Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = optical path scanning control system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8070 KiB  
Article
Millimeter-Wave Imaging with Range-Resolved 3D Depth Extraction Using Glow Discharge Detection and Frequency-Modulated Continuous Wave Radar
by Arun Ramachandra Kurup, Daniel Rozban, Amir Abramovich, Yitzhak Yitzhaky and Natan Kopeika
Appl. Sci. 2025, 15(4), 2248; https://doi.org/10.3390/app15042248 - 19 Feb 2025
Cited by 1 | Viewed by 757
Abstract
This paper presents a preliminary proof-of-concept study of a novel approach to 3D millimeter-wave (MMW) imaging, demonstrating the first implementation of Glow Discharge Detectors (GDDs) in this domain. GDDs offer significant advantages over conventional MMW detectors like Schottky diodes or bolometers due to [...] Read more.
This paper presents a preliminary proof-of-concept study of a novel approach to 3D millimeter-wave (MMW) imaging, demonstrating the first implementation of Glow Discharge Detectors (GDDs) in this domain. GDDs offer significant advantages over conventional MMW detectors like Schottky diodes or bolometers due to their cost-effectiveness, robustness to high-power MMW signals, and reliable operation under diverse environmental conditions. Based on weakly ionized plasma (WIP) technology, GDDs detect changes in discharge current upon MMW exposure, providing an affordable and durable alternative to traditional MMW imaging systems. The system operates within a subset of the W-band (101–109 GHz), utilizing a customized transmitter (Tx 272 from VDI Technologies), which operates at a frequency range proportional to the VCO supply voltage level. The Frequency-Modulated Continuous Wave (FMCW) signal source is split into target and reference paths via a compact waveguide splitter, improving stability and reducing the complexity of the optical setup. Reflected signals are processed by the GDD, which functions as a heterodyne receiver, and Fast Fourier Transform (FFT) is used to extract range data. A 2D grid scanning mechanism, controlled by step motors, maps the surface of the object, while depth information is derived from FMCW frequency differentials to construct a complete 3D profile. This work demonstrates the potential of GDD-based 3D MMW imaging as a low-cost, efficient solution for security screening and industrial inspection. By addressing challenges in cost, scalability, and performance under high-power MMW signals, this approach represents a significant step forward in making MMW imaging technology more accessible, while highlighting the need for further development to achieve practical implementation. Full article
Show Figures

Figure 1

23 pages, 14439 KiB  
Article
Research on Active Disturbance Rejection Control with Parameter Autotuning for a Moving Mirror Control System Based on Improved Snake Optimization
by Liangjie Zhi, Min Huang, Lulu Qian, Zhanchao Wang, Qin Wen and Wei Han
Electronics 2024, 13(9), 1650; https://doi.org/10.3390/electronics13091650 - 25 Apr 2024
Viewed by 1260
Abstract
In order to improve the control of a moving mirror control system and enhance the anti-interference ability of the system, active disturbance rejection control (ADRC) with parameter autotuning is proposed and applied to control a rotary voice coil motor (RVCM). Improved snake optimization [...] Read more.
In order to improve the control of a moving mirror control system and enhance the anti-interference ability of the system, active disturbance rejection control (ADRC) with parameter autotuning is proposed and applied to control a rotary voice coil motor (RVCM). Improved snake optimization (I-SO) was applied to tune and optimize ADRC’s key parameters. To obtain excellent parameters efficiently, in the population initialization phase of SO, the quality and diversity of initial solutions were improved through a chaotic elite opposition learning algorithm. In the local search phase, a sine and cosine (SC) search mode was introduced to enhance the local search ability of SO. The simulation results show that I-SO can effectively find the ideal parameters. I-SO has excellent search capability and stability. The experimental control system of a moving mirror was established, and the effectiveness of the parameters optimized by I-SO was verified. ADRC with parameter autotuning showed excellent control in the moving mirror control system, and the stability of the optical path scanning speed reached 99.2%. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

