Yang, H.; Zhang, S.; Du, P. Reduction of SINR fluctuation in indoor multi-cell VLC systems using optimized angle diversity receiver. J. Light. Technol. 2018, 36, 3603–3610. [Google Scholar] [CrossRef]
- Chi, S.; Wang, P.; Niu, S.; Che, H.; Wang, Z.; Wu, Y. Uniformity improvement on received optical power for an indoor visible light communication system with an angle diversity receiver. Appl. Opt. 2021, 60, 8031–8037. [Google Scholar] [CrossRef]
- Jamali, M.V.; Mirani, A.; Parsay, A.; Abolhassani, B.; Nabavi, P.; Chizari, A.; Khorramshahi, P.; Abdollahramezani, S.; Salehi, J.A. Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations. IEEE Trans. Commun. 2018, 66, 4706–4723. [Google Scholar] [CrossRef]
- Ata, Y.; Kiasaleh, K. Analysis of optical wireless communication links in turbulent underwater channels with wide range of water parameters. IEEE Trans. Veh. Technol. 2023, 72, 6363–6374. [Google Scholar] [CrossRef]
- Hamza, T.; Khalighi, M.-A.; Bourennane, S.; Léon, P.; Opderbecke, J. Investigation of solar noise impact on the performance of underwater wireless optical communication links. Opt. Express 2016, 24, 25832–25845. [Google Scholar] [CrossRef] [PubMed]
- Khalil, R.A.; Babar, M.I.; Saeed, N.; Jan, T.; Cho, H.-S. Effect of link misalignment in the optical-internet of underwater things. Electronics 2020, 9, 646. [Google Scholar] [CrossRef]
- Ju, M.; Shi, H.; Li, Y.; Huang, P.; Tan, G. Effect of the APD Receiver’s Tilted Angle on Channel Capacity for Underwater Wireless Optical Communications. Electronics 2021, 10, 2246. [Google Scholar] [CrossRef]
- Ijeh, I.C.; Khalighi, M.A.; Elamassie, M.; Hranilovic, S.; Uysal, M. Outage probability analysis of a vertical underwater wireless optical link subject to oceanic turbulence and pointing errors. J. Opt. Commun. Netw. 2022, 14, 439–453. [Google Scholar] [CrossRef]
- Dabiri, M.T.; Sadough, S.M.S.; Khalighi, M.A. FSO channel estimation for OOK modulation with APD receiver over atmospheric turbulence and pointing errors. Opt. Commun. 2017, 402, 577–584. [Google Scholar] [CrossRef]
- Luo, H.; Wang, X.; Bu, F.; Yang, Y.; Ruby, R.; Wu, K. Underwater real-time video transmission via wireless optical channels with swarms of AUVs. IEEE Trans. Veh. Technol. 2023, 72, 14688–14703. [Google Scholar] [CrossRef]
- Zaye, M.M.; Shokair, M.; Elagooz, S.; Elshenawy, H. Feasibility analysis of line of sight (LOS) underwater wireless optical communications (UWOCs) via link budget. Opt. Quantum Electron. 2024, 56, 1012. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
Total power of LEDs | 11 W | |
Transmission half-angle | 15° | |
Attenuation coefficient of clear seawater | 0.151 m−1 | |
The effective detection area of the detector | 0.0001 m2 | |
Filter transmittance | 0.90 | |
Filter bandwidth | 20 nm | |
Refractive index of the concentrator | 1.5 | |
Scintillation coefficient | 0.1 | |
APD responsivity | 10 A/W | |
The spectral irradiance of sea level | 0.7645 Wm2 nm−1 | |
Underwater depth of the receiver | 100 m | |
Load resistance of the TIA | 50 | |
Electron charge | e | 1.6 × 10−19 C |
Internal amplification gain of the APD | 50 | |
Boltzmann constant | 1.380649 × 10−23 J/K | |
Equivalent temperature | 300 K | |
LPF bandwidth | 10,000,000 | |
Ionization ratio | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Ao, J.; Ma, C.; Tian, X.; Guo, H. Modeling and Configuration Optimization of Spatial Angle Diversity Reception for Underwater Multi-Faceted Optical Base Station. Photonics 2025, 12, 382. https://doi.org/10.3390/photonics12040382
Shi J, Ao J, Ma C, Tian X, Guo H. Modeling and Configuration Optimization of Spatial Angle Diversity Reception for Underwater Multi-Faceted Optical Base Station. Photonics. 2025; 12(4):382. https://doi.org/10.3390/photonics12040382
Chicago/Turabian StyleShi, Junjie, Jun Ao, Chunbo Ma, Xu Tian, and Hanjun Guo. 2025. "Modeling and Configuration Optimization of Spatial Angle Diversity Reception for Underwater Multi-Faceted Optical Base Station" Photonics 12, no. 4: 382. https://doi.org/10.3390/photonics12040382
APA StyleShi, J., Ao, J., Ma, C., Tian, X., & Guo, H. (2025). Modeling and Configuration Optimization of Spatial Angle Diversity Reception for Underwater Multi-Faceted Optical Base Station. Photonics, 12(4), 382. https://doi.org/10.3390/photonics12040382