19 pages, 6568 KiB  
Article
Design of an Optical Path Scanning Control System in a Portable Fourier Transform Spectrometer Based on Adaptive Feedforward–Nonlinear Proportional-Integral Cascade Composite Control
by Liangjie Zhi, Min Huang, Qin Wen, Han Gao and Wei Han
Actuators 2024, 13(1), 35; https://doi.org/10.3390/act13010035 - 16 Jan 2024
Cited by 1 | Viewed by 2272
Abstract
In order to obtain highly accurate infrared spectra, the optical path scanning control system in a portable Fourier transform spectrometer (FTS) must be able to realize highly stable reciprocal scanning. To address the positional localization and speed fluctuation problems of optical path scanning [...] Read more.
In order to obtain highly accurate infrared spectra, the optical path scanning control system in a portable Fourier transform spectrometer (FTS) must be able to realize highly stable reciprocal scanning. To address the positional localization and speed fluctuation problems of optical path scanning control systems, an adaptive feedforward–nonlinear PI cascade composite control algorithm (AF-NLPI) is proposed. A physical model of an optical path scanning control system is established. Moreover, an adaptive feedforward compensator using a dynamic forgetting factor is proposed, and it was combined with a nonlinear PI cascade controller to form a composite controller. The control parameters were tuned using the atomic orbital search algorithm. Further, the simulation and experimental results demonstrate that the AF-NLPI can effectively improve the control accuracy and anti-interference ability of an optical path scanning control system in a portable FTS with high feasibility and practicality. By setting the scanning stroke of the system to 8 mm and scanning at 10 mm/s, the stability of the optical scanning speed reached 99.47% when controlled by the controller proposed in this paper, thus fulfilling the motion requirements for optical path scanning control systems. Full article
(This article belongs to the Special Issue New Control Schemes for Actuators—2nd Edition)
Show Figures

Figure 1

15 pages, 7911 KiB  
Article
Design and Analysis of a Long-Stroke and High-Precision Positioning System for Scanning Beam Interference Lithography
by Hao Chen, Longxiang Li, Ruigang Li, Guangdong Yu and Qi Chen
Electronics 2023, 12(24), 4960; https://doi.org/10.3390/electronics12244960 - 11 Dec 2023
Cited by 4 | Viewed by 1870
Abstract
A macro–micro dual-drive positioning system was developed for Scanning Beam Interference Lithography (SBIL) which uses a dual-frequency laser interferometer as the position reference and exhibits the characteristics of long travel, heavy load, and high accuracy. The macro-motion system adopts a friction-driven structure and [...] Read more.
A macro–micro dual-drive positioning system was developed for Scanning Beam Interference Lithography (SBIL) which uses a dual-frequency laser interferometer as the position reference and exhibits the characteristics of long travel, heavy load, and high accuracy. The macro-motion system adopts a friction-driven structure and a feedforward PID control algorithm, and the stroke can reach 1800 mm. The micro-motion system adopts a flexible hinge–plus-PZT driving method and a PID control algorithm based on neural networks, which achieves sufficient positioning accuracy of this system at the nanometer level. An optical-path-sealing system was used to reduce the measurement noise of the dual-frequency laser interferometer. The static stability of the positioning system, the stepping capacity of the macro-motion system, the stepping capacity of the micro-motion system, and the positioning accuracy of the system were tested and analyzed. Additionally, the sources and effects of errors during the motion process were assessed in detail. Finally, the experimental results show that the workbench can locate at the nanoscale within the full range of travel, which can satisfy the SBIL exposure requirement. Full article
Show Figures

Figure 1

21 pages, 6079 KiB  
Article
Research on 2D Image Motion Compensation for a Wide-Field Scanning Imaging System with Moving Base
by Sansan Chang, Weining Chen, Jianzhong Cao, Chao Mei, Xiang Li and Hongwei Zhang
Photonics 2023, 10(12), 1305; https://doi.org/10.3390/photonics10121305 - 26 Nov 2023
Cited by 4 | Viewed by 1646
Abstract
The wide-field imaging system carried on a high-altitude or near-space vehicle takes high-resolution images of the ground to measure and map targets. With the improvement of imaging resolution and measurement accuracy, the focal length of the wide-field imaging system is getting longer. The [...] Read more.
The wide-field imaging system carried on a high-altitude or near-space vehicle takes high-resolution images of the ground to measure and map targets. With the improvement of imaging resolution and measurement accuracy, the focal length of the wide-field imaging system is getting longer. The requirement for image motion compensation (IMC) accuracy is getting higher, and the influence of optical path coupling is increasing within the process of two-dimensional (2D) IMC. To further improve the IMC accuracy of the wide-field imaging system, an innovative IMC method is first proposed in this paper. The method is based on the 2D motion of the scanning platform and secondary mirror. Secondly, to solve the optical coupling problem in the process of 2D IMC, the coupling phenomenon is analyzed. The coupling relationships between 2D scanning motion, 2D secondary mirror motion and image motion is derived from the compensation process. A complete 2D IMC model is established, and a 2D IMC method, including an optical path decoupling correct regulator (ODCR), is designed. Finally, the method is verified in laboratory and field flight tests. The results show that the proposed method can effectively correct the coupling error of the optical path in the process of IMC and achieve high-resolution 2D IMC. When the scanning speed is 60°/s and the exposure time is 2 ms, the accuracy of the 2D IMC is up to 0.57pixels (RMS) in the pitch direction, and 0.46 pixels (RMS) in the roll direction. Full article
Show Figures

Figure 1

14 pages, 4640 KiB  
Article
Design and Simulation Analysis of Piezoelectric Ceramic Tube-Based Fiber Optic Nutator Applied to an Intersatellite Laser Communication System
by Bo Peng, Ping Ruan, Junfeng Han, Xiangyu Li, Zhiyuan Chang, Yifan Wang and Xuan Wang
Photonics 2023, 10(7), 769; https://doi.org/10.3390/photonics10070769 - 4 Jul 2023
Cited by 4 | Viewed by 2300
Abstract
The signal-receiving end of acquisition, pointing, and tracking (APT) systems applied to intersatellite laser communication terminals usually uses a fast-steering mirror (FSM) to control the fiber-coupling process, has a complex structural design, and induces large errors in the nonideal coaxial optical path. Herein, [...] Read more.
The signal-receiving end of acquisition, pointing, and tracking (APT) systems applied to intersatellite laser communication terminals usually uses a fast-steering mirror (FSM) to control the fiber-coupling process, has a complex structural design, and induces large errors in the nonideal coaxial optical path. Herein, we propose a fiber-optic nutator using a piezoelectric ceramic tube (PCT) as the driving unit that allows scanning in the focal plane of the light signal to achieve active fiber coupling in the APT system. Specifically, this article describes the structural design principle of a PCT-based fiber optic nutator, establishes a simulation model of the mechanism, and proves the correctness of the simulation model by measuring the deflection angle of a PCT based on a parallel light collimator. The minimum accuracy of the designed nutator was 0.145 μm, the maximum nutation radius R was 20.09 μm, and the maximum nutation bandwidth was 20 kHz, as determined through simulation. Finally, the design parameters of the nutator were evaluated. The PCT-based fiber optic nutator, which met the design parameters, structurally replaced the fiber optic coupling component FSM and fine tracking camera in conventional APT systems successfully. Therefore, the PCT-based fiber optic nutator allows the active coupling control of signal light to a single-mode fiber (SMF) based on energy feedback on a theoretical basis and promotes the lightweight design of relay optical paths in APT systems. In addition, with future work in optimization of the nutation control algorithm, the scanning range and accuracy of the nutator can be improved. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

15 pages, 12322 KiB  
Communication
Automated Guided Vehicle (AGV) Driving System Using Vision Sensor and Color Code
by Jun-Yeong Jang, Su-Jeong Yoon and Chi-Ho Lin
Electronics 2023, 12(6), 1415; https://doi.org/10.3390/electronics12061415 - 16 Mar 2023
Cited by 11 | Viewed by 6146
Abstract
Recently, the use of Automated Guided Vehicles (AGVs) at production sites has been increasing due to industrial development, such as the introduction of smart factories. AGVs utilizing the wired induction method, which is cheaper and faster than the wireless induction method, are mainly [...] Read more.
Recently, the use of Automated Guided Vehicles (AGVs) at production sites has been increasing due to industrial development, such as the introduction of smart factories. AGVs utilizing the wired induction method, which is cheaper and faster than the wireless induction method, are mainly used at production sites. However, the wired guidance AGV operation system has the disadvantage of being limited to small-batch or collaboration-based production sites, since it is difficult to change the driving route. In this paper, we propose an AGV line-scan algorithm that can perform route recognition, driving commands, and operation through color-code recognition using an Arduino controller and a low-cost vision sensor, instead of the optical sensor conventionally used for these functions. When the proposed algorithm is applied to the AGV car, the CMUcam 5 Pixy2 camera identifies the driving path to follow by tracking a black line using the Otsu method. In addition, it can be confirmed that the driving command is executed using the proposed color code by applying the color recognition function of the CMUcam 5 Pixy2. Full article
(This article belongs to the Special Issue Application Research Using AI, IoT, HCI, and Big Data Technologies)
Show Figures

Figure 1

16 pages, 3136 KiB  
Technical Note
Quantifying Emissions from Fugitive Area Sources Using a Hybrid Method of Multi-Path Optical Remote Sensing and Tomographic Inverse-Dispersion Techniques
by Sheng Li, Yanna Liu and Ke Du
Remote Sens. 2023, 15(4), 1043; https://doi.org/10.3390/rs15041043 - 14 Feb 2023
Cited by 4 | Viewed by 1918
Abstract
Reducing methane (CH4) emissions from anthropogenic activities is critical to climate change mitigation efforts. However, there is still considerable uncertainty over the amount of fugitive CH4 emissions due to large-scale area sources and heterogeneous emission distributions. To reduce the uncertainty [...] Read more.
Reducing methane (CH4) emissions from anthropogenic activities is critical to climate change mitigation efforts. However, there is still considerable uncertainty over the amount of fugitive CH4 emissions due to large-scale area sources and heterogeneous emission distributions. To reduce the uncertainty and improve the spatial and temporal resolutions, a new hybrid method was developed combining optical remote sensing (ORS), computed tomography (CT), and inverse-dispersion modeling techniques on the basis of which a multi-path scanning system was developed. It uses a horizontal radial plume mapping path configuration and adapts a Lagrangian stochastic dispersion mode into CT reconstruction. The emission map is finally calculated by using a minimal curvature tomographic reconstruction algorithm, which introduces smooth constraints at each pixel. Two controlled-release experiments of CH4 were conducted with different configurations, showing relative errors of only 2% and 3%. Compared with results from the single-path inverse-dispersion method (5–175%), the new method can not only derive the emission distribution but also obtain a more accurate emission rate. The outcome of this research would bring broad application of the ORS-CT and inverse-dispersion techniques to other gases and sources. Full article
Show Figures

Graphical abstract

20 pages, 5944 KiB  
Article
Improved Active Disturbance Rejection Double Closed-Loop Control of a Rotary-Type VCM in a Moving Mirror Control System
by Liangjie Zhi, Min Huang, Wei Han, Zhanchao Wang, Xiangning Lu, Yang Bai and Han Gao
Sensors 2022, 22(10), 3897; https://doi.org/10.3390/s22103897 - 20 May 2022
Cited by 8 | Viewed by 2071
Abstract
Aiming to address the problem of moving mirror speed fluctuations in moving mirror control systems, an improved active disturbance rejection double closed-loop controller (IADR-DCLC) is proposed and verified by simulation to realize the high-performance control of a moving mirror control system. First, the [...] Read more.
Aiming to address the problem of moving mirror speed fluctuations in moving mirror control systems, an improved active disturbance rejection double closed-loop controller (IADR-DCLC) is proposed and verified by simulation to realize the high-performance control of a moving mirror control system. First, the mathematical model of a rotary-type voice coil motor (RT VCM) is established, and the relationship between the angular velocity of the RT VCM and the optical path scanning velocity is analyzed. Second, in order to suppress the model uncertainty and external disturbance of the system, an improved active disturbance rejection controller (IADRC) is proposed. Compared with a conventional ADRC, the tracking differentiator of the proposed IADRC is replaced with desired signal optimization (DSO), and the actual speed is introduced to the extended state observer (ESO). The IADRC is used in the position–speed double closed-loop control model. Finally, the simulation results show that the IADR-DCLC has not only a good tracking effect but also a good anti-interference ability and can meet the requirements of the moving mirror control system for the uniformity of optical-path scanning speed and accurate control of the position of the moving mirror. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 3965 KiB  
Article
Inline Optical Coherence Tomography for Multidirectional Process Monitoring in a Coaxial LMD-w Process
by Charlotte Stehmar, Marius Gipperich, Markus Kogel-Hollacher, Alfredo Velazquez Iturbide and Robert H. Schmitt
Appl. Sci. 2022, 12(5), 2701; https://doi.org/10.3390/app12052701 - 5 Mar 2022
Cited by 15 | Viewed by 4962
Abstract
Within additive manufacturing, process stability is still an unsolved challenge. Process instabilities result from the complexity of laser deposition processes and the dependence of the quality of the workpiece on a variety of factors in the process. Because a stable process is dependent [...] Read more.
Within additive manufacturing, process stability is still an unsolved challenge. Process instabilities result from the complexity of laser deposition processes and the dependence of the quality of the workpiece on a variety of factors in the process. Because a stable process is dependent on many different factors, permanent precise inline monitoring is required. The suitability of the optical coherence tomography (OCT) measuring system integrated into a wire-based laser metal deposition (LMD-w) process for the task of process control results from its high resolution and high measuring speed, and from coaxial integration into the laser process, which allows for a spatially and temporally resolved representation of the weld bead topography during the process. To realize this, a spectral domain OCT (SD-OCT) system was developed and integrated into the beam path of the process laser. With the aid of suitable optics, circular scanning was realized, which allows for the 3D depth information to be displayed independently of the direction of movement of the processing head and the centrally running wire. OCT makes it possible to detect the process-typical topography deviations caused by process variations and thus paves the way for adaptive process control that could make additive laser processes more reproducible and precise in the future. Full article
(This article belongs to the Special Issue New Trends in Manufacturing Metrology)
Show Figures

Figure 1

12 pages, 3932 KiB  
Article
Interference Spectral Imaging Based on Liquid Crystal Relaxation and Its Application in Optical Component Defect Detection
by Jiajia Yuan, Wei Fan, He Cheng, Dajie Huang and Tongyao Du
Appl. Sci. 2022, 12(2), 718; https://doi.org/10.3390/app12020718 - 12 Jan 2022
Cited by 1 | Viewed by 2490
Abstract
In this paper, we propose a fast interference spectral imaging system based on liquid crystal (LC) relaxation. The path delay of nematic LC during falling relaxation is used for the scanning of the optical path. Hyperspectral data can be obtained by Fourier transforming [...] Read more.
In this paper, we propose a fast interference spectral imaging system based on liquid crystal (LC) relaxation. The path delay of nematic LC during falling relaxation is used for the scanning of the optical path. Hyperspectral data can be obtained by Fourier transforming the data according to the path delay. The system can obtain two-dimensional spatial images of arbitrary wavelengths in the range of 300–1100 nm with a spectral resolution of 262 cm−1. Compared with conventional Fourier transform spectroscopy, the system can easily collect and integrate all valid information within 20 s. Based on the LC, controlling the optical path difference between two orthogonally polarized beams can avoid mechanical movement. Finally, the potential for application in contactless and rapid non-destructive optical component defect inspection is demonstrated. Full article
(This article belongs to the Topic Hyperspectral Imaging: Methods and Applications)
Show Figures

Figure 1

16 pages, 3235 KiB  
Article
Laser Scanning Based Object Detection to Realize Digital Blank Shadows for Autonomous Process Planning in Machining
by Berend Denkena, Marcel Wichmann, Klaas Maximilian Heide and René Räker
J. Manuf. Mater. Process. 2022, 6(1), 1; https://doi.org/10.3390/jmmp6010001 - 22 Dec 2021
Cited by 5 | Viewed by 4608
Abstract
The automated process chain of an unmanned production system is a distinct challenge in the technical state of the art. In particular, accurate and fast raw-part recognition is a current problem in small-batch production. This publication proposes a method for automatic optical raw-part [...] Read more.
The automated process chain of an unmanned production system is a distinct challenge in the technical state of the art. In particular, accurate and fast raw-part recognition is a current problem in small-batch production. This publication proposes a method for automatic optical raw-part detection to generate a digital blank shadow, which is applied for adapted CAD/CAM (computer-aided design/computer-aided manufacturing) planning. Thereby, a laser-triangulation sensor is integrated into the machine tool. For an automatic raw-part detection and a workpiece origin definition, a dedicated algorithm for creating a digital blank shadow is introduced. The algorithm generates adaptive scan paths, merges laser lines and machine axis data, filters interference signals, and identifies part edges and surfaces according to a point cloud. Furthermore, a dedicated software system is introduced to investigate the created approach. This method is integrated into a CAD/CAM system, with customized software libraries for communication with the CNC (computer numerical control) machine. The results of this study show that the applied method can identify the positions, dimensions, and shapes of different raw parts autonomously, with deviations less than 1 mm, in 2.5 min. Moreover, the measurement and process data can be transferred without errors to different hardware and software systems. It was found that the proposed approach can be applied for rough raw-part detection, and in combination with a touch probe for accurate detection. Full article
(This article belongs to the Special Issue Progress in Digital Twin Integration for Smart Machining)
Show Figures

Figure 1

22 pages, 5825 KiB  
Article
Satellite Retrieval of Microwave Land Surface Emissivity under Clear and Cloudy Skies in China Using Observations from AMSR-E and MODIS
by Jiheng Hu, Yuyun Fu, Peng Zhang, Qilong Min, Zongting Gao, Shengli Wu and Rui Li
Remote Sens. 2021, 13(19), 3980; https://doi.org/10.3390/rs13193980 - 5 Oct 2021
Cited by 21 | Viewed by 3975
Abstract
Microwave land surface emissivity (MLSE) is an important geophysical parameter to determine the microwave radiative transfer over land and has broad applications in satellite remote sensing of atmospheric parameters (e.g., precipitation, cloud properties), land surface parameters (e.g., soil moisture, vegetation properties), and the [...] Read more.
Microwave land surface emissivity (MLSE) is an important geophysical parameter to determine the microwave radiative transfer over land and has broad applications in satellite remote sensing of atmospheric parameters (e.g., precipitation, cloud properties), land surface parameters (e.g., soil moisture, vegetation properties), and the parameters of interactions between atmosphere and terrestrial ecosystem (e.g., evapotranspiration rate, gross primary production rate). In this study, MLSE in China under both clear and cloudy sky conditions was retrieved using satellite passive microwave measurements from Aqua Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), combined with visible/infrared observations from Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), and the European Centre for Medium-Range Weather Forecasts (ECMWF) atmosphere reanalysis dataset of ERA-20C. Attenuations from atmospheric oxygen and water vapor, as well as the emissions and scatterings from cloud particles are taken into account using a microwave radiation transfer model to do atmosphere corrections. All cloud parameters needed are derived from MODIS visible and infrared instantaneous measurements. Ancillary surface skin temperature as well as atmospheric temperature-humidity profiles are collected from ECMWF reanalysis data. Quality control and sensitivity analyses were conducted for the input variables of surface skin temperature, air temperature, and atmospheric humidity. The ground-based validations show acceptable biases of primary input parameters (skin temperature, 2 m air temperature, near surface relative humidity, rain flag) for retrieving using. The subsequent sensitivity tests suggest that 10 K bias of skin temperature or observed brightness temperature may result in a 4% (~0.04) or 7% (0.07) retrieving error in MLSE at 23.5 GHz. A nonlinear sensitivity in the same magnitude is found for air temperature perturbation, while the sensitivity is less than 1% for 300 g/m2 error in cloud water path. Results show that our algorithm can successfully retrieve MLSE over 90% of the satellite detected land surface area in a typical cloudy day (cloud fraction of 64%), which is considerably higher than that of the 29% area by the clear-sky only algorithms. The spatial distribution of MLSE in China is highly dependent on the land surface types and topography. The retrieved MLSE is assessed by compared with other existing clear-sky AMSR-E emissivity products and the vegetation optical depth (VOD) product. Overall, high consistencies are shown for the MLSE retrieved in this study with other AMSR-E emissivity products across China though noticeable discrepancies are observed in Tibetan Plateau and Qinling-Taihang Mountains due to different sources of input skin temperature. In addition, the retrieved MLSE exhibits strong positive correlations in spatial patterns with microwave vegetation optical depth reported in the literature. Full article
Show Figures

Graphical abstract

17 pages, 6113 KiB  
Article
Optomechanical Design and Application of Solar-Skylight Spectroradiometer
by Zhaoyang Qi, Jianyu Li, Wenqing Xu, Wenyue Zhu, Fengying Sun, Yao Huang, Gang Xu and Congming Dai
Sensors 2021, 21(11), 3751; https://doi.org/10.3390/s21113751 - 28 May 2021
Cited by 4 | Viewed by 2722
Abstract
Using a solar radiometer is an effective approach for improving the remote sensing of solar irradiance distribution and atmospheric composition. Long-term development of a solar scanning radiometer enables frequent and reliable measurement of atmospheric parameters such as the water vapor column and aerosol [...] Read more.
Using a solar radiometer is an effective approach for improving the remote sensing of solar irradiance distribution and atmospheric composition. Long-term development of a solar scanning radiometer enables frequent and reliable measurement of atmospheric parameters such as the water vapor column and aerosol optical properties. However, the discrete wavelength radiometer has encountered a bottleneck with respect to its insufficient spectral resolution and limited observation waveband, and it has been unable to satisfy the needs of refined and intelligent on-site experiments. This study proposes a solar-skylight spectroradiometer for obtaining visible and near-IR fine spectrum with two types of measurement: direct-sun irradiance and diffuse-sky radiance. The instrument adopts distributed control architecture composed of the ARM-Linux embedded platform and sensor networks. The detailed design of the measuring light-path, two-axis turntable, and master control system will be addressed in this study. To determine all coefficients needed to convert instrument outputs to physical quantities, integrating sphere and Langley extrapolation methods are introduced for diffuse-sky and direct-sun calibration, respectively. Finally, the agreement of experimental results between spectroradiometers and measuring benchmarks (DTF sun-photometer, microwave radiometer, and Combined Atmospheric Radiative Transfer simulation) verifies the feasibility of the spectroradiometer system, and the radiation information of feature wavelengths can be used to retrieve the characteristics of atmospheric optics. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

27 pages, 6183 KiB  
Article
Determining UAV Flight Trajectory for Target Recognition Using EO/IR and SAR
by Wojciech Stecz and Krzysztof Gromada
Sensors 2020, 20(19), 5712; https://doi.org/10.3390/s20195712 - 8 Oct 2020
Cited by 18 | Viewed by 7514
Abstract
The paper presents the concept of planning the optimal trajectory of fixed-wing unmanned aerial vehicle (UAV) of a short-range tactical class, whose task is to recognize a set of ground objects as a part of a reconnaissance mission. Tasks carried out by such [...] Read more.
The paper presents the concept of planning the optimal trajectory of fixed-wing unmanned aerial vehicle (UAV) of a short-range tactical class, whose task is to recognize a set of ground objects as a part of a reconnaissance mission. Tasks carried out by such systems are mainly associated with an aerial reconnaissance using Electro-Optical/Infrared (EO/IR) systems and Synthetic Aperture Radars (SARs) to support military operations. Execution of a professional reconnaissance of the indicated objects requires determining the UAV flight trajectory in the close neighborhood of the target, in order to collect as much interesting information as possible. The paper describes the algorithm for determining UAV flight trajectories, which is tasked with identifying the indicated objectives using the sensors specified in the order. The presence of UAV threatening objects is taken into account. The task of determining the UAV flight trajectory for recognition of the target is a component of the planning process of the tactical class UAV mission, which is also presented in the article. The problem of determining the optimal UAV trajectory has been decomposed into several subproblems: determining the reconnaissance flight method in the vicinity of the currently recognized target depending on the sensor used and the required parameters of the recognition product (photo, film, or SAR scan), determining the initial possible flight trajectory that takes into account potential UAV threats, and planning detailed flight trajectory considering the parameters of the air platform based on the maneuver planning algorithm designed for tactical class platforms. UAV route planning algorithms with time constraints imposed on the implementation of individual tasks were used to solve the task of determining UAV flight trajectories. The problem was formulated in the form of a Mixed Integer Linear Problem (MILP) model. For determining the flight path in the neighborhood of the target, the optimal control algorithm was also presented in the form of a MILP model. The determined trajectory is then corrected based on the construction algorithm for determining real UAV flight segments based on Dubin curves. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